双三相永磁同步电机驱动系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多相电机驱动系统因其转矩脉动小、可靠性高、在本质上可以很好地满足大功率电气传动系统的要求成为电气传动领域的研究重点。多相电机驱动系统侧重于军事、对可靠性要求高以及大功率的应用场合,目前这类驱动系统在舰船推进系统中得到了广泛的应用。然而,作为一种新兴技术,它的控制方法在理论上和实践中仍然存在着大量值得研究和探讨的问题。
     双三相永磁同步电机从电机内部看是一个绕组对称的十二相系统,从电机外部看是不对称的六相系统。因此从主电路和控制电路的设计上讲,双三相永磁同步电机是一个六相系统,只需要六个逆变桥和六条主连接电缆。但是,从内部时空谐波磁势的分布来讲,这种绕组结构消除了三相电机中的5、7次谐波磁场对电磁转矩的危害,其最低次磁势谐波是13次,与十二相电机相同。正是双三相永磁同步电机的这些特点,使之成为多相电机驱动系统中最有发展前景的结构形式之一。
     本文以双三相永磁同步电机驱动系统为研究对象,对双三相永磁同步电机驱动系统的几个关键问题进行了全面、深入的研究,全文的主要内容有:
     1双三相永磁同步电机的数学模型和基本控制方法
     本文利用双反应理论推导出双三相永磁同步电机定子绕组的自感和互感,构建了双三相永磁同步电机的数学模型,寻找到一组由彼此正交的六维矢量组成的标准正交基,通过坐标变换得到双三相永磁同步电机在dq坐标系和αβ坐标系下的数学模型;对双三相永磁同步电机的矢量控制方法作了详细的说明,提出了一种易于工程实现的最大转矩电流比矢量控制方法;将三相永磁同步电机的无速度传感器控制方法引入双三相永磁同步电机,构建了基于滑模观测器的无速度传感器控制系统;通过仿真和实验对上述方法进行了验证。
     2双三相永磁同步电机的空间矢量调制技术
     本文对传统的双三相永磁同步电机空间矢量调制方法进行了简要的介绍;考虑到两矢量空间矢量调制方法会在z1-z2平面上产生不必要的谐波损耗,增加了两个基本电压矢量,通过增加的电压矢量抵消在z1-z2平面上形成的电压作用效果,并对三种四矢量的空间矢量调制方式进行了详细的说明;为了进一步提高直流电压利用率,本文提出了一种新颖的双三相永磁同步电机空间矢量过调制技术,根据调制度将过调制分为4种模式,并对输出电压的谐波成份和谐波总畸变率进行分析;通过仿真和实验对上述方法进行了验证。
     3双三相永磁同步电机的直接转矩控制技术
     本文首先从数学建模的角度对双三相永磁同步电机的直接转矩控制理论进行了详细的分析讨论,证明了其与普通三相永磁同步电机的磁链方程与转矩方程几乎是一致的;构建了双三相永磁同步电机的直接转矩控制系统;针对常规双三相永磁同步电机直接转矩控制中转矩脉动和存在k=6m+1(m=1,3,5...)次谐波电流问题,提出了一种基于模糊逻辑和重构电压矢量的双三相永磁同步电机直接转矩控制策略;为了增加可供选择的电压矢量数目完全补偿系统转矩和定子磁链误差,本文将SVM引入双三相永磁同步电机的直接转矩控制中,构建了基于SVM的双三相永磁同步电机的直接转矩控制系统;同时,构建了基于转子磁链观测的双三相永磁同步电机无速度传感器直接转矩控制系统;通过仿真和实验对上述方法进行了验证。
     4二极管箝位式三电平双三相永磁同步电机控制系统
     本文首先对二极管箝位式、飞跨电容式和全桥级联式三种多电平逆变器的拓扑结构进行了简要的介绍;提出了双三相永磁同步电机二极管箝位式三电平逆变器空间矢量调制的控制方法,并通过仿真对上述方法进行了验证。
     5双三相永磁同步电机驱动系统的研制
     本文给出了基于TMS320F2812的双三相永磁同步电机驱动系统的设计方案,并研制了一套双三相永磁同步电机驱动系统,实验结果表明该系统能够稳定运行。
Because of small torque ripple and high reliability, multi-phase motor drive system in essence could satisfy the requirement of high-power electric drive systems. Multi-phase motor drive system focused on the military, high-reliability requirement and high-power application, and such drive system had been widely used in the ship propulsion system. However, there were still a lot of problems in theory and in practice as an emerging technology.
     Dual three-phase permanent magnet synchronous motor (PMSM) was a symmetric twelve-phase system according to motor windings and an asymmetric six-phase system by motor outside. So dual three-phase PMSM was a six-phase system toward design of main circuit and control circuit. It only needed six inverter bridges and six cables. However, it was shown that this winding configuration resulted in the elimination of all air-gap flux time harmonics of the order k=6m±l(m=1,3,5...). Consequently, all rotor copper losses were produced by these harmonics as well as all torque harmonics of the order k=6m±l(m=1,3,5...) were eliminated. It was the same as the twelve-phase motor. These advantages made dual three-phase PMSM a most promising structure.
     In this paper, several key issues of dual three-phase PMSM drive system were deeply and comprehensively studied. This paper included the following contents:
     1Mathematical model and basic control method for dual three-phase PMSM
     This paper utilized dual-reaction theory to derive self inductance and mutual inductance of the dual three-phase PMSM, built mathematical model on natural coordinates, found a group of standard orthogonal basis consisting of six-dimensional vector as well as obtained the mathematical model on dq axises and αβ axises by coordinate transformation. Several approaches to vector control of dual three-phase PMSM were elaborated. For the convenience of engineering application, an engineering approximate algorithm for the maximum ratio of torque to current was advanced by using optimization method. Dual three-phase PMSM sensorless control system based on sliding mode observer was constructed. The simulation and experiment demonstrated the effectiveness and feasibility of the proposed method.
     2Space-Vector PWM techniques for dual three-phase PMSM
     In this paper, the traditional space vector modulation techniques for dual three-phase PMSM was introduced. Taking into account unnecessary harmonic losses in the z1-z2plane brought by traditional space vector modulation techniques, two basic voltage vector was increased, offsetting harmonic voltage on the z1-z2plane. Three approaches to space vector control of dual three-phase PMSM were elaborated. To further improve the utilization of DC voltage, a novel over-modulation technique for space-vector pulse-width modulation inverter was proposed. The over-modulation range was divided into four modes depending on the modulation index. Output voltage and harmonic components were analyzed by simulation. The simulation and experiment confirmed validity of these methods.
     3Direct Torque Control for dual three-phase PMSM
     Firstly, mathematical modeling and direct torque control theory for dual three-phase PMSM was discussed in detail. Its flux equation and torque equation was almost consistent with an ordinary three-phase PMSM. Considering the problem of torque ripples and harmonic currents with k=6m±l(m=1,3,5...), a novel direct torque control strategy, which based on fuzzy logic and rebuilding voltage vector, was proposed. In order to obtain accurate torque and flux linkage control, space vector modulation (SVM) technique was introduced to the conventional PMSM direct torque control system. Direct torque control based on SVM was established. Moreover, direct torque control PMSM system based on rotor flux observation sensorless was constituted.
     4Multi-level dual three-phase PMSM control system
     This paper presented the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor) and cascaded multicell with separate dc sources. Diode-clamped three-level inverter space vector modulation control method for dual three-phase PMSM control system was proposed. The simulation result had been verified.
     5The development of dual three-phase permanent magnet synchronous motor drive system
     The design of the dual three-phase permanent magnet synchronous motor drive system based on the TMS320F2812was provided and developed. The experimental results demonstrated that the system could reliably perform.
引文
[1]J.R.Stewart, D.D.Wilson. High Phase Order Transmission-A Feasibility Analysis Part Ⅰ-Steady State Considerations. IEEE Transactions on Power Apparatus and Systems,1978,97(6):2300-2307.
    [2]J.R.Stewart, D.D.Wilson. High Phase Order Transmission-A Feasibility Analysis Part Ⅱ-Overvoltages and Insulation Requirements. IEEE Transactions on Power Apparatus and Systems,1978,97(6):2308-2317.
    [3]L.D.Camillis, M.Matuonto, A.Monti and A. Vignati. Optimizing current control performance in double winding asynchronous motors in large power inverter drives. IEEE Transactions on Power Electronics,2001,16(5):676-685.
    [4]M.G.Simoes and P.Vieira. A high-torque low-speed multi-phase brushless machine-A perspective application for electric vehicles. IEEE Transactions on Industry Electronics,2002,49(5):1154-1164.
    [5]E.A.Klingshirn. High Phase Order Induction Motors-Part Ⅰ-Description and Theoretical Considerations. IEEE Transactions on Power Apparatus and Systems, 1983,102(1):47-53.
    [6]E.A.Klingshirn. High Phase Order Induction Motors-Part Ⅱ-Experimental Results. IEEE Transactions on Power Apparatus and Systems,1983,102(1): 54-59.
    [7]E.A.Klingshirn. Harmonic Filters for Six-Phase and Other Multiphase Motors on Voltage Source Inverters. IEEE Transactions on Industry Applications.1985, 21(4)4:588-594.
    [8]K.N.Pavithran, R.Parimelalagan and M.R.Krishnamurthy. Studies on Inverter-Fed Five-phase Induction Motor Drive. IEEE Transactions on Power Electronics,1988,3(2):224-235.
    [9]R.H.Nelson and P.C.Krause. Induction Machine Analysis for Arbitrary Displacement Between Multiple Winding Sets. IEEE Transactions on Power Apparatus and Systems,1974,93(3):841-848.
    [10]M.A.Abbas, R.Christen and T.M.Jahns. Six-Phase Voltage Source Inverter Driven Induction Motor. IEEE Transactions on Industry Applications,1984, 20(5):1251-1259.
    [11]Longya Xu, Lurong Ye. Analysis of a Novel Stator Winding Structure Minimizing Harmonic Current and Torque Ripple for Dual Six-Step Converter-Fed High Power AC Machines. IEEE Transactions on Industry Applications,1995,3(1):84-90.
    [12]F.X.Wang and B.Y.Zhang. Waveform Optimization Design of an AC Converter Machine. IEEE Transactions on Industry Applications,1989,25(3):436-439.
    [13]H.A.Toliyat, T.A.Lipo and J.C.White. Analysis of Concentrated Winding Induction Machine for Adjustable Speed Drive Application Port I (Motor Analysis). IEEE Transactions on Energy Conversion,1991,6(4):679-683.
    [14]H.A.Toliyat, T.A.Lipo and J.C.White. Analysis of Concentrated Winding Induction Machine for Adjustable Speed Drive Application Port II (motor Design and Performance). IEEE Transactions on Energy Conversion,1991,6(4): 684-692.
    [15]K.Gopakumar, V.T.Ranganathan and S.R.Bhat. Split-Phase Induction Motor Operation from PWM Voltage Source Inverter. IEEE Transactions on Industry Applications,1993,29(5):927-932.
    [16]Kuniomi Oguchi, Akihiro Kawaguchi, Tomotsugu Kubota and Nobukazu Hoshi. A Novel Six-Phase Inverter System with 60-Step Output Voltages for High-Power Motor Drives. IEEE Transactions on Industry Applications,1999, 35(5):1141-1149.
    [17]Thomas M. Jahns. Improved Reliability in Solid-State AC Drives by Means of Multiple Independent Phase-Drive Units. IEEE Transactions on Industry Applications,1980,16(3):321-331.
    [18]Jen-Ren Fu and T.A.Lipo. Disturbance-Free Operation of a Multiphase Current-Regulated Motor Drive with an Opened Phase. IEEE Transactions on Industry Applications,1994,30(5):1267-1274.
    [19]Y.Zhao and T.A.Lipo. Modeling and control of a multi-phase induction machine with structural unbalance. IEEE Transactions on Energy Conversion,1996,11(3): 570-584.
    [20]H.A.Toliyat. Analysis and Simulation of Five-Phase Variable-Speed Induction Motor Drives Under Asymmetrical Connections. IEEE Transactions on Power Electronics,1998,13(4):748-756.
    [21]H.A.Toliyat, L.Y.Xu and T.A.Lipo. A five phase reluctance motor with high specific torque. IEEE Transactions on Industry Applications,1992,28(3): 659-667.
    [22]Yifan Zhao, Thomas A. Lipo. Space Vector PWM Control of Dual Three-phase Induction Machine Using Vector Space Decomposition. IEEE Transactions on Industry Applications,1995,31(5):1100-1109.
    [23]D.Hadiouche, H.Razik, and A.Rezzoug. Study and Simulation of Space Vector PWM Control of Double-Star Induction Motors. In Proc. IEEE CIEP, Acapulco, Mexico,2000. Oct,15-19:42-47.
    [24]D.Hadiouche, H.Razik, and A.Rezzoug. On the modeling and design of dual-stator windings to minimize circulating harmonic currents for VSI fed AC machines. IEEE Transactions on Industry Applications,2004,40(2):506-515.
    [25]Djafar Hadiouche, Lotfi Baghli and Abderrezak Rezzoug. Space-Vector PWM Techniques for Dual Three-Phase AC Machine:Analysis, Performance Evaluation, and DSP Implementation. IEEE Transactions on Industry Applications,2006,42(4):1112-1122.
    [26]Khoudir Marouani, Lotfi Baghli, Djafar Hadiouche, Abdelaziz Kheloui, and Abderrezak Rezzoug.A New PWM Strategy Based on a 24-Sector Vector Space Decomposition for a Six-Phase VSI-Fed Dual Stator Induction Motor. IEEE Transactions on Industrial Electronics,2008,55(5):1910-1920
    [27]Radu Bojoi, Mario Lazzari, Francesco Profumo, and Alberto Tenconi. Digital Field-Oriented Control for Dual Three-Phase Induction Motor Drives. IEEE Transactions on Industry Applications,2003,39(3):752-760.
    [28]Valentin Oleschuk, Radu Bojoi, Giovanni Griva and Francesco Profumo. Six-Phase Drives with Combined Synchronized Space-Vector Modulation. In Proc. Computer as a Tool, Warsaw,2007:1864-1871.
    [29]Radu Bojoi, Francesco Farina, Giovanni Griva, et al. Direct torque control for dual three-phase induction motor drives. IEEE Transactions on Industry Applications,2005,41(6):1627-1636.
    [30]R.Kianinezhad, R.Alcharea, B.Nahid, F.Betin, G.Capolino. A novel direct torque control (DTC) for six-phase induction motors with common neutrals. International Symposium on Power Electronics,Electrical Drives,Automation and Motion, Italy,2008:107-112.
    [31]Leila Parsa, Hamid A. Toliyat. Five-Phase Permanent Magnet Motor Drives for Ship Propulsion Applications. In Proc. IEEE Electric Ship Technologies Symposium,2005:371-378.
    [32]L.Parsa, H.A.Toliyat and A.Goodarzi. Five-phase interior permanent magnet motors with low torque pulsation. IEEE Transactions on Industry Applications, 2007,43(1):40-46.
    [33]J.W.Kelly, E.G.Strangas and J.M.Miller. Multiphase Space Vector Pulse Width Modulation. IEEE Transactions on Energy Conversion,2003,18(2):259-264.
    [34]R.Bojoi, F.Farina, A.Tenconi, F.Profumo and E.Levi. Stationary frame digital current regulation for dual-three phase induction motor drives.2004 35th Annual IEEE Power Elecrronics Specialisrs Conference, Aachen,2004,2121-2127.
    [35]S.Z.Jiang, K.T.Chau and C.C.Chan. Spectral analysis of a new six-phase pole-changing induction motor drive for electric vehicles. IEEE Transactions on Industry Electronics,2003,50(1):123-131.
    [36]H.M.Ryu, J.W.Kim and S.K.Sul. Synchronous-frame current control of multiphase synchronous motor under asymmetrical fault condition due to open phases. IEEE Transactions on Industry Applications,2006,42(4):1062-1070.
    [37]J.A.Ede, K.Attalah, J.B.Wang and D.Howe. Effect of optimal torque control on rotor loss of fault-tolerant permanent-magnet brushless machines. IEEE Transactions on Magnet,2002,38(5):3291-3293.
    [38]S.Williamson, A.C.Smith. Pulsating torque and losses in multiphase induction machines, IEEE Transactions on Industry Applications,2003,39(4):986-993.
    [39]R.Lyra, T.A.Lipo. Torque density improvement in a six-phase induction motor with third harmonic current injection, IEEE Transactions on Industry Applications,2002,38(5):1351-1360.
    [40]B.Stumberger, G.Stumberger, A.Hamler, M.Trlep, M.Jesenik and V.Gorican. Increasing of output power capability in a six-phase flux-weakened permanent magnet synchronous motor with a third harmonic current injection, IEEE Transactions on Magnet,2003,39(5):3343-3345.
    [41]P.Delarue, A.Bouscayrol and E.Semail. Generic control method of multileg voltage-source converters for fast practical implementation. IEEE Transactions on Power Electronics,2003,18(2):517-526.
    [42]F.Barrero, M.R.Arahal, Raul Gregor, S.Toral and M.J.Duron. A Proof of Concept Study of Predictive Current Control for VSI-Driven Asymmetrical Dual Three-Phase AC Machines. IEEE Transactions on Industry Electronics,2009, 56(6):1937-1954.
    [43]E.Levi, M.Jones, S.N.Vukosavic and H.A.Toliyat. A novel concept of a multiphase, multi-motor vector controlled drive system supplied from a single voltage source inverter. IEEE Transactions on Power Electron,2004,19(2): 320-335.
    [44]E.Levi, M.Jones, S.N.Vukosavic and H.A.Toliyat. Operating principles of a novel multiphase multimotor vector-controlled drive. IEEE Transactions on Energy Conversion,2004,19(3):508-517.
    [45]M.Jones, S.N.Vukosavic, E.Levi and A.Iqbal. A six-phase series-connected two-motor drive with decoupled dynamic control. IEEE Transactions on Industry Applications,2005,41(4):1056-1066.
    [46]E.Levi, M.Jones, A.Iqbal, S.N.Vukosavic and H.A.Toliyat. Induction machine/Syn-Rel two-motor five-phase series-connected drive. IEEE Transactions on Energy Conversion,2007,22(2):281-289.
    [47]K.K.Mohapatra, R.S.Kanchan, M.R.Baiju, P.N.Tekwani and K.Gopakumar. Independent field-oriented control of two split-phase induction motors from a single six-phase inverter. IEEE Transactions on Industry Electronics,2005,52(5), 1372-1382.
    [48]庄朝晖.多相感应电机变频调速系统控制方法研究.[博士论文],武汉:华中科技大学,2001:1-110.
    [49]侯立军.多相感应电机变频调速系统的研究.[博士论文],西安:西安交通大学,2003:1-139.
    [50]刘大勇.多相永磁同步电动机电力推进控制系统的研究.[博士论文],哈尔滨:哈尔滨工程大学,2000:1-115.
    [51]欧阳红林,周马山,童调生.多相永磁同步电动机不对称运行的矢量控制.中国电机工程学报,2004,24(7):145-150.
    [521欧阳红林.多相永磁同步电动机调速系统控制方法的研究.[博士论文],长沙:湖南大学,2005:1-112.
    [53]姚文熙.多电平六相同步电机变频调速全数字控制技术研究.[博士论文],杭州:浙江大学,2005:1-138.
    [54]朱建光.六相永磁同步电动机驱动控制系统的研究.[博士论文],沈阳:沈阳工业大学,2010:1-81.
    [55]于飞,张晓锋,李槐树,宋庆国.五相逆变器的空间矢量PWM控制.中国电机工程学报,2005,25(9):40-46.
    [56]Chen Lin, Fang Kang-Ling. A Novel Direct Torque Control for Dual-Three-Phase Induction Motor. Proceedinys of the Second International Conference on Machme Learning and Cybernetics, Xi'an,2003,876-881.
    [57]陈林.多相感应电动机空间电压矢量选择与控制研究.[博士论文],武汉:华中科技大学,2003:1-113.
    [58]郭皴.船舶电力推进双三相永磁同步电机驱动控制研究.[博士论文],上海:上海海事大学,2006:1-104.
    [59]王东,马伟明,刘德志,傅立军,肖飞,张波涛.12/3相双绕组感应发电机直流侧突然短路电流分析.中国电机工程学报,2005,25(15):133-139.
    [60]赵品志,杨贵杰,李勇.五相永磁同步电动机单相开路故障的容错控制策略.中国电机工程学报,2011,31(24):68-76.
    [61]谈龙成,李耀华,王平,徐伟.适用于电流型变流器的空间矢量过调制策略.中国电机工程学报,2008,28(15):39-43.
    [62]Emil Levi. Multiphase Electric Machines for Variable-Speed Applications. IEEE Transactions on Industrial Electronics,2008,55(5):1893-1909.
    [63]D.Casadei, F.Profumo, G.Serra, and A.Tani. FOC and DTC:Two variables schemes for induction motors torque control. IEEE Transactions on Power Electronics,2002,17(5):779-787.
    [64]H.Xu, H.A.Toliyat and L.J.Petersen. Five-phase induction motor drives with DSP-based control system. IEEE Transactions on Power Electronics,2002,17(4), 524-533.
    [65]K.Mohapatra, R.Kanchan, M.Baiju, P.Tekwani, and K.Gopakumar. Independent field-oriented control of two split-phase induction motors from a single six-phase inverter. IEEE Transactions on Power Electronics,2005,52(5):1372-1382.
    [66]Heinz Willi Van Der Broeck, Hans-Christoph Skudelny, and Georg Viktor Stanke. Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors. IEEE Transactions on Industry Applications,1988,24(1):142-150.
    [67]R.Bojoi, A.Tenconi, G.Griva, and F.Profumo. Vector control of a dual-three-phase induction-motor drive using two current sensors. IEEE Transactions on Industry Applications,2006,42(5):1284-1292.
    [68]G.K.Singh, K.Nam and S.K.Lim. A simple indirect field-oriented control scheme for multiphase induction machine, IEEE Transactions on Industrial Electronics, 2005,52(4):1177-1184.
    [69]M.Depenbrock. Direct self-control (DSC) of inverter-fed induction machine. IEEE Transactions on Power Electronics,1988,3(4):420-429.
    [70]G.S.Buja and M.P.Kazmierkowski. Direct torque control of PWM inverter-fed AC motors-A survey. IEEE Transactions on Industry Electronics,2004,51(4): 744-757.
    [71]K.Hatua and V.T.Ranganathan. Direct torque control schemes for split-phase induction machine. IEEE Transactions on Industry Applications,2005,41(5): 1243-1254.
    [72]R.Alcharea, B.Nahidmobarakeh, F.Betin, G.Capolino. Direct torque control (DTC) for Six-Phase Symmetrical Induction Machine under open phase fault. The 14th IEEE Mediterranean Electrotechnical Conference, France,2008,508-513.
    [73]A.Consoli, A.Raciti. Analysis of Permanent Magnet Synchronous Motors. IEEE Transactions on Industry Applications,1991,27(2):350-354.
    [74]T.M.Jahns. Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive. IEEE Transactions on Industry Applications,1986, 23(4):681-689.
    [75]Jang-Mok Kim and Seung-Ki Sul. Speed Control of Interior Permanent Magnet Synchronous Motor Drive for the Flux Weakening Operation. IEEE Transactions on Industry Applications,1997,33(1):43-48.
    [76]Tae-Suk Kwon, Gi-Young Choi. Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation. IEEE Transactions on Industry Applications,2008, 44(6):1722-1731
    [77]Tae-Suk Kwon, Seung-Ki Sul. Design and Control of an Axial-Flux Machine for a Wide Flux-Weakening Operation Region. IEEE Transactions on Industry Applications,2009,45(4):1258-1266.
    [78]M.Tursini, E.Chiricozzi, R.Petrella. Feedforward Flux-Weakening Control of Surface-Mounted Permanent-Magnet Synchronous Motors Accounting for Resistive Voltage Drop. IEEE Transactions on Industry Applications,2010, 57(1):440-448.
    [79]C.Mademlis, N.Margaris. Loss minimization in vector-controlled interior permanent-magnet synchronous motor drives. IEEE Transactions on Industrial Electronics,2002,49(6):1344-1347.
    [80]李长红,陈明俊,吴小役.调速系统中最大转矩电流比控制方法的研究.中国电机工程学报,2005,25(21):169-174.
    [81]F.Morel, J.M.Retif, X.Lin-Shi and C.Valentin. Permanent magnet synchronous machine hybrid torque control. IEEE Transactions on Industry Electronics,2008, 55(2):501-511.
    [82]Song Chi, Zheng Zhang and Longya Xu. Sliding-Mode Sensorless Control of Direct-Drive PM Synchronous Motors for Washing Machine Applications. IEEE Transactions on Industry Applications,2009,45(2):582-590.
    [83]Heinz Willi Van Der Broeck, Hans-Christoph Skudelny. Analytical Analysis of the Harmonic Effects of a PWM AC Drive. IEEE Transactions on Power Electronics,1988,3(2):216-223.
    [84]A.M.Hava, Russel J.Kerkman and Thomas A.Lipo. Simple Analytical and Graphical Methods for Carrier-Based PWM-VSI Drives. IEEE Transactions on Power Electronics,1999,14(1):49-61.
    [85]杨贵杰,孙力,崔乃政,陆永平.空间矢量脉宽调制方法的研究.中国电机工程学报,2001,21(5):79-83.
    [86]周卫平,吴正国,唐劲松,刘大明SVPWM的等效算法及SVPWM与SPWM的本质联系.中国电机工程学报,2006,26(2):133-137.
    [87]Davood Yazdani, S. Ali Khajehoddin, Alireza Bakhshai and Geza Joos. Full Utilization of the Inverter in Split-Phase Drives by Means of a Dual Three-Phase Space Vector Classification Algorithm. IEEE Transactions on Industry Electronics,2009,56(1):120-129.
    [88]Hyung-Min Ryu, Jang-Hwan Kim, and Seung-Ki Sul. Analysis of Multiphase Space Vector Pulse-Width Modulation Based on Multiple d-q Spaces Concept. IEEE Transactions on Power Electronics,2005,20(6):1364-1371.
    [89]Vikram Kaura, Vladimir Blasko. A New Method to Extend Linearity of a Sinusoidal PWM in the Overmodulation Region. IEEE Transactions on Industry Applications,1996,32(5):1115-1121.
    [90]Silverio Bolognani, Mauro Zigliotto. Novel Digital Continuous Control of SVM Inverters in the Overmodulation Range. IEEE Transactions on Industry Applications,1997,33(2):525-530.
    [91]Dong-Choon Lee, G-Myoung Lee. A Novel Overmodulation Technique for Space-Vector PWM Inverters. IEEE Transactions on Power Electronics,1998, 13(6):1144-1151.
    [92]A.Bakhshai, G.Joos and H.Jin. Incorporating the over modulation range in space vector pattern generators using a classification algorithm. IEEE Transactions on Industry Electronics,2000,15(1):83-91.
    [93]G.Narayanan and V. T. Ranganathan. Extension of operation of space vector PWM strategies with low switching frequencies using different overmodulation algorithms. IEEE Transactions on Industry Electronics,2002,17(5):778-798.
    [94]Anshuman Tripathi, Ashwin M. Khambadkone, and S. K. Panda. Direct method of overmodulation with integrated closed loop stator flux vectorcontrol. IEEE Transactions on Power Electronics,2005,20(5):1161-1168.
    [95]金舜,钟彦儒,程为彬.新颖的SVPWM过调制策略及其在三电平逆变器中的应用.中国电机工程学报,2006,26(20):84-90.
    [96]G. Griva, V. Oleschuk. and F.Profumo. Synchronized Overmodulation Techniques for Symmetrical Dual Three-Phase Converters. In Proc. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Italy,2008:981-986.
    [97]L.Zhong, M.F.Rahman, W.Y.Hu, K.W.Lim. Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives. IEEE Transactions on Power Electronics,1997,12(3):528-536.
    [98]R.Babuska, H.B.Verbruggen. An Overview of Fuzzy Modeling for Control. Control Engineering Practice,1996,4(11):1593-1606.
    [99]孙丹,贺益康.基于恒定开关频率空间矢量调制的永磁同步电机直接转矩控制.中国电机工程学报,2005,25(12):112-116.
    [100]F.Farina, R.Bojoi, A.Tenconi and F.Profumo. Direct torque control with full order stator flux observer for dual-three phase induction motor drives. IEEE Transactions on Industry Applications,2006,126(4),412-419.
    [101]C.Lascu, I.Boldea and F.Blaabjerg. A modified direct torque control for induction motor sensorless drive. IEEE Transactions on Industry Applications,2000, 36(1):122-130.
    [102]Jose Rodriguez, Jih-Sheng Lai, and Fang Zheng Peng. Multilevel Inverters:A Survey of Topologies, Controls, and Applications. IEEE Transactions on Industry Electronics,2002,49(4):724-738.
    [103]J.Rodriguez, J.Dixon, J.Espinoza, J.Pontt, and P.Lezana. PWM regenerative rectifiers:State of the art. IEEE Transactions on Industry Electronics,2005, 52(1),5-22.
    [104]J.Carrasco, L.Franquelo, J.Bialasiewicz, E.Galvan, R.Portillo Guisado, M.Prats, J.Leon and N.Moreno-Alfonso. Power-electronic systems for the grid integration of renewable energy sources:A survey. IEEE Transactions on Industrial Electronics,2006,53(4):1002-1016.
    [105]Y.H.Lee, B.S.Suh and D.S.Hyan. A novel PWM scheme for a three-level voltage source inverter with GTO thyristors. IEEE Transactions on Industry Applications, 1996,33(2):260-268.
    [106]N.Celanovic and D.Boroyevich. A fast space-vector modulation algorithm for multilevel three-phase converters. IEEE Transactions on Industry Applications, 2001,37(2):637-641.
    [107]薄保中,苏彦民,马学亮.多电平最优空间矢量PWM控制方法的研究.中国电机工程学报,2002,22(2):89-92.
    [108]A.Bendre, G.Venkataramanan, D.Rosene and V.Srinivasan. Modeling and design of a neutral-point voltage regulator for a three-level diode-clamped inverter using multiple-carrier modulation. IEEE Transactions on Industry Applications, 2006,53(3),718-726.
    [109]L.Xu and V.G.Agelidis. VSC transmission system using flying capacitor multilevel converters and hybrid PWM control, IEEE Transactions on Power Delivery,2007,22(1),693-702.
    [110]Oscar Lopez, Jacobo Alvarez, Jesus Doval-Gandoy, and Francisco D. Freijedo. Multilevel Multiphase Space Vector PWM Algorithm. IEEE Transactions on Industrial Electronics,2008,55(5):1933-1942.
    [111]Drazen Dujic, Gabriele Grandi, Martin Jones, and Emil Levi. A Space Vector PWM Scheme for Multifrequency Output Voltage Generation with Multiphase Voltage-Source Inverters. IEEE Transactions on Industrial Electronics,2008, 55(5):1943-1955.
    [112]R.Zaimeddine, T.Undeland. DTC Control Schemes for Induction Motor fed by Three-Level NPC-VSI Using Space Vector Modulation. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Italy,2010: 966-971.
    [113]P.N.Enjeti and R.Jakkli. Optimal power control strategies for neutral point clamped (NPC) inverter topology. IEEE Transactions on Industry Applications, 1992,28(3):558-565.
    [114]A.Videt, P.L.Moigne, N.Idir and P.Baudesson. A new carrier based PWM providing common-mode-current reduction and dc-bus balancing for three-level inverters. IEEE Transactions on Industry Applications,2007,54(6),3001-3011.
    [115]S.B.Monge, S.Somavilla, J.Bordonau and D.Boroyevich. Capacitor voltage balance for the neutral-point-clamped converter using the virtual space vector concept with optimized spectral performance. IEEE Transactions on Power Electronics,2007,22(4),1128-1135.
    [116]V.G.Agelidis, A.Balouktsis and M.S.A.Dahidah. A five-level symmetrically defined selective harmonic elimination PWM strategy Analysis and experimental validation. IEEE Transactions on Power Electronics,2008,23(1):19-26.
    [117]Tarak Ghennam, El Madjid Berkouk, and Bruno Francois. A Novel Space-Vector Current Control Based on Circular Hysteresis Areas of a Three-Phase Neutral-Point-Clamped Inverter. IEEE Transactions on Industrial Electronics, 2010,57(8):2669-2678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700