气—液—液反应萃取制备过氧化氢基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过程强化是一种高效、节能、清洁、安全、可持续发展的化工新技术,代表化学工程与技术发展方向。反应与分离技术的集成是过程强化的重要途径,将化学反应与液-液萃取集成在一个设备里进行,是一种典型的反应与分离的集成,反应与萃取两个过程互相促进,可以提高反应的转化率和选择性、产物的分离效率和能量的利用率。
    气体既是反应物,又是搅拌介质的气-液-液三相反应萃取是一种新型的过程强化技术。本文以空气-水-蒽醌工作液为实验物系,对气-液-液三相反应萃取过程中流体力学、气-液传递、气-液反应和液-液传递规律进行了系统研究。
    在筛板塔内,研究了气-液-液三相流体力学性质。测定了气含率和分散相滞液率,讨论了气相、分散相和连续相流速对气含率和分散相滞液率的影响; 提出了用于预测气-液-液三相体系的气含率和分散相滞液率的关联式,分散相滞液率关联式的预测值与实验结果的平均相对偏差为7.3%,气含率关联式的预测值与实验结果的平均相对偏差为7.1%。
    研究了气-液-液三相系统轴向返混特性和传质规律,讨论了气体对分散相和连续相轴向返混的影响; 提出了适用于气-液-液三相体系中,分散相和连续相轴向扩散系数的关联式。
    在筛板萃取塔内,研究了气-液-液萃取过氧化氢过程。提出了气-液-液三相筛板萃取塔总板效率的关联式,关联式计算结果与实验值的最大偏差为5.6%; 建立了气-液-液三相萃取过程数学模型,模型计算结果与实验数据有较好的吻合,平均相对偏差小于10%; 并用模型对气-液-液三相萃取生产过氧化氢过程进行了预测,达到相同的分离效果,气-液-液三相萃取所需塔板数比普通液-液萃取降低30%~40%。
    研究了气-液-液三相反应萃取制备过氧化氢过程动力学。通过理论分析和实验验证,确定氢蒽醌氧化反应受氧气传质控制,过氧化氢的萃取速率受反应和过氧化氢传质共同控制。在此基础上,建立了反应萃取动力学模型,求取了模型参数,为气-液-液三相反应萃取过程的数学模拟和设计提供了依据。
    在筛板萃取塔内,研究了气-液-液三相反应萃取制备过氧化氢过程。考察了各相流速、塔板开孔率等对氢蒽醌氧化反应和过氧化氢萃取的影响; 建立了气-液-液三相反应萃取数学模型,模型计算结果与实验数据有较好的符合,平均相对偏差小于15%; 并在工业小试装置上进行了验证,验证和模型模拟结果均表明,在一个萃取塔内,采用反应萃取技术生产过氧化氢是可行的。
Process Intensification presents one of the most important trends in today’s chemical engineering and technology. It is a compact, safe, energy-efficient and environment-friendly sustainable technology. One of the most prominent methods of Process Intensification is the integration of chemical reaction and physical separation in one unit。 The integration of reaction and liquid-liquid extraction often leads to a significant reduction in investment and operating costs. The economic benefit may be caused by a reduction of raw material use, diminution of recycle streams by higher rates of conversion, improvements in selectivity, separation efficiency and energy integration.
    The gas-liquid-liquid three-phase reactive extraction is one of novel technologies for Process intensification. In the gas-liquid-liquid three-phase reactive extraction system, the gas phase works as one of reagents as well as agitating media. The theories about chemical reaction, mass-transfers of gas-liquid and liquid-liquid have been investigated for the oxygen-water-anthraquinone working solution three-phase reactive extraction system.
    The hydrodynamic characteristics of air-water-anthraquinone working solution three-phase system in a sieve plate extraction column were investigated. The holdups of gaseous and dispersed phases were measured, respectively. The effects of the superficial velocity of gaseous, dispersed and continuous phases on the holdups of gaseous and dispersed phases were investigated. Correlations for the prediction of holdups of gaseous and dispersed phases in air-water-anthraquinone working solution three-phase system have been proposed. Comparison of the predicted data with correlations and experimental data shows that they are quite satisfactory agreement and the average relative deviations are 7.3% for dispersed phase holdup and 7.1% for gas phase holdup, respectively.
    The back-mixing characteristics and the mass-transfers of the gas-liquid-liquid three-phase system have been investigated. The effects of superficial velocity of gaseous, dispersed and continuous phases on the diffuse coefficients of continuous and dispersed phases were investigated. Correlations for the prediction of diffuse coefficients of continuous and dispersed phases in air-water-anthraquinone working solution three-phase system have been proposed.
    Extraction of hydrogen peroxide by means of deionized water from
    anthraquinone working solution was carried out in a gas-agitated sieve plate extraction column. The effects of the superficial velocity of air, dispersed phase and continuous phase on overall plate extraction efficiency have been investigated. The corrections for the prediction of overall plate extraction efficiency were presented. The correlation proposed to predict the overall plate extraction efficiency in air-water-anthraquinone working solution three-phase system agreed satisfactorily with experimental data with a maximum absolute deviation of 5.6%. A new design method for gas-liquid-liquid three-phase extractors is developed based on the multistage countercurrent extraction model. The calculated data by the model agreed well with experimental data and the average relative deviation was less than 10%. Moreover, the model was used to predict a gas-agitated sieve plate extraction column for industrial production of hydrogen peroxide. The results show that the plate numbers of gas-agitated sieve plate extraction column is 30%~40% less than that of liquid-liquid sieve plate column. Kinetics of the reactive extraction process for preparing hydrogen peroxide in oxygen-water-anthraquinone working system has been investigated. Kinetics runs have been carried out in a semi-batch reactor. The reaction rate is governed by the transport of oxygen through gas-liquid interface. The extraction rate is controlled by the reaction for producing hydrogen peroxide and the transport of hydrogen peroxide from organic phase to water. The kinetics expression is given by analysis and regression of the experimental data. The oxidation reaction of the hydrogenated anthraquinone working solution by oxygen and the extraction of hydrogen peroxide from the working solution with deionized water were carried out simultaneously in a sieve plate column. The effects of free area of the sieve plate, both oxygen and working solution superficial velocities on the conversion of 2-ethylanthrahydroquinone and the extraction efficiency of hydrogen peroxide were investigated, separately. The results showed that the oxidation and the extraction do not hamper each other, on the contrary, the presence of gas in the column can promote the transfer of hydrogen peroxide from the organic phase to the aqueous phase, therefore, the conversion of the hydrogenated anthraquinone oxidation and the extraction efficiency of hydrogen peroxide increased with the increase of gas superficial velocity. In addition, a mathematical model for the simulation of the gas-liquid-liquid reactive extraction process was developed. The predicted values were compared with the experimental data at different conditions
    and the agreement was found to be quite satisfactory for the production of hydrogen peroxide in a sieve plate column. This reactive extraction process was also performed in pilot plant, and the results shown that it is feasible to industrially produce hydrogen peroxide by the reactive extraction process.
引文
[1] Paul T. A., John C. W., Green Chemistry Theory and Practice, Oxford University Press, 1998
    [2] Cintas P., Luche J. L., Green chemistry-The sonochemical approach, Green Chemistry, 1999, 1: 115~125
    [3] 张懿,绿色过程工程,过程工程学报,2001,1(1): 10~15
    [4] Colin Ramshaw, Process Intensification and Green Chemistry Green Chemistry, 1999, 2: G15~G16
    [5] Stankiewicz A. Moulijn J. A., Process intensification: transforming chemical engineering, Chem. Eng. Prog., 2000, 96: 22~33
    [6] Stankiewicz A., Process intensification, Ind. Eng. Chem. Res., 2002, 41(8): 1920~1924
    [7] Costa T., Joseph V. P., Process intensification-has its time finally come, Chem. Eng. Prog., 2003, 49~55
    [8] Green A., Johnson B., John A., Process intensification magnifies profits, Chem. Eng., 1999, 12: 66~73
    [9] Stankiewicz A., Reactive separation for process intensification: an industrial perspective, Chem. Eng. Proc., 2003, 42: 137~144
    [10] Harmsen G. J., Chewter L. A., Industrial application of multifunctional, multiphase reactors, Chem. Eng. Sci., 1999, 54: 1541~1545
    [11] Ben A. H. Halloin V. L., Methanol synthesis in a multifunction reactor, Chem. Eng. Sci., 1999, 54: 11419~1423
    [12] Agar D., Multifunctional reactors: Old preconception and new dimensions, Chem. Eng. Sci., 1999, 54: 1299~1305
    [13] Krishna R., Sie S. T., Strategies for multiphase reactor selection. Chem. Eng. Sci., 1994, 49: 4029~4065
    [14] Schembechker G., Tlatlik S., Process synthesis for reactive separation, Chem. Eng. Proc., 1992, 42: 179~189
    [15] Rafiqul G., Thomas S., A generalized reactive separation unit model, modeling and simulations aspects, Computer Chem. Engng., 1998, 22: s363~s370
    [16] Krishna R., Reactive separations: more ways to skin a cat, Chem. Eng. Sci. 2002, 57: 1491~1504
    [17] DeGarmo J. L., Parulekar V. N., Pinjala V., Consider reactive distillation, Chem. Eng. Prog., 1992, 88: 43~50
    [18] Savkovic J., Misic M., Reaction distillation with ion exchangers, Sep. Sci. Technol., 1992, 27(5): 613~630
    [19] Soloshin A. V., Blagov S. A., Reactor-distillation in an advanced technique of reaction process operation, Chem. Eng. Sci., 1996, 51: 2599~2564
    [20] Siirola J. J., An industrial perspective on process synthesis, AIChE. Symp. Ser., 1995, 91: 222~233
    [21] Stadig W. P., Catalytic distillation: combining chemical reaction with product separation, Chem. Proc. 1987, 50: 27~32
    [22] Taylor R., Krishna R., Modeling reactive distillation, Chem. Eng. Sci., 2000, 55: 5183~5529
    [23] Hans J. Gorissen, A general approach for the conceptual design of counter-current reactive separations, Chemical Engineering Science, 2003, 58: 809~814
    [24] Higer A., Taylor R. Krishna R., Modeling of a reactive separation process using a nonequilibrium stage model, Computers Chem. Engng., 1998, 22: s111~s118
    [25] Noeres C., Kenig E.Y., Modelling of reactive separation processes: reactive absorption and reactive distillation Chemical Engineering and Processing, 2003, 42: 157~178
    [26] Mujtaba I. M., Macchietto S., Efficient optimization of batch distillation with chemical reaction using polynomial curve fitting techniques, Ind. Eng. Chem. Res., 1997, 36: 2287~2295
    [27] Doyle F. J., Balasubramhanya L. S., Nonlinear model-based control of a batch reactive distillation column, J. Process. Control, 2000, 10: 209~280
    [28] Monroy-Loperena R., Alvarez-Ramirez J., Output-feedback control of reactive batch distillation columns, Ind. Eng. Chem. Res., 2000, 39: 378~386
    [29] Sneesby M. G., Tade M. O., Smith T. N., ETBE synthesis via reactive distillation. 2. Dynamic simulation and control aspects, Ind. Eng. Chem. Res., 1997, 36: 1870~1881
    [30] Al-Arfaj M., Luyben W. L., Comparison of alternative control structures for an ideal two-product reactive distillation column, Ind. Eng. Chem. Res., 2000, 39: 3298~3307
    [31] Kumar A., Daoutidis P., Modeling, analysis, and control ofethylene glycol reactive distillation column, AIChE J., 1999, 45: 51~68
    [32] Agreda V. H., Partin L. R., Heise W. H., High purity methyl acetate via reactive distillation, Chem. Eng. Prog. 1990, 86(2): 40~46
    [33] Sirkar K. K., Shanbhag P. V., Membrane in a reactor: a functional perspective, Ind. Eng. Chem. Res., 1999, 38: 3715~373
    [34] Coronas J., Santamaria J., Catalytic reactors based on porous ceramic membrane, Catalysis Today, 1999, 51: 377~389
    [35] Julbe A., Farrusseng D., Guizzard C., Porous ceramic membranes for catalytic reactors-overview and new ideas, Journal of Membrane Science, 2001, 181: 3~20
    [36] Lafarga D., Varma A., Ethylene epoxidation in a catalytic packed-bed membrane reactor: Effects of reactor configuration and 1,2-dichlorethane addition, Chem. Eng. Sci., 2000, 55: 749~758
    [37] Saracco G., Neomagus H. W., High temperature membrane reactors: Potentials and problems, Chem. Eng. Sci., 1999, 54: 1997~2007
    [38] Zhu Y., Minet R. G., Tsotsis T. T., A continuous pervaporation membrane reactor for the study of esterification reactions using a composite polymeric/ceramic membrane, Chem. Eng. Sci., 1996, 51: 4103~4113
    [39] Casanave D., Ciaarella P., Zeolite membrane reactor for isobutene dehydrogenation experimental results and theoretical modeling, Chem. Eng. Sci., 1999, 54: 2807~2815
    [40] Gobina E., Hughes R., Reaction coupling in catalytic membrane reactors, Chem. Eng. Sci., 1996, 51: 3045~3050
    [41] Waldburger R., Widmer F., Membrane reactors in chemical production processes and the application to the pervaporation assisted esterification, Chem. Eng. Tech., 1996, 19: 117~126
    [42] Drioli J., Romano M., Progress and new perspective on integrated membrane operations for sustainable industrial growth, Ind. Eng. Chem. Res., 2001, 40: 1277~1300
    [43] Cauwenberg V., Vergossen P., Stankiewicz A., et at., Integration of reaction and separation in manufacturing of pharmaceuticals: membrane-mediate production of S-Ibuprofen, Chem. Eng. Sci., 1999, 54: 1473~1477
    [44] Mazzotti M., Kruglov A., Neri B., et al., A continuous chromatographic reactor: SMBR, Chem. Eng. Sci., 1996, 51: 1827~1836
    [45] Meurer M., Mazzotti M., Morbidellli M., Simulated moving bed technology-analytical separation on a large scale, 1998, 18: GIT Special Chromatografue, 1998, 18: 70~76
    [46] Biorklund M. C., Carr R. W., The simulated countercurrent moving bed chromatographic reactor: a catalytic and separative reactor, Catalysis Today, 1995, 25: 70~76
    [47] Dunnebier G., Fricke J., Klatt K. U., Optimal design and operation of simulated moving bed chromatographic reactors, Ind. Eng. Chem. Res., 2000, 39: 2290~2304
    [48] Westerterp K. R., Godewes, T. N., Two new methanol converters, Hydrocarbon Processing, 1988, 67: 69~73
    [49] Falk T., Seidel A., Comparison between a fixed-bed reactor and chromatographic reactor, Chem. Eng. Sci., 1999, 54: 1479~1485
    [50] Meurer M., Altenhoner U., Strube J., et al., Dynamic simulation of simulated moving bed chromatographic reactors, J. Chromatogr., 1997,769: 71~79
    [51] Safarik D. J., Eldridge R. B., Olefin/paraffin separations by reactive adsorption: a review, Ind. Eng. Chem. Res., 1998, 37: 2571~2581
    [52] Kenig E. Y., Schneider R., Gorak A., Rigorous dynamic modeling of complex reactive absorption processes, Chem. Eng. Sci., 1999,54: 5195~5203.
    [53] Kenig E. Y., Schneider R., Gorak A., Reactive absorption: optimal process design via optimal modeling, Chem. Eng. Sci., 2001,56: 343~350.
    [54] T. C. Lo, M. H. I. Baird, C. Hanson, Handbook of Solvent Extraction, John Wiley & Sons; New York, 1983
    [55] 汪家鼎,陈家镛,溶剂萃取手册,北京:化学工业出版社,2001
    [56] Syouhei N., Takayuki H., Isao K., Review of advanced liquid-liquid extraction system for separation of metal ions by a combination of conversion of the metal species with chemical reaction, Ind. Eng. Chem. Res., 2001, 40(14): 3805~3091
    [57] Gaunand A., Bouboukas G., Renon H., Iron elimination in cupric chloride hydrometallurgical processes by oxidizing extraction, Chem. Eng. Sci. 1987, 42: 1221~1229
    [58] Hirai T. Komasawa I., Electro-deductive stripping of vanadium in solvent extraction process for separation of vanadium and molybdenum using Tri-n-octylmethylannonium chloride, Hydrometallurgy, 1993, 33: 73~79
    [59] Kedari, C. S., Pandit S. S., Ramanujam A., In situ electro-oxidation and liquid-liquid extraction of cerium (IV) from nitric acid medium using tributyl phosphate and 2-ethylhexyl hydrogen 2-theylhexyl phosphate, J. Radioanal. Nucl. Chem., 1997, 222: 141~150
    [60] Preston J. S. Preez A. C. D., The separation of europium from a middle rare earth concentrate by combined chemical reduction Precipitation and Solvent-Extraction methods, J. Chem. Technol. Biotechnol., 1996, 65: 93~101
    [61] Karalova Z. I., Lavrinovich E. A. Myasoedov B. F., Use of actinide in uncommon oxidation states for their extraction and separation for alkaline solutions, J. Radioanal. Nucl. Chem. Article, 1992, 159: 259
    [62] Hirai T, Onoe N., Komasawa, I. Separation of europium from samarium and gadolinium by combination of photochemical reduction and solvent extraction, J. Chem. Eng. Jpn. 1996, 29:73~80
    [63] Ihm S.-K., Lee H.-Y., Lee D.-H., Kinetic study of the extraction of copper(II) by di(2-ethylhexyl) phosphoric acid in a Lewis-type cel, J. Membr. Sci., 1988, 37(2): 181~191
    [64] Miyake Y., Baba Y., Rate processes in solvent extraction of metal ion. Miner. Process, Extr. Metall. Rev., 2000,21: 351~380
    [65] Pahari P. K., M. M. Sharma, Recovery of Morpholine Via Reactive Extraction, Ind. Eng. Chem. Res., 1991, 30: 2015~2021
    [66] Ajawin L. A., Perez de Ortiz E. S., Sawistowski, H., Extraction of zinc by di(2-ethylhexyl) phosphoric acid, Chem. Eng. Res. Des., 1983, 61: 62~66
    [67] Aparicio J., Muhammed M., Extraction kinetics of zinc from aqueous perchlorate solution by D2EHPA dissolved in Isopar-H, Hydrometallurgy 1989, 21: 385~399
    [68] Bart H.-J., Rousselle H.-P.,. Microkinetics and reaction equilibria in the system ZnSO4/D2EHPA/isododecane, Hydrometallurgy, 1999, 51: 285–298
    [69] Corsi C., Gnagnarelli G., Slater M .J., A study of the kinetics of zinc stripping for the system Zn/H2SO4/D2EHPA/n-heptane in a Hancil constant interface cell and a rotating disc contactor, Hydrometallurgy, 1998, 50: 125~141
    [70] Geist A., Plucinski P., Nitsch W., Mass transfer kinetics of reactive multi-cation co-extraction into bis(2-ethylhexyl) phosphoric acid, Solvent Extr. Ion Exch., 2000, 18(3): 493~515
    [71] Hancil V., Slater M. J., Yu W., On the possible use of di-(2-ethylhexyl) phosphoric acid/zinc as recommended system for liquid-liquid extraction: the effect of impurities on kinetics, Hydrometallurgy, 1990, 25: 375~386
    [72] Huang T.-C., Juang R.-S., Kinetics and mechanisms of zinc extraction from sulfate medium with di(2-ethylhexyl) phosphoric acid. J. Chem. Eng. Jpn., 1986, 19(5): 379~386
    [73] Komasawa I., Otake T., Kinetic studies of extraction of divalent metals from nitrate media with bis(2-ethylhexyl) phosphoric acid. Ind. Eng. Chem. Fundam., 1983, 22(4): 367~371
    [74] Mansur M. B., Slater M. J., Biscaia Jr. E.C., Equilibrium analysis of the reactive liquid–liquid test system ZnSO4/D2EHPA/n-heptane, Hydrometallurgy, 2002, 63: 117~126
    [75] Morters M., Bart H.-J., Extraction equilibria of zinc with bis(2-ethylhexyl) phosphoric acid, J. Chem. Eng. Data, 2000, 45(1): 82~85
    [76] Sainz-Diaz C. I., Klocker H., Marr R., Bart H.-J., New approach in the modelling of the extraction equilibrium of zinc with bis-(2-ethylhexyl) phosphoric acid, Hydrometallurgy, 1996, 42: 1~11
    [77] Svendsen H. F., Schei G., Osman M., Kinetics of extraction of zinc by di(2-ethylhexyl) phosphoric acid in cumene, Hydrometallurgy, 1990, 25: 197~212
    [78] Wachter B., Bart H.-J., Moosbrugger T., Marr R., Reactive liquid/liquid test systems. Zn(II)/di(2ethylhexyl)phosphoric acid/n-dodecane, Equilibrium and kinetics, Chem. Eng. Technol. 1993,16: 413
    [79] Kunzmann M., Kolarik Z., Extraction of Zn(II) with di(2ethylhexyl)-phosphoric acid from perchlorate and sulfate media, Solv. Extr. Ion Exch. 1992,10(1): 35
    [80] Klocker H., Bart H.-J., Marr R., Mass transfer basedon chemical potential theory: ZnSO4/H2SO4/D2EHPA, AIChE J., 1997, 43(10): 2479
    [81] Bart H.-J., Fluorescence-indicated mass transfer in reactive extraction, Chem. Eng. Technol. 2000, 23: 4
    [82] Bart H.-J., Reactive extraction, Springer-Verlag, Berlin, 2000
    [83] Doraiswamy L. K., Sharma M. M., Fluid-fluid-solid reactions, Wiley & Sons, New York, 1984
    [84] Dehmlow E.V., Dehmlow S. S., Phase-transfer Catalysts, VCH, New York, 1993
    [85] Martin J., Krchma J. I., Process for production of butyl acetate, US Patent: 1770414, 1930
    [86] Alsaadi A.N., Jeffreys G. V., Esterification of butanol in a two-phase liquid-liquid system part 1: Quaternary phase equilibria studies, AIChE J. 1981, 27: 754~761
    [87] Alsaadi A.N., Jeffreys G. V., Esterification of butanol in a two-phase liquid-liquid system part 2: reaction rate studies and the analysis of batch esterification in two-Phase systems, AIChE J. 1981, 27: 761~767
    [88] Alsaadi A.N., Jeffreys G. V., Esterification of butanol in a two-phase liquid-liquid system part 3: Continuous esterification of butanol in a rotating disc extractor, AIChE J. 1981, 27: 767~773
    [89] Minotti M., Doherty M. F., Malone M. F., Design for simultaneous reaction and liquid-liquid extraction, Ind. Eng. Chem. Res., 1998, 37(12): 4748~4756
    [90] Kailas L. W., Vishwas G., Intensification of enzymatic conversion of glucose to lactic acid by reactive extraction, Chem. Eng. Sci., 2003,58: 3385~3393
    [91] Adschiri T., Akiya H., Chin L. C., Lipase-catalyzed interesterification of triglyceride with supercritical carbon dioxide extraction, J. Chem. Eng. Jpn., 1992, 25: 104~105
    [92] Aatonen O., Rantalyla M., Biocatalysis in supercritical CO2, Chemtech, 1991, 21(4): 240~248
    [93] Alberto Nisoli, Michael F. Malone, Michael F. Doherty, Attainable Regions for Reaction with Separation, AIChE J., 1997, 43(2): 374~387
    [94] J. sheikh, L. S. Kershenbaum, E. Alpay, Analytical basis for separation enhanced reaction in continuous flow processes, chem. Eng. Sci., 1998, 53(16): 2933~2939
    [95] Doraiswami R., K. E. Yesuda, Maximizing Selectivity of Liquid-Liquid Reaction Systems, Chem. Eng. Commu., 1996, 147: 119~206
    [96] Samant K. D., Ng K. M., Synthesis of Extractive Reaction Process, AIChE J., 1998, 44(6): 1363~1381
    [97] Samant K. D., Ng K. M., Effect of Kinetics and Mass Transfer on Design of Extractive Reaction Process, AIChE J., 1998, 44(10): 2212-2228
    [98] Samant K. D., Ng K. M., Systematic Development of Extractive Reaction Process, Chem. Eng. Technol., 1999,22(10): 877~880
    [99] Samant K. D., K. M. Ng, Design of Multistage Extractive Reaction Processes, AIChE J., 1998, 44(10): 2689~2702
    [100] G. Goor W. Kunkel, Ulmann’s Encyclopedia of Industrial Chemistry, 5thed. Vol. A13. VHC: Weinheim, 1988, 443-446
    [101] 胡长诚,化工百科全书,北京:化学工业出版社,第六卷,1994,641~658
    [102] 陈晓晖,过氧化氢在绿色化工生产中的应用进展,现代化工,1999,18(2):30~37
    [103] 胡长诚,国外过氧化氢在化学合成中应用研究进展,化学推进剂与高分子材料,2003,1(6): 1~3
    [104] Willam R. Sanderson, Clear industrial processes using hydrogen peroxide, Pure Appl. Chem., 2000, 72(7), 1289~1304
    [105] 胡长诚,国外过氧化氢制备及应用技术发展近况,化学推进剂与高分子材料,2000,78: 1~7
    [106] Sato K., Aoki M., Noyori R., A green route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide, Science, 1998, 281(11): 1646~1647
    [107] Neyens E., Baeyens J., A review of classic Fenton’s peroxidation as an advanced oxidation technique, Journal of Hazardous Materials, 2003,B98: 33~50
    [108] 胡长诚,国外氢氧直接化合法制过氧化氢工艺研究开发新进展,化学推进剂与高分子材料,2002,85: 1~7
    [109] 胡长诚,国外过氧化氢生产装置和生产工艺现状,化学推进剂与高分子材料,2004,2(3): 1~4
    [110] 胡长诚,国外过氧化氢制备研究新动态,化学推进剂与高分子材料,2003,19(1): 14~47
    [111] 刘家富等,过氧化氢生产工艺流程,吉林化学工业公司 104 厂
    [112] Turnen Ilkka,Process for the preparation of hydrogen peroxide,US Patent, 5725837, 1998
    [113] Gerhard K. R., Siegiried R. B., Process for the extraction of hydrogen peroxide from working solution of alkylanthraquinone process, US patent: 3742061, 1973
    [114] Turunen I., Process for the production of hydrogen peroxide, US patent: 5196179, 1993
    [115] 马忠龙,颜廷哲,王莅等, 生产H2O2中氢蒽醌氧化与H2O2萃取集成的设备与过程,CN: ZL 01134355.9, 2004
    [116] 颜廷哲,蒽醌法过氧化氢合成中喷射萃取及氧化与萃取集成过程研究:[博士学位论文],天津:天津大学,2003
    [117] 吕树祥,王莅,米镇涛等, 气-液-液喷射反应萃取制备过氧化氢过程研究, 化工学报,2003, 54(11): 1654-1657.
    [118] Sohn H. Y., Doungeethaveeratana D., Novel Solvent Extraction Process With Bottom Gas Injection Without Moving Parts. Sep. Purification Technol., 1998, 13: 227.
    [119] Doundeethaveeratana D., Sohn H. Y., The Kinetics of Extraction in a Novel Solvent Extraction Process With Bottom Gas Injection Without Moving Parts. Hydrometallurgy, 1998, 49: 229-254.
    [120] Galkin N. P., Goriainov N. E., Tikhomirov V. B., et al., The Mechanism of Distribution of Liquids in a Plate Extractor. J. Nucl. Energy (A and B), 1961, 14: 132-133
    [121] Priestley R., Ellis S. R. M., Gas Agitated Liquid Extraction Columns. Chem. Ind., 1978, 7: 757-760
    [122] Milyakh S. V., Increasing the operation efficiency of extraction towers, Int. Chem. Eng. 1978, 18(1): 112~114
    [123] Sovilj M., KNEZEVIC G., Gas-agitated liquid-liquid extraction in a spray column, Collect. Czech. Chem. Commun. 59: 2235~2243
    [124] 吕树祥,王莅,米镇涛等, 气体喷射筛板萃取塔滞液率和气含率的研究, 过程工程学报,2004, 4(3): 193~197
    [125] 谭天恩,麦本熙,丁惠华,化工原理,北京:化学工业出版社,1984
    [126] Godfrey J. C., Slater M. J., Slip Velocity Relationships for Liquid–Liquid Extraction Columns, Trans. IChemE, 1991, 69: 130~141
    [127] Chun B. S., Wilkinson G. T., Drop Size and Hold-up in Countercurrent Extraction with Supercritical CO2 in a Spray Column, Ind. Eng. Chem. Res., 2000, 39(12): 4673~4677
    [128] Weiss J., Steiner L., Hartland S., Determination of actual drop velocities in agitated extraction columns, Chem. Eng. Sci., 1994, 50(2): 255~261
    [129] Kumar A, Hartland S. A., Unified Correlation for the Prediction of Dispersed-phase Hold-up in Liquid–Liquid Extraction Columns, Ind. Eng. Chem. Res., 1995, 34(11): 3925~3940
    [130] Hikita H., Asai S., Segawa K., et al., Gas Hold-up in Bubble Columns, Chem. Eng. J., 1980, 20(1): 59~67
    [131] 杨基础,费维杨,沈忠耀等,用时间域最小二乘拟合法研究萃取柱中的轴向混合,化工学报,1982, 2(2): 103~116
    [132] 骆广生,脉冲筛板萃取柱的传质和轴向混合特性研究:[博士学位论文],北京; 清华大学,1993
    [133] 李素君,任晓光,宋永吉等,气体搅拌的萃取塔中轴向混合性质的研究,高校化学工程学报,2002,16(3): 281~286
    [134] Dehkordi A. M., Novel Type of Impinging Stream Contactor for Liquid-Liquid extraction. Ind. End. Chem. Res. 2001, 40, 684
    [135] Dehkordi A. M., Experimental Investigation of an Air-Operated Two-Impinging-Streams Reactor for Copper Extraction Processes. Ind. Eng. Chem. Res. 2002, 41(10), 2512~2520
    [136] Shuxiang Lü, Zhentao Mi, Li Wang, et al., Experimental Investigation and Simulation of a Gas-Agitated Sieve Plate Column, Chem. Eng. Technol., 2004,27(8): 903~908
    [137] Shuxiang Lü, Zhentao Mi, Li Wang et al., Gas-agitated Extraction Process for Preparing of Hydrogen Peroxide,Proceedings of 4th International Conference on Separation Science and Technology, Frontier of the separation science and technology, 2004, Naning, China, 2004, 274~283
    [138] M. Minotti, M. F. Doherty, M. F. Malone, A geometric Method for the Design of Liquid Extractors. Ind. Eng. Chem. Res. 1996, 35, 2672-2681
    [139] Weinstein O., Semiat R., Lewin D. R., Modeling, simulation and control of liquid-liquid extraction columns, Chem. Eng. Sci., 1997, 53(2): 325~339
    [140] 周爱月,化工数学,北京:化学工业出版社,1996
    [141] Santacesaria , Kinetic aspects in the oxidation of hydrogenated 2-ethyltetrahydroanthraquinone, Ind. Eng. Chem. Res., 1987, 26(1): 155~159
    [142] Shuxiang Lü, Zhentao Mi, Li Wang et al., Reactive Extraction Process for Preparing Hydrogen Peroxide, The 6th International Symposium on Green Chemistry in China, 2003, 127~129
    [143] Shuxiang Lü, Zhentao Mi, Li Wang, et al., Experimental Investigation and Simulation of Gas-Liquid-Liquid Reactive Extraction Process for the Production of Hydrogen Peroxide, Chem. Eng. Sci., accepted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700