三相永磁同步电动机交互饱和模型与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁电机因其结构简单,功率密度高,运转平稳和控制精度高等优点广泛应用于航空航天、舰船推进、电动机车和数控机床等电气传动领域。传统的永磁电机普遍为三相电机,但它在大功率传动领域受到一定限制。多相永磁同步电动机是对永磁同步电动机的进一步发展,它相对于普通三相电机具有许多优点,其研究和开发在国内外受到普遍关注。本文主要以双三相永磁同步电动机为研究对象,对其不同极槽配合和绕组形式以及dq轴数学模型进行了分析,计算了双三相永磁同步电动机采用不同绕组分布方式时的电磁性能,并与传统的三相和六相电动机进行了比较。同时,对考虑交互磁饱和的转矩计算方法进行了分析。
     首先介绍并比较了现有的四种永磁同步电动机转矩计算方法:常参数法、考虑部分磁饱和法、磁链法和直接有限元法,并在磁链法的基础上提出了一种比较简单的考虑交互磁饱和的转矩计算方法,同时给出其在电动机斜槽时的应用。以一台内置式径向18槽6极永磁同步电动机为例,计算分析了交互磁饱和现象对转矩计算的影响,并进行了实验验证。
     其次对双三相永磁同步电动机的结构和电磁性能进行了分析。选取12槽10极这种极槽配合结构,研究了不同绕组分布对电动机参数和性能的影响。以表贴式12槽10极永磁同步电动机为例,对采用不同绕组连接方式的双三相电动机的电磁性能进行了比较分析,并与传统三相、六相电动机的性能进行了比较。
     接着对双三相全齿绕和隔齿绕电动机不同极槽配合进行了分析。计算了相应的绕组系数,归纳了其在极槽配合影响下的变化规律,并总结出适用于双三相全齿绕和隔齿绕电动机的绕组系数计算公式。以绕组系数最大、应用比较广泛的分数槽极槽配合为例,对双三相全齿绕和隔齿绕电动机的具体绕组分布进行了分析。选取表贴式12槽10极双三相永磁同步电动机为对象,计算分析了隔齿绕电动机的电磁性能,并与全齿绕电动机进行了比较。
     最后对双三相永磁同步电动机的dq轴模型进行了分析。推导并总结出双三相永磁同步电动机转换为一套dq轴模型时的变换公式和稳态下的电压、磁链及转矩方程。以表贴式12槽10极双三相永磁同步电动机为例,分别计算了双三相绕组转换为一套dq轴模型和看做两套三相绕组转换为两套d1q1轴、d2q2轴模型下的电感,并总结出了它们之间的关系。最后计算比较了双三相永磁电动机采用不同绕组分布时考虑交互磁饱和的d、q轴电感和转矩-转速特性。
The permanent magnet (PM) motors are applied widely in the fields of aerospace, electric ship propulsion, electric vehicles and numerical control machines because of their high performance. Conventionally, the PM brushless motors are three-phase, but it has limit in high power applications. Therefore, multiphase motors become more and more popular because of their several attractive features. In this thesis, the dual three-phase PM brushless AC motor with fractional-slot and concentrated non-overlapping winding is studied. The electromagnetic performances, slot/pole combinations, alternate winding distributions and also the d-q models of the dual three-phase motor are analysed. In addition, the influence of cross-coupling magnetic saturation on torqur calculation is investigated.
     First four existing torque calculation methods including constant parameters method, partial-coupling method, flux-linkage method and direct finit element method are described and compared. Then an improved analytical method accounting for cross-coupling and skew is proposed. It is employed to predict the d-and q-axis inductances and torque-speed characteristic of a skewed interior PM BLAC motor in the flux-weakening mode of operation, and validated by measurements.
     Then the electromagnetic performances of dual three-phase PM BLAC motor are analyzed. A 12-slot 10-pole combination is selected, and two different winding connections are described. The open-circuit electromagnetic performances, armature reaction, phase winding inductances and static torque of a surface-mounted PM (SPM) BLAC motor are calculated and analyzed, and compared with those of conventional three-phase and six-phase motors.
     Then the slot/pole combinations and winding connections of the dual three-phase motor with all teeth and alternate teeth wound are investigated. Winding factors are derived and calculated. A formula for winding factor calculation of dual three-phase motor is developed. Then the electromagnetic performances of a 12-slot 10-pole SPM BLAC motor with alternate teeth wound are analyzed and compared to those of all teeth wound motor.
     Finally the d-q models for dual three-phase PM BLAC motors are analyzed. The transformation and the steady-state electromagnetic torque equation when one set d-and q-axis quantities are transformed from the whole dual three-phase windings are deduced. The d-and q-axis inductances in one set d-q model for dual three-phase motor and two sets d-q models for three-phase motor are calculated and compared, and their relations are derived. Then the d-and q-axis inductances and torque-speed characteristic accounting for cross-coupling of the 12-slot 10-pole dual three-phase SPM BLAC motor with two different winding connections are computed and compared.
引文
[1]Z. Q. Zhu, D. Howe. Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles. Proceedings of the IEEE,2007,95(4):746-765
    [2]J. De La Ree, N. Boules. Magnet shaping to reduce induced voltage harmonics in PM machines with surface mounted magnets. IEEE Transactions on Energy Conversion, 1991,6(1):155-161
    [3]T. Sebastian, V. Gangla. Analysis of induced EMF waveforms and torque ripple in a brushless permanent magnet machine. IEEE Transactions on Industry Applications, 1996,32(1):195-200
    [4]Y. S. Chen, Z. Q. Zhu, D. Howe. Slotless brushless permanent magnet machines: influence of design parameters. IEEE Transactions on Energy Conversion,1999, 14(3):686-691
    [5]Z. Q. Zhu, D. Howe. Halbach permanent magnet machines and applications:a review. IEE Proceedings-Electric Power Applications,2001,148(4):299-308
    [6]D. C. Hanselman. Effect of skew, pole count and slot count on brushless motor radial force, cogging torque and back EMF. IEE Proceedings-Electric Power Applications, 1997,144(5):325-330
    [7]G. R. Slemon. Electrical machines for variable-frequency drives. Proceedings of the IEEE,1994,82(8):1123-1139
    [8]T. Koch, A. Binder. Permanent magnet machines with fractional slot winding for electric traction. ICEM,2002, CDROM
    [9]A. M. El-Refaie, T. M. Jahns. Optimal flux weakening in surface PM machines using concentrated windings. IAS Annual Meeting,2004(2):1038-1047
    [10]C. C. Chan, J. Z. Jiang, G. H. Chen, et al. A novel polyphase multipole square-wave permanent magnet motor drive for electrical vehicles. IEEE Transactions on Industry Applications,1994,30(5):1258-1266
    [11]Y. Liao, F. Liang, T. A. Lipo. A novel permanent magnet motor with doubly salient structure. IEEE Transactions on Industry Applications,1995,31(5):1069-1078
    [12]R. P. Deodhar, S. Andersson, I. Boldea, et al. The flux-reversal machine:a new brushless doubly-salient permanent-magnet machine. IEEE Transactions on Industry Applications,1997,33(4):925-934
    [13]E. Hoang, M. Gabsi, M. Lecrivain, et al. Influence of magnetic losses on maximum power limits of synchronous permanent magnet drives in flux-weakening mode. IEEE Industry Applications Conference,2000(1):299-303
    [14]Z. Q. Zhu, Y. Pang, D. Howe, et al. Analysis of electromagnetic performance of flux-switching permanent-magnet Machines by nonlinear adaptive lumped parameter magnetic circuit model. IEEE Transactions on Magnetics,2005,41(11):4277-4287
    [15]F. Profumo, Z. Zhang, A. Tenconi. Axial flux machines drives:a new viable solution for electric cars. IEEE Transactions on Industrial Electronics,1997,44(1):39-45
    [16]G. Henneberger, M. Bork. Development of a new transverse flux motor. IEE Colloquium on New Topologies for Permanent Magnet Machines,1997:1/1-1/6
    [17]S. Williamson, S. Smith. Pulsating torque and losses in multiphase induction machines. IEEE Transactions on Industry Applications,2003,39(4):986-993
    [18]J. Apsley, S. Williamson. Analysis of multiphase induction machines with winding faults. IEEE Transactions on Industry Applications,2006,42(2):465-472
    [19]Wen Ouyang, T.A. Lipo. Multiphase Modular Permanent Magnet Drive System Design and Realization. IEEE International Electric Machines & Drives Conference, 2007(1):787-792
    [20]E. Levi. Multiphase Electric Machines for Variable-Speed Applications. IEEE Transactions on Industrial Electronics,2008,55(5):1893-1909
    [21]B. Laporte, M. Chabane, R. Ibtiouene. Optimal design for an autosynchronous motor with inset permanent magnets. Proc. of IMAC,1993:631-636
    [22]A. G. Jack, B. C. Mecrow, J. A. Haylock. A comparative study of permanent magnet and swithed reluctance motors for high-performance fault-tolerant applications. IEEE Transactions on Industry Applications,1996,32(4):889-895
    [23]B. C. Mecrow, A. G. Jack, J. A. Haylock, et al. Fault tolerant permanent magnet machine drives. International Conference on Electrical Machines and Drives,1995: 433-437
    [24]B. C. Mecrow, A. G. Jack, J. A. Haylock, et al. Fault tolerant permanent magnet machine drives. IEE Proceedings-Electric Power Applications,1996,143(6): 437-442
    [25]D. J. Atkinson, S. Green, B. C. Mecrow, et al. Fault tolerant fuel pump drives for the all electric aircraft. IEE Colloquium on All Electric Aircraft,1998:1-6
    [26]J. Haylock, B. Mecrow, A. Jack, et al. Operation of fault tolerant PM drive for an aerospace fuel pump application. IEE Proc.-Electr. Power Appl.,1998,145(5): 441-448
    [27]M. Kamiya. Development of traction drive motors for the Toyota hybrid system. Int. Power Electronics Conf.,2005
    [28]W. L. Soong, D. A. Staton, T. J. E. Miller. Design of a new axially-laminated interior permanent magnet motor. IEEE Transactions on Industry Applications,1995,31(2): 358-367
    [29]W. L. Soong, N. Ertugrul. Field-weakening performance of interior permanent-magnet motors. IEEE Transactions on Industry Applications,2002,38(5): 1251-1258
    [30]E. E. Ward, H. Harer. Preliminary investigation of an invertor-fed 5-phase induction motor. Proceedings of the Institution of Electrical Engineers,1969,116(6):980-984
    [31]E. A. Klingshirn. High phase order induction motors-part I-description and theoretical considerations. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(1):47-53
    [32]E. A. Klingshirn. High phase order induction motors-part Ⅱ-experimental results. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(1):54-59
    [33]P. Ferraris, M. Lazzari. Phase numbers and their related effects on the characteristics of inverter fed induction motor drives. Proc. IEEE Industry Applications Society Annual Meeting IAS,1983:494-502
    [34]A. N. Golubev, S. V. Ignatenko. Influence of number of stator-winding phases on the noise characteristics of an asynchronous motor. Russ. Electr. Eng.,2000(71):41-46
    [35]T. M. Jahns. Improved Reliability in Solid-State AC Drives by Means of Multiple Independent Phase Drive Units. IEEE Transactions on Industry Applications,1980, IA-16(3):321-331
    [36]R. H. Nelson, P. C. Krause. Induction Machine Analysis for Arbitrary Displacement Between Multiple Winding Sets.1974, PAS-93(3):841-848
    [37]H. A. Toliyat, T. A. Lipo, J. C. White. Analysis of a concentrated winding induction machine for adjustable speed drive applications. Ⅰ. Motor analysis. IEEE Transactions on Energy Conversion,1991,6(4):679-683
    [38]Y. Zhao, T. A. Lipo. Space vector PWM control of dual three-phase induction machine using vector space decomposition. IEEE Transactions on Industry Applications,1995,31(5):1100-1109
    [39]H. A. Toliyat, H. Xu. A novel direct torque control (DTC) method for five-phase induction machines. APEC,2000(1):162-168
    [40]E. Spooner, A. C. Williamson. Direct coupled, permanent magnet generators for wind turbine applications. IEE Proceedings-Electric Power Applications,1996,143(1): 1-8
    [41]S. Smith. Developments in power electronics, machines and drives. Power Engineering Journal,2002,16(1):13-17
    [42]J. Wang, L. B. Zhou, G. L. Tao. Design and Analysis of a Multiphase Permanent Magnet Brushless DC Motor Drive System for High Power Applications. IEEE Conference on Industrial Electronics and Applications,2007:1182-1187
    [43]M. T. Abolhassani. A novel multiphase fault tolerant high torque density permanent magnet motor drive for traction application. IEEE International Conference on Electric Machines and Drives,2005:728-734
    [44]F. Terrien, S. Siala, P. Noy. Multiphase induction motor sensorless control for electric ship propulsion. PEMD,2004(2):556-561
    [45]B. Mecrow, A. Jack, D. Atkinson, et al. Design and testing of a four-phase fault-tolerant permanent-magnet machine for an engine fuel pump. IEEE Transactions on Energy Conversion,2004,19(4):671-678
    [46]A. Boglietti, R. Bojoi, A. Cavagnino, et al. Efficiency Analysis of PWM Inverter Fed Three-Phase and Dual Three-Phase High Frequency Induction Machines for Low/Medium Power Applications. IEEE Transactions on Industrial Electronics,2008, 55(5):2015-2023
    [47]G. Q. Bao, J. Z. Jiang. A modular multiphase permanent magnet machine optimization for direct propulsion systems. IEEE Vehicle Power and Propulsion Conference,2008:1-5
    [48]S. Bolognani, M. Zordan, M. Zigliotto. Experimental fault-tolerant control of a pmsm drive. IEEE Transactions on Industrial Electronics,2000,47(5):1134-1141
    [49]O. Wallmark, L. Harnefors, O. Carlson. Control algorithms for a fault-tolerant PMSM drive. IEEE Transactions on Industrial Electronics,2007,54(4):1973-1980
    [50]唐任远等.现代永磁电机理论与设计.机械工业出版社,1997
    [51]Z. Q. Zhu, D. Howe, E. Bolte, et al. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I:Open-circuit field. IEEE Transactions on Magnetics,1993,29(1):124-135
    [52]Z. Q. Zhu, D. Howe. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. II:Armature-reaction field. IEEE Transactions on Magnetics, 1993,29(1):136-142
    [53]Z. Q. Zhu, D. Howe. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Ⅲ:Effect of stator slotting. IEEE Transactions on Magnetics, 1993,29(1):143-151
    [54]Z. Q. Zhu, D. Howe. Instantaneous magnetic field distribution in brushless permanent magnet DC motors. Ⅳ:Magnetic field on load. IEEE Transactions on Magnetics, 1993,29(1):152-158
    [55]K. Atallah, Z. Q. Zhu, D. Howe, et al. Armature reaction field and winding inductances of slotless permanent magnet brushless machines. IEEE Transactions on Magnetics,1998,34(5):3737-3744
    [56]Z. Q. Zhu, D. Howe, C. C. Chan. Improved analytical model for predicting the magnetic field distribution in brushless permanent magnet machines. IEEE Transactions on Magnetics,2002,38(1):229-238
    [57]J. H. Hu, J. B. Zou, W. Y. Liang. Finite element calculation of the saturation dq-axes inductance for a direct-drive PM synchronous motor considering cross-magnetization. Proc. Power Electronics and Drive Systems,2003(1):677-681
    [58]李和明,叶东.用直接设计法和有限元法设计稀土永磁同步电动机.大电机技术,
    1995(4):32~38
    [59]林荣文,江辉.用有限元法求解稀土永磁同步电机电磁转矩.微电机,2004,37(5):21~23
    [60]S. Morimoto, M. Sanada, Y. Takeda. Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives. IEEE Trans. Industry Applications,1994,30(6):1632-1637
    [61]B. J. Chalmers. Influence of saturation in brushless permanent magnet motor drives. IEE Proc.-B,1992,139(1):51-52
    [62]B. J. Chalmers, L. Musaba, D. F. Gosden. Variable-frequency synchronous motor drives for electric vehicles. IEEE Transaction on Industry Applications,1996,32(4): 896-903
    [63]A. M. El-Serafi, J. Wu. Determination of the parameters representing the cross-magnetizing effect in saturated synchronous machines. IEEE Trans. Energy Conversion,1993,8(3):333-340
    [64]A. M. EL-Serafi, A. S. Abdallah, M. K. EL-Sherbiny, et al. Experimental study of the saturation and the cross-magnetizing phenomenon in saturated synchronous machines. IEEE Trans. Energy Conversion,1988,3(4):815-823
    [65]P. Vas, K. E. Hallenius, J. E. Brown. Cross-saturation in smooth air-gap electric machines. IEEE Trans. Energy Conversion,1986,1(1):103-109
    [66]J. Faucher, M. Lajoie-Mazenc, A. Chayegani. Characterization of a closed-loop controlled current-fed machine taking into account saturation. IEEE Trans. Industry Applications,1979(15):482-484
    [67]I. Boldea, S. A. Nasar. A general equivalent circuit (GEC) of electrical machines including cross-coupling saturation and frequency effects. IEEE Trans. Energy Conversion,1988,3(3):689-695
    [68]E. Levi, V. A. Levi. Impact of dynamic cross-saturation on accuracy of saturated synchronous machine models. IEEE Trans. Energy Conversion,2000,15(2): 224-230
    [69]G. Stumberger, B. Stumberger, D. Dolinar, et al. Cross magnetization effect on inductances of linear synchronous reluctance motor under load conditions. IEEE Trans. Magnetics,2001,37(5):3658-3662
    [70]R. Morales-Caporal, M. Pacas. A predictive torque control for the synchronous reluctance machine taking into account the magnetic cross saturation. IEEE Trans. Industrial Electronics,2007,54(2):1161-1167
    [71]E. Levi. Saturation modeling in d-q axis models of salient pole synchronous machines. IEEE Trans. Energy Conversion,1999,14(1):44-50
    [72]H. Karmaker, A. M. Knight. Investigation and simulation of fields in large salient-pole synchronous machines with skewed stator slots. IEEE Trans. Energy Conversion,2005,20(3):604-610
    [73]M. A. Alhamadi, A. Demerdash. Modeling of effects of skewing of rotor mounted permanent magnet on the performance of brushless dc motors. IEEE Trans. Energy Conversion,1991,6(4):721-729
    [74]X. B. Bomela, M. J. Kamper. Effect of stator chording and rotor skewing on performance of reluctance synchronous machine. IEEE Trans. Industry Applications, 2002,38(1):91-100
    [75]S. Williamson, T. J. Flack, A. F. Volschenk. Representation of skew in time-stepped two-dimensional finite-element models of electrical machines. IEEE Trans. Industry Applications,1995,31(5):1009-1015
    [76]H. De Gersem, K. Hameyer, T. Weiland. Skew interface conditions in 2-D finite-element machine models. IEEE Trans. Magnetics,2003,39(3):1452-1455
    [77]Y. S. Chen, Z. Q. Zhu, D. Howe. Calculation of d-and q-axis inductances of PM brushless ac machines accounting for skew. IEEE Trans. Magnetics,2005,41(10): 3940-3942
    [78]马志云.电机瞬态分析.中国电力出版社,1998
    [79]汤蕴璆,史乃.电机学.机械工业出版社,1999
    [80]S. Morimoto, Y. Takeda, T. Hirasa, et al. Expansion of operating limits for permanent magnet motor by optimum flux-weakening. Industry Applications_Society Annual Meeting,1989(1):51-56
    [81]T. M. Jahns. Flux-weakening regime operation of an interior permanent magnet synchronous motor drive. IEEE Transaction on Industry Applications,1987,23(4): 681-689
    [82]Y. F. Shi, Z. Q. Zhu, Y. S. Chen, et al. Investigation of flux-weakening performance and current oscillation of permanent magnet brushless AC drives. Power Electronics and Motion Control Conference,2004(3):1257-1262
    [83]R. F. Schiferl, T. A. Lipo. Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications. IEEE Transaction on Industry Applications,1990,26(1):115-123
    [84]S. Morimoto, Y. Takeda, T. Hirasa, et al. Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity. IEEE Trans. Industry Applications,1990,26(5):866-871
    [85]B. Sneyers, D. W. Novotny, T. A. Lipo. Field weakening in buried permanent magnet ac motor drives. IEEE Transaction on Industry Applications,1985,21(2):398-407
    [86]叶东.永磁同步电动机电磁转矩的计算.电机技术,1992(2):35~37
    [87]郑廷海,叶东.计算永磁电机电磁转矩的方法.电力情报,1996(1):6-10
    [88]庄智铨.笼型异步电动机转子斜槽研究.电机与控制应用,1991(5):52~56
    [89]江建中,傅为农.斜槽异步电动机的多截面有限元法分析.电工技术学报,1997,12(5):11~16
    [90]乔鸣忠,张晓锋,李槐树.考虑定子斜槽及转子运动永磁推进电机反电势及定位力矩的数值计算.武汉理工大学学报,2004,28(5):645~648
    [91]Z. Q. Zhu, D. Howe, T. S. Birch. Calculation of winding inductances of brushless motors with surface-mounted permanent magnets. Proc. of ICEM'94,1994(1): 327-332
    [92]Z. Q. Zhu, D. Howe, J. K. Mitchell. Magnetic field analysis and inductances of brushless dc machines with surface-mounted magnets and non-overlapping stator windings. IEEE Transaction on Magnetics,1995,31(3):2115-2118
    [93]Y. S. Chen. Motor topologies and control strategies for permanent magnet brushless ac drives. Ph. D. dissertation, Univ. Sheffield, Sheffield, U. K.,1999
    [94]Z. Q. Zhu, Y. S. Chen, D. Howe. Iron loss in PM brushless ac machines under maximum torque per ampere and flux-weakening control. IEEE Trans. Magnetics, 2002,38(5):3285-3287
    [95]L. Ma, M. Sanada, S. Morimoto, et al. Prediction of iron loss in rotating machines with rotational loss included. IEEE Trans. Magnetics,2003,39(4):2036-2041
    [96]D. Zhu, X. Qiu, N. Zhou, et al. A comparative study of winding factors between distributed windings and non-overlapping concentrated windings. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,2008:2725-2729
    [97]叶金虎.现代无刷直流永磁电动机的原理和设计.科学出版社,2007
    [98]D. Ishak, Z. Q. Zhu, D. Howe. Permanent magnet brushless machines with unequal tooth widths and similar slot and pole numbers. IEEE Transactions on Industry Applications,2005,41(2):584-590
    [99]D. Ishak. Low-speed high-torque permanent magnet brushless machines having fractional number of slots per pole. Ph. D. dissertation, Univ. Sheffield, Sheffield, U. K.,2005
    [100]K. Atallah, J. Wang, D. Howe. Torque-ripple minimization in modular permanent-magnet brushless machines. IEEE Transactions on Industry Applications, 2003,39(6):1689-1695
    [101]P. Salminen, J. Mantere, J. Pyrhonen, et al. Performances analysis of fractional slot wound PM-motors. ICEM'04,2004:509
    [102]P. Salminen, M. Niemela, J. Pyrhonen, et al. High-torque low-torque-ripple fractional-slot PM-motors. IEEE International Conference on Electric Machines and Drives (IEMDC),2005:144-148
    [103]N. Bianchi, S. Bolognani, M. D. Pre, et al. Design considerations for fractional-slot winding configurations of synchronous machines. IEEE Transactions on Industry Applications,2006,42(4):997-1006
    [104]Z. Q. Zhu, D. Ishak, D. Howe. Modular permanent magnet brushless machines having a fractional number of slots per pole-Influence of stator teeth and back-irons. ICEMS'06,2006, CD-ROM
    [105]A. M. El-Refaie, Z. Q. Zhu, T. M. Jahns, et al. Investigation of winding inductances in fractional slot surface-mounted permanent magnet brushless machines. IEEE Industry Applications Society Annual Meeting,2008:1-8
    [106]D. Ishak, Z. Q. Zhu, D. Howe. Rotor eddy current loss in PM machines with fractional slot number per pole. IEEE Transactions on Magnetics,2005,41(9): 2462-2469
    [107]Y. S. Chen, Z. Q. Zhu, D. Howe. Vibration of permanent magnet brushless machines having a fractional number of slots per pole. IEEE Transactions on Magnetics,2006, 42(10):3395-3397
    [108]谭建成.三相无刷直流电动机分数槽集中绕组槽极数组合规律研究.微电机,2007,40(12):72~77,86
    [109]A. Gerlando, R. Perini, M. Ubaldini. High pole number, PM synchronous motor with concentrated coil armature windings. ICEM'04,2004, CD-ROM
    [110]P. Salminen, M. Niemela, J. Pyrhonen, et al. Performances analysis of fractional slot wound PM-motors for low speed applications. Conf. Rec. IEEE-IAS Annu. Meeting, 2004(2):1032-1037
    [111]N. Bianchi, S. Bolognani. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Transactions on Industry Applications,2002, 38(5):1259-1265
    [112]N. Bianchi, S. Bolognani, G. Grezzani. Fractional-slot IPM servomotors:analysis and performance comparisons. ICEM'04,2004:1-6
    [113]N. Bianchi, M. Pre, G. Grezzani, et al. Design considerations on fractional-slot fault-tolerant synchronous motors. IEMDC,2005:902-909
    [114]J. Cros, P. Viarouge. Synthesis of high performance PM motors with concentrated windings. IEEE Transactions on Energy Conversion,2002,17(2):248-253
    [115]A. M. El-Refaie, T. M. Jahns. Optimal flux weakening in surface PM machines using fractional-slot concentrated windings. IEEE Transactions on Industry Applications, 2005,41(3):790-800
    [116]A. M. El-Refaie, T. M. Jahns, D. Novotny. Analysis of surface PM machines with fractional-slot concentrated windings. IEEE Transactions on Energy Conversion, 2006,21(1):34-43
    [117]N. Bianchi, S. Bolognani, M. D. Pre. Magnetic loading of fractional-slot three-phase PM motors with non-overlapped coils. IEEE Transactions on Industry Applications, 2008,44(5):1513-1521
    [118]H. Polinder, M. Hoeijmakers, M. Scuotto. Eddy-current losses in the solid back-iron of PM machines for different concentrated fractional pitch windings. IEMDC, 2007(1):652-657
    [119]F. Magnussen, H. LendeN.mann. Parasitic effects in PM machines with concentrated windings. IEEE Transactions on Industry Applications,2007,43(5):1223-1232
    [120]R. Wrobel, P. Mellor. Design considerations of a direct drive brushless machine with concentrated windings. IEEE Transactions on Energy Conversion,2008,23(1):1-8
    [121]朱德明,邱鑫,王慧贞等.集中非叠绕组的绕组因数对电势谐波抑制.电机与控制学报,2008,12(6):650~654
    [122]D. Ishak, Z. Q. Zhu, D. Howe. Comparative study of permanent magnet brushless motors with all teeth and alternative teeth windings. Second International Conference on Power Electronics, Machines and Drives (PEMD),2004(2):834-839
    [123]D. Ishak, Z. Q. Zhu, D. Howe. Comparison of PM brushless motors, having either all teeth or alternate teeth wound. IEEE Transactions on Energy Conversion,2006,21(1): 95-103
    [124]Z. Q. Zhu, D. Howe. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Transactions on Energy Conversion,2000,15(4):407-412
    [125]Z. Q. Zhu. Fractional slot permanent magnet brushless machines and drives for electric and hybrid propulsion systems. EVRE, Monaco,2009
    [126]A. J. Mitcham, G. Antonopoulos, J. J. A. Cullen. Favourable slot and pole number combinations for fault-tolerant PM machines. IEE Proceedings-Electric Power Applications,2004,151(5):520-525
    [127]N. Bianchi, M. D. Pre. Use of the star of slots in designing fractional-slot single-layer synchronous motors. IEE Proceedings-Electric Power Applications,2006,153(3): 459-466
    [128]A. Gerlando, G. M. Foglia, R. Perini, et al. Design and operation aspects of field regulated PM synchronous machines with concentrated armature windings. IEMDC, 2005:1165-1172
    [129]Z. Q. Zhu, D. Ishak, D. Howe, et al. Unbalanced Magnetic Forces in Permanent-Magnet Brushless Machines with Diametrically Asymmetric Phase Windings. IEEE Transactions on Industry Applications,2007,43(6):1544-1553
    [130]N. Bianchi. Teory and design of fractional-slot PM machines. CLEUP,2007
    [131]Y. S. Chen, Z. Q. Zhu, D. Howe. Influence of inaccuracies in machine parameters on field-weakening performance of PM brushless AC drives. IEMD,1999:691-693
    [132]J. Choi, S. Seung. Design of fast-response current controller using d-q axis cross coupling:application to permanent magnet synchronous motor drive. IEEE Transactions on Industrial Electronics,1998,45(3):522-524
    [133]M. Konghirun, L. Xu. A dq-axis current control technique for fast transient response in vector controlled drive of permanent magnet synchronous motor. IPEMC,2004(3): 1316-1320
    [134]F. Bonvin, Y. Perriard. BLDC motor control in multiple dq axes. International Conference on Power Electronics and Variable Speed Drives,2000:500-505
    [135]A. A. Oliveira, J. R. B. A. Monteiro, M. L. Aguiar, et al. Extended DQ Transformation for Vectorial Control Applications of Non-sinusoidal Permanent Magnet AC Machines. PESC,2005:1807-1812
    [136]H. A. Toliyat, M. M. Rahimian, T. A. Lipo. dq modeling of five phase synchronous reluctance machines including third harmonic of air-gap MMF. IEEE Industry Applications Society Annual Meeting,1991(1):231-237
    [137]M. Andriollo, G. Bettanini, G. Martinelli, et al. Analysis of Double-Star Permanent-Magnet Synchronous Generators by a General Decoupled d-q Model. IEEE Transactions on Industry Applications,2009,45(4):1416-1424
    [138]R. F. Schiferl, C. M. Ong. Six Phase Synchronous Machine with AC and DC Stator Connections, Part I:Equivalent Circuit Representation and Steady-State Analysis. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(8):2685-2693
    [139]G. Aroquiadassou, H. Henao, G. A. Boglietti, et al. A simple circuit-oriented model for predicting six-phase induction machine performances. IECON,2006:1441-1446
    [140]彭芳彪,严东超,王光明等.六相永磁容错电机不对称运行研究.空军工程大学学报(自然科学版),2009,10(3):73~77
    [141]谢卫,黄家圣,谌瑾.船舶电力推进多相永磁同步电动机的起动性能分析.上海海运学院学报,2004,25(1):29~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700