微萃取技术在药物分配系数及微量金属离子分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分散液液微萃取和固相萃取是近年来发展起来的新型的样品预处理技术。分散液液微萃取是基于三相萃取体系的方法,由于乳浊液的形成,萃取剂和样品溶液的接触面积大大增加,萃取可迅速完成。该方法简便,快速,成本低,富集倍数高,可用于环境和药物分析。固相萃取是以固体吸附剂作为萃取剂吸附液体样品中的某些组分,再选用合适的洗脱剂将目标分析物洗脱下来,从而达到目标分析物的分离和富集,可用于废水中金属离子的分离测定。论文可分为四部分:
     第一章:对液相微萃取和固相萃取的分类和发展做了系统的总结。
     第二章:将修饰Fe3O4纳米小球均匀预分散在正辛醇相中,利用分散液-液微萃取,拟定了快速、直接测定有机化合物log P新方法。修饰过的磁性纳米球有两个作用,第一:分散在正辛醇中提供磁力从而用磁铁可以使两相分离;第二:正辛醇和其内部的磁性内核相互作用阻止在液-液微萃取过程中乳状液的形成。有机化合物可在3min之内在两相达到分配平衡,可通过磁铁吸引含有修饰Fe3O4纳米小球内核的正辛醇小液滴,实现两相快速完全分离。在萃取过程中,疏水性Fe3O4纳米小球表面被正辛醇相包围,失去对测定化合物的吸附能力,因此Fe3O4纳米小球对测定有机化合物分配平衡的影响很小。通过测定了17种不同有机化合物,logP值在0.60-4.90范围内,测定结果与文献结果一致。与其他直接测定方法相比,该方法快速、准确、简单、样品消耗少。
     第三章:将修饰Fe3O4磁性纳米小球预分散在正辛醇相中,利用分散液-液微萃取结合高效液相色谱,提出了快速、直接测定药物与血清蛋白结合率的新方法。当药物与血清蛋白结合平衡后,将药物血清溶液加入到含有修饰Fe3O4纳米小球内核的正辛醇中。在3000r/min涡旋速度下,未与蛋白结合的药物,由于疏水作用进入正辛醇相。溶液中游离药物在5min之内在水相和正辛醇相达到平衡。通过磁铁吸引含有磁性修饰Fe3O4纳米小球内核的正辛醇小液滴,实现两相快速完全分离。用高效液相色谱分别测定药物与血清蛋白结合前后药物溶液的浓度,进而计算药物蛋白结合率。通过测定了不同血清蛋白结合率的6种药物,蛋白结合率在10%-100%范围内,测定结果与文献值一致。该方法快速、准确、简单、重复性好。
     第四章:制备了一种新型的pH敏感型固化单宁酸壳聚糖材料,用原子吸收光谱法,研究了固化单宁酸壳聚糖对Cu2+的吸附性能。用紫外扫描研究了不同pH(1-6)对Cu2+吸附和脱附的吸收曲线,pH=1-6的HCl脱附的Cu2+的量与在pH=1-6下未吸附的Cu2+的量保持一致,表明了固化单宁酸壳聚糖对Cu2+吸附和脱附过程的高度可逆性及固化单宁酸壳聚糖的pH敏感性。由固化单宁酸壳聚糖吸附Cu2+前后的红外谱图可知,固化单宁酸壳聚糖的-NH2和-OH与金属离子发生配位作用,在酸性条件下,溶液中的H+优先与-NH2作用生成-NH3+,能解吸掉金属离子。探讨了吸附时间、温度和Cu2+的不同初始浓度对吸附性能的影响。研究了固化单宁酸壳聚糖对Cu2+的吸附动力学,得出该吸附符合二级动力学。通过用0.010mol·L-1HCl脱附Cu2+,对该固化单宁酸壳聚糖循环利用10次,良好的吸附和脱附效果表明该固化单宁酸壳聚糖具有很好的再生性。通过富集1L浓度分别为0.50mg·L-1,0.10mg·L-1,0.020mg·L-1,0.010mg·L-1纯水溶液中的Cu2+,回收率分别达到99.81%,99.92%,99.73%,97.65%,表明了固化单宁酸壳聚糖良好的富集性,探讨了Pb2+、Cd2+、Zn2+、Co2+、Ni2+等金属离子对测定Cu2+的干扰及对自来水和矿泉水中的Cu2+进行了加标实验,Cu2+回收率均在95%-105%之间,表明该方法可准确测定水样中的痕量Cu2+含量。
Dispersive liquid/liquid microextraction (DLLME) and solid phase extraction (SPE) are the novel sample pretreatment technology. DLLME is based on the ternary component solvent systems, as the formation of cloudy solution, the surface area between the extracting solvent and the aqueous sample becomes very large, so the equilibrium state is achieved quickly. The advantages of DLLME include simplicity of operation, rapidity, low cost, high recovery, high enrichment factor and environmental benignity. It can be used for Environmental and Pharmaceutical Analysis. Solid phase extraction is a method which using solid material as sorbent to extract analyte from sample solution, and then the analyte can be eluted by appropriate eluent. So it can realize the separation and enrichment of analyte. This method can be used for the separation and determination of metal ions in the wastewater. This paper is composed of four chapters.
     The first chapter gave a main summary for the classification and development of DLLME and SPE.
     The second chapter:A new direct method for log P determination by dispersive liquid/liquid microextraction (DLLME) coupled with derivatized magnetic nanoparticles (DMNPs) predispersed in1-octanol phase is discussed. First, the aim of DMNPs predispersed into1-octanol phase was to provide the magnetic force when an ultrastrong magnet was used to separate the two phases. Second, the interaction of1-octanol with inner DMNPs nuclei prevented emulsion formation in the DLLME process. The equilibrium of model compound between the two phases was reached in less than3min. The two phases were separated quickly by a super magnet because model compounds in the two phases did not interfere with each other. Moreover, interruption of absorption of DMNPs due to the partition equilibrium of the model compound was negligible. Seventeen model compounds of varied log P values were measured using this method. The log P values fell in the range of0.60to4.90, which was in agreement with the published results. This method is a rapid, accurate and facile method for direct measurement of log P values.
     The third chapter:A novel rapid direct method has been developed for determination of drug-protein binding by dispersive liquid/liquid microextraction (DLLME). Modified Fe3O4nanoparticles were firstly predispersed into1-octanol phase. The sample solution was added to the1-octanol phase with modified Fe3O4nanoparticles nulcea when the equilibrium of drug and serum protein binding was reached. The solution was swirled on a vortex agitator at the speed of3000rpm, the unbound drug was extracted into the1-octanol phase for its hydrophobic property. The equilibrium of free drug between the two phases was reached in5min and the two phases were separated quickly by an ultrastrong magnet. The amounts of drug concentration before and after drugs and serum protein binding were analyzed by HPLC, and then the drug-protein binding was calculated. The novel method was evaluated with6reference drugs in the drug-protein binding range from10%to100%and the results obtained were in good agreement with experimental data in the literature. This novel direct method was very quick, accurate and simple.
     The fourth chapter:We report on a highly reversible method for enrichment and determination of trace Cu2+by flame atomic absorption spectrometry. It is making use of pH-responsive chitosan immobilized tannin. These chitosan immobilized by the tannin exhibited a good performance for the determination of Cu2+ion. The effect of pH on the adsorption and desorption were examined by UV spectral scanning, the amount of unadsorbed Cu2+at pH1-6is coincide with the amount of Cu2+desorbed by HC1(pHl-6). The results indicated the highly reversible performance of adsorption-desorption and the pH-responsive of chitosan immobilized tannin. The function guoups of-NH2and-OH can form coordination bond with metal ions,-NH2can protonize under acid condition, so the hydrogen ions take places of metal ions in the acid condition, and the metal ions can be desorbed. The effects of adsorption time, the temperature and initial metal concentration on the adsorption rate were also examined. The adsorption follows the pseudo-second order kinetics. The adsorption-deadsorption test of the chitosan immobilized tannin was repeated10consecutive times, and the results show the good regeneration of chitosan immobilized tannin. The enrichment of Cu2+was conducted with1L of0.50mg·L-1, 0.10mg·L-1,0.020mg·L-1,0.010mg·L-1respectively, and the enrichment rate was99.81%,99.92%,99.73%,97.65%respectively. We discussed the interference to Cu2+of interference ions such as Pb2+、 Cd2+、 Zn2+、Co2+、Ni2+, and the content of Cu2+in tap water and mineral water was determinated, The recovery was95%-105%, so the method can be realized the enrichment of trace Cu2+.
引文
[1]黄骏雄,环境样品前处理技术及其进展(一)[J].环境化学,1994,13(1):93-104
    [2]Pawliszyn J. New directions in sample preparation for analysis of organic compounds[J]. Trends Anal Chem,1995,14(3):113~122
    [3]Ganzler K, Salgo A, Valko K. Microwave extraction:A novel sample preparation method for chromatographyE[J]. J Chromatogr A,1986,371:299~306
    [4]Watanabe H, Tanaka H. A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol[J]. Talanta,1978,25 (10):585~589
    [5]Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction[J]. Trends Anal Chem,2003,22 (9):565~574
    [6]Liu H H, Dasgupta P K. Analytical Chemistry in a Drop.Solvent Extraction in a Microdrop [J]. AnalChem,1996,68(11):1817~1821
    [7]Jeannot M A, Cantwell F F. Solvent Microextraction into a Single Drop[J]. Anal Chem, 1996,68(13):2236-2240
    [8]Pena-Pereira F, Lavilla I, Bendicho C. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review[J]. Spectrochimica Acta Part B,2009,64 (1):1~15
    [9]Jeannot M A, Cantwell F F. Mass Transfer Characteristics of Solvent Extraction into a Single Drop at the Tip ofa Syringe Needle [J]. AnalChem,1997,69(2):235~239
    [10]He Y, Lee H K. Liquid-Phase Microextraction in a Single Drop of Organic Solvent by Using a Conventional Microsyringe[J]. Anal Chem,1997,69 (22):4634~4640
    [11]Theis A L, Waldack A J, Hansen S M, etal. Headspace Solvent Microextraction [J]. Anal Chem,2001,73 (23):5651~5654
    [12]Ma M h, Cantwell F F. Solvent Microextraction with Simultaneous Back-Extraction for Sample Cleanup and Preconcentration:Preconcentration into a Single Microdrop [J]. Anal Chem,1999,71 (2):388~393
    [13]Liu W p, Lee H K. Continuous-Flow Microextraction Exceeding 1000-Fold Concentration of Dilute Analytes [J]. Anal Chem,2000,72 (18):4462~4467
    [14]Pedersen-Bjergaard S, Rasmussen K E. Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis[J]. Anal Chem,1999, 71(14):2650~2656
    [15]Rasmussen K E. Pedersen-Bjergaard S. Developments in hollow fibre-based, liquid-phase microextraction [J]. Trends Anal Chem,2004,23 (1):1~10
    [16]Ho T S, Vasskog T, Anderssen T, etal.25,000-fold preconcentration in a single step with liquid-phase microextraction [J]. Anal Chim Acta,2007,592 (1):1~8
    [17]Jiang H M, Hu B, Chen B B, etal. Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples [J]. Spectrochim Acta Part B,2008,63 (7):770~776
    [18]Ho T S, Halvorsen T G, Pedersen-Bjergaard S. etal. Liquid-phase microextraction of hydrophilic drugs by carrier-mediated transport[J]. J Chromatogr A,2003,998 (1-2):61~ 72
    [19]Zhao L, Lee H K. Liquid-Phase Microextraction Combined with Hollow Fiber as a Sample Preparation Technique Prior to Gas Chromatography/Mass Spectrometry[J]. Anal Chem, 2002,74 (11):2486~2492
    [20]Hou L, Shen G, Lee H K. Automated hollow fiber-protected dynamic liquid-phase microextraction of pesticides for gas chromatography-mass spectrometric analysis [J]. J Chromatogr A,2003,985 (1-2):107~116
    [21]Hou L, Lee H K. Dynamic Three-Phase Microextraction as a Sample Preparation Technique Prior to Capillary Electrophoresis [J]. Anal Chem,2003,75 (11):2784~2789
    [22]Halvorsen T G, Pedersen-Bjergaard S, RasmussenKE, Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug[J]. J Chromatogr A,2001, 909(1):87~93
    [23]Shen G, Lee H K. Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides [J]. Anal Chem,2002,74 (3):648~654
    [24]RezaeeM, AssadiY, Milani.Hosseini M R, etal. Determination of organic compounds in waterusing dispersive liquid-liquid microextraction [J].J Chromatogr A,2006,1116:1~ 9
    [25]Rezaee M, Yamini Y, Faraji M. Evolution of dispersive liquid-liquid microextraction method[J].J Chromatogr A,2010,1217:2342~2357
    [26]Berijani S, Assadi Y, Anbia M, etal. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection [J]. J Chromatogr A,2006,1123(1):1~9
    [27]赵汝松,徐晓白,刘秀芬.液相微萃取技术的研究进展[J].分析化学,2004,32(9):1246-1251
    [28]Huo X, Li Q, Lin X y, etal. Application of Dispersive Liquid-Liquid Microextraction n for the Analysis of Six Fungicides in Fruit Samples by GC-ECD[J]. Chromatographia, 2011,73 (3-4):313~319
    [29]Stoytcheva M. Pesticides—trategies for Pesticides Analysis [M]. Margarita Stoytcheva Intech,2011,1~416
    [31]Farahani H, Norouzi P, Dinarvand R, etal. Development of dispersive liquid-liquid microex traction combined with gas chromatography-mass spectrometry as a simple, rapid and highly sen sitive method for the determination of phthalate esters in water samples [J]. J Chromatogr A,2007,1172:105~112
    [32]Garci'a-Lo'pez M, Rodri'guez I, Cela R. Development of a dispersive liquid-liquid Microextraction method for organophosphorus flame retardants and plastizicers determination in water samples [J]. J Chromatogr A,2007,1166(1/2):9~15
    [33]Nagaraju D, Huang S D. Determination of triazine herbicides in aqueous samples by dispersive liquid-liquid microextraction with gas chromatography-ion trap mass spectrometry[J]. J Chromatogr A,2007,1161:89
    [34]Farinaa L, Boido E, Carraua F, etal. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection [J]. J Chromatogr A,2007,1157(1-2):46~50
    [35]Fattahia N, Assadi Y, Hosseinia M R M, etal. Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electron-capture detection [J]. J Chromatogr A,2007, 1157(1-2):23-29
    [36]Kozani R R, Assadi Y, Shemirani F, etal. Determination of Trihalomethanes in Drinking Water by Dispersive Liquid-Liquid Microextraction then Gas Chromatography with Electron-Capture Detection [J]. Chromatographia,2007,66 (1-2):81-86
    [37]Farajzadeha M A, Bahrama M, Jonsson J A. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants[J]. Anal Chim Acta,2007,591(1): 69~79
    [38]Wu QH, Wang C, Liu ZM, etal. Dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography[J]. J Chromatogr A,2009,1216 (29):5504-5510
    [39]Wei G, Li Y, Wang X. Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography for the determination of methomyl in natural waters[J].J Sep Sci,2007,30 (18):3262~3267
    [40]Melwanki M B, Fuh M R. Dispersive liquid-liquid microextraction combined with semi-auto mated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography[J]. J Chromatogr A,2008, 1198-1199:1~6
    [41]Vickackaite V, Pusvaskiene E. Dispersion-solidification liquid-liquid microextraction for volatile aromatic hydrocarbons determination:Comparison with liquid phase microextraction based on the solidification of a floating drop[J]. J Sep Sci,2009,32 (20):3512~3520
    [42]Yamini Y, Rezaeea M, Khanchib A, etal. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by inductively coupled plasma-optical emission spectrometry as a fast technique for the simultaneous determination of heavy metals [J]. J Chromatogr A,2010,1217(16):2358~2364
    [43]Asadollahi T, Dadfarnia S, Haji Shabani A M. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry [J]. Talanta,2010,82(1):208~212
    [44]Xu H, Ding Z, Lv L, etal. A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples [J]. Anal Chim Acta,2009,636 (1):28~33
    [45]Wang Ch, Wu Q h, Wu Cx, etal. Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography [J]. J Hazard Mater,2011,185(1):71~76
    [46]Leong Mei-I, Huang S-D. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection[J]. J Chromatogr A,2008,1211 (1-2):8~ 12
    [47]Leong Mei-I, Huang S-D. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples [J]. J Chromatogr A,2009,1216 (45):7645~7650
    [48]Farajzadeh M A, Seyedil S E, Shalamzari M S, etal. Dispersive liquid-liquid microextraction using extraction solvent lighter than water [J]. J Sep Sci,2009,32 (18):3191~3200
    [49]Hashemi P, Beyranvanda S, Mansurb RS, etal. Development of a simple device for dispersive liquid-liquid microextraction with lighter than water organic solvents:Isolation and enrichment of glycyrrhizic acid from licorice[J]. Anal Chim Acta,2009,655 (1-2): 60-65
    [50]Hu X Z, Wu J H, Feng Y Q. Molecular complex-based dispersive liquid-liquid micro extr acti on:Analysis of polar compounds in aqueous solution[J]. J Chromatogr A,1217(45): 7010-7016
    [51]He L, Luo X, Xie H, etal. Ionic liquid-based dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample [J]. Anal Chim Acta,2009,655 (1-2):52~59
    [52]HeL, Luo X, JiangX, etal. Anew 1,3-dibutylimidazolium hexafluorophosphate ionic liquid-based dispersive liquid-liquid microextraction to determine organophosphorus pesticides in water and fruit samples by high-performance liquid chromatography [J]. J Chromatogr A, 2010,1217(31):5013~5020
    [53]Cruz-Vera M, Lucena R, C&rdenas S, etal. One-step in-syringe ionic liquid-based dispersive liquid-liquid microextraction [J].J Chromatogr A,2009,1216(37):6459~6465
    [54]Ravelo-Perez LM, Hernandez-Borges J, Herrera-Herrera A V, etal. Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction [J]. Anal Bioanal Chem,2009,395 (7):2387~2395
    [55]PenaMT, CasaisMC, MejutoMC, etal. Development of an ionic liquid based dispersive liquid-liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples [J]. J Chromatogr A,2009,1216 (36):6356~6364
    [56]Molaakbari E, Mostafavi A, Afzali D. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination [J]. J Hazard Mater,2011,185 (2-3):647~ 652
    [57]Jahromi E Z, Bidari A, Assadi Y, etal. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry:Ultra trace determination of cadmium in water samples[J]. Anal ChimActa,2007,585(2):305~311
    [58]Mallah M H, Shemirani F, Maragheh M G. Use of dispersive liquid-liquid microextraction for simultaneous preconcentration of samarium, europium, gadolinium and dysprosium [J]. J Radioanal Nucl Chem,2008,278 (1):97~102
    [59]Naseri M T, Hemmatkhah P, Hosseini MRM, etal. Combination of dispersive liquid-liquid microextraction with flame atomic absorption spectrometry using microsample introduction for determination of lead in water samples [J]. Anal Chim acta,2008,610 (1):135~141
    [60]王立.色谱分析样品处理[M].北京:化学工业出版社,2006,275
    [61]Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers [J]. Anal Chem,1990,62 (19):2145~2148
    [62]Baltussen E, Sandra P, David F, etal. Stir bar sorptive extraction(SBSE),a novel extraction technique for aqueous samplesrTheory and principles [J]. J Microcolumn Sep,1999,11 (10):737-747
    [63]陈林利,黄晓佳,袁东星.搅拌固相萃取的研究进展[J].色谱,2001,29(5):375~381
    [64]Barker S A, Long A R, Short C R. Isolation of drug residues from tissues by solid phase dispersion[J]. J Chromatogr A,1989,475, (2):353~361
    [65]Pauling L. A Theory of the Structure and Process of Formation of Antibodies [J]. J Am ChemSoc,1940,62(10):2643-2657
    [66]李玉文,郭军,尤铁学.重金属废水处理工艺的研究[J].内蒙古科技与经济,2008,11:78-80.
    [67]黄君涛,熊帆,谢伟立,钟理.吸附法处理重金属废水研究进展[J].水处理技术,2006,32(2):9-12
    [68]李增新,李相仁.天然沸石在环境污染治理中的应用进展[J].环境污染治理技术与设备,2004,5(3):18~22.
    [69]王春艳,吴泽.膨润土的开发与应用[J].化学工程师,2002,(5):36~38
    [70]Volesky B, Holan Z R. Biosorption of heavy metals [J]. Biotechnol Prog,1995,11 (3): 235-250
    [71]Wan M W, Kan C C, Rogel B D, etal. Adsorption of copper (Ⅱ) and lead (Ⅱ) ions from aqueous solution on chitosan-coated sand[J]. Carbohyd Poly,2010,80 (3):891~899
    [72]Osifo P O. Webster A, vander Merwea H, etal. The influence of the degree of cross-linking on the adsorption properties of chitosan beads [J]. Bioresour Technol,2008,99(15): 7377~7382
    [73]Andrady A L, Torikai A, Kobatake T. Spectral sensitivity of chitosan photodegration [J]. J Appl Polym Sci,1996,62 (9):1465~1471
    [74]Lasko C L, Hurst M P. An investigation into theuse of ehitosan for the removal of Soluble Silver from industrial wastewate[J]. Environ Sci Teehnol,1999,33(20):3622~3626
    [75]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.
    [76]Laus R, de Favere V T. Competitive adsorption of Cu(Ⅱ) and Cd(Ⅱ) ions by chitosan crosslinked with epichlorohydrin-triphosphate [J]. Bioresour Technol,2011,102(19): 8769~8776
    [77]Wan Ngah W S, Ab Ghani S, Kamari A. Adsorption behaviour of Fe(Ⅱ) and Fe(Ⅲ) ions in aqueous solution on chitosan and cross-linked chitosan beads [J]. Bioresour Technol ,2005, 96(4):443~450
    [78]Guinesi L S, Cavalheiro ETG. Influence of some reactional parameters on the substitution degree of biopolymeric Schiff bases prepared from chitosan and salicylaldehyde [J]. CarbohydrPolym,2006,65(4):557~561
    [1]Comer J, Tam K, Testa B, etal. Pharmacokinetic Optimisation in Drug ResearchWiley-VCH [M]. Weinheim,2001, Chapter 17
    [2]Hansch C, Fujita T.p-s-p Analysis. A Method for the Correlation of Biological Activity and Chemical Structure [J]. J Am Chem Soc,1964,86(8):1616~1626
    [3]vonGeldernTW, Hoffman DJ, KesterJA, etal. Azole Endothelin Antagonists.3. Using A log Pas a Tool To Improve Absorption [J].JMed Chem,1996,39(4):982~991
    [4]Martin YC. A Bioavailability Score [J]. JMed Chem,2005,48(9):3164~3170
    [5]Ishigami M, Honda T, Takasaki W, etal. A Comparison of the Effects of 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG-CoA) Reductase Inhibitors on the CYP3A4-Dependent Oxidation of Mexazolam in Vitro [J]. Drug Metab Dispos,2001,29 (3):282~288
    [6]Liu X, Tu M, Kelly R S, etal. Development of a computational approach to predict blood-brain barrier permeability [J]. Drug Metab Dispos,2004,32 (1):132~139
    [7]Kerns EH, Di L. Physicochemical profiling:overview of the screens [J]. Drug Discovery Today Technol,2004,1 (4):343~348
    [8]Lipinski C A. Drug-like properties and the causes of poor solubility and poor permeability [J]. J Pharmacol Toxicol Methods,2000,44 (1):235~249
    [9]vandeWaterbeemdH, Smith DA, Beaumont K, etal. Property-based design:Optimization of drug absorption and pharmacokinetics [J].JMed Chem,2001,44(9):1313~1333
    [10]Vowles P D, Mantoura RFC. Sediment-water partition coefficients and HPLC retention factors of aromatic hydrocarbons [J]. Chemosphere,1987,16(1):109~116
    [11]Anliker R, Clarke E A, Moser P. Use of the partition coefficient as an indicator of bioaccumulation tendency of dyestuffs in fish [J]. Chemosphere,1981,10 (3):263~274
    [12]Gschwend P M, Wu S. On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants[J]. Environ Sci Technol,1985,19 (1):90~96
    [13]Nishimura I, Hirano A, Yamashita T, etal. Improvement of the high-speed log D assay using an injection marker for the water plug aspiration/injection method [J]. J Chromatogr A, 2009,1216(15):2984~2988
    [14]DohtaY, Yamashita T, Horiike S, etal. A System for LogD Screening of 96-Well Plates Using a Water-Plug Aspiration/Injection Method Combined with High-Performance Liquid Chromatography-Mass Spectrometry [J]. Anal Chem,2007,79 (21):8312~8315
    [15]Guo Y G, Zhang J, Liu D N, etal. Determination of n-octanol-water partition coefficients by hollow-fiber membrane solvent microextraction coupled with HPLC [J]. Anal Bioanal Chem,2006,386(7-8):2193~2198
    [16]Bruggeman W A, van der Steen J, Hutzinger O. Reversed-phase thin-layer chromatography of polynuclear aromatic hydrocarbons and chlorinated biphenyls Relationship with hydrophobicity as measured by aqueous solubility and octanol-water partition. coefficient[J]. J Chromatogr A,1982,238 (2):335~346
    [17]Biagi G L, Barbaro A M, Sapone A, etal. Determination of lipophilicity by means of reversed-phase thin-layer chromatography:I. Basic aspects and relationship between slope and intercept of TLC equations[J]. J Chromatogr A,1994,662(2):341~361
    [18]Valk6 K, Bevan C, Reynolds D. Chromatographic Hydrophobicity Index by Fast-Gradient RP-HPLC:A High-Throughput Alternative to log P/log D[J]. Anal Chem,1997,69 (11): 2022~2029
    [19]Veith G D, Austin N M, Morris R T. A rapid method for estimating log P for organic chemicals [J]. Water Res,1979,13(1):43~47
    [20]Poole S K, Durham D, Kibbey C. Rapid method for estimating the octanol-water partition coefficient (log Pow) by microemulsion electrokinetic chromatography [J]. J Chromatogr B, 2000,745(1):117-126
    [21]Ishihama Y, Oda Y, Uchikawa K, etal. Evaluation of Solute Hydrophobicity by Microemulsion Electrokinetic Chromatography[J]. Anal Chem,1995,67 (9):1588-1595
    [22]Ishihama Y, Oda Y, Uchikawa K, etal. Hydrophobicity of Cationic Solutes Measured by Electrokinetic Chromatography with Cationic Microemulsions [J]. Anal Chem,1996,68 (23):4281~4284
    [23]RezaeeM, AssadiY, Hosseini M M, etal. Determination of organic compounds in water using dispersive liquid-liquid microextraction [J]. J Chromatogr A,2006,1116 (1-2):1~9
    [24]Garci'a-Lo'pez M, Rodri'guez I, Cela R. Development of a dispersive liquid-liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples [J].J Chromatogr A,2007,1166(1-2):9~15
    [25]Farina L, Boido E, Carrau F, etal. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection [J]. J Chromatogr A,2007,1157(1-2):46-50
    [26]Zang X, Wang J, Wang O, etal. Analysis of captan, folpet, and captafol in apples by dispersive liquid-liquid microextraction combined with gas chromatography [J]. Anal Bioanal Chem,2008,392 (4):749~754
    [27]RezaeeM, Yamini Y, Shariati S, etal. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples [J]. J Chromatogr A,2009,1216(9):1511~1514
    [28]Cruz-Vera M, Lucena R, Ca'rdenas S, etal. One-step in-syringe ionic liquid-based dispersive liquid-liquid microextraction [J]. J Chromatogr A,2009,1216 (37):6459~6465
    [29]Shi Z G, Lee H K. Dispersive Liquid-Liquid Microextraction Coupled with Dispersive u-Solid-Phase Extraction for the Fast Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples [J]. Anal Chem,2010,82 (4):1540~1545
    [30]Deng H, Li X L, Peng Q, etal. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angew Chem Int Ed,2005,44 (18):2782~2785
    [31]Anderson J T, Schrader W. A Method for Measuring 1-Octanol~Water Partition Coefficients [J]. Anal Chem,1999,71 (16):3610-3614
    [32]de Bruijn J, BusserF. SeinenW, etal. Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the "slow-stirring" method [J]. Environ Toxicol Chem,1989,8(6):499~512
    [33]Berthod A, Carda-Broch S. Determination of liquid-liquid partition coefficients by separation methods [J]. JChromatogr A,2004,1037(1-2):3~14
    [34]Ahlers J, Benzing M, Gies A, etal. Yeast as an unicellular model system in ecotoxicology and xenobiochemistry[J]. Chemosphere,1988,17 (8):1603~1615
    [35]Eadsforth C V, Moser P. Assessment of reverse-phase chromatographic methods for determining partition coefficients [J]. Chemosphere,1983,12 (11-12):1459~1475
    [36]Watarai H, Tanaka M, Suzuki N. Determination of partition coefficients of halobenzenes in heptane/water and 1-octanol/water systems and comparison with the scaled particle calculation [J]. Anal Chem,1982,54 (4):702~705
    [37]Tewari Y B, Martire D E, Wasik S P, etal. Aqueous solubilities and octanol-water partition coefficients of binary liquid mixtures of organic compounds at 25℃ [J]. J Solution Chem, 1982,11 (6):435~445
    [38]Lombardo F, Shalaeva M Y, Tupper K A, etal. ElogPoct:A Tool for Lipophilicity Determination in Drug Discovery[J]. J Med Chem,2000,43 (15):2922~2928
    [39]de Maagd P G, ten Hulscher D T E M, van den Heuvel H, etal. Physicochemical properties of polycyclic aromatic hydrocarbons:aqueous solubilities, n-octanol/water partition coefficients, and henry's law constants [J]. Environ Toxicol Chem,1998,17,251
    [40]Alimuddin M, Grant D, Bulloch D, etal. Determination of log D via Automated Microfluidic Liquid-Liquid Extraction [J]. J Med Chem,2008,51 (16):5140~5142
    [41]Tomida H, Yotsuyanagi T, Dkeda K. Solubilization of Steroid Hormones by Polyoxyethylene Lauryl Ether[J]. Chem Pharm Bull,1978,26 (9):2832~2837
    [1]Waibel B. Albert C, Holzgrabe U. Evaluation of the extent of protein binding by means of NMR diffusion and relaxation experiments, and automated continuous ultrafiltration [J]. EurJPharmSci,2009,37(3-4):191~197
    [2]Girard I, Ferry S. Protein binding of methohexital. Study of parameters and modulating factors using the equilibrium dialysis technique[J]. J Pharm Biomed Anal,1996,14(5): 583~591
    [3]Paxton J W, Calder R L. Propranolol binding in serum:Comparison of methods and investigation of effects of Drug Concentration, pH, and temperature [J]. J Pharm Methods, 1983,10(1):1~11
    [4]Shi G, Xue F5 Zhou H, etal. Flow-injection analysis-electrochemical detection for the determination of drug-protein interactions with microdialysis sampling [J]. Anal Chim Acta,1999,386 (1-2):123~127
    [5]Huang Y, Zhang Z, Zhang D, etal. Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug [J]. Talanta 2001, 53(4):835-841
    [6]ShibukawaA, TerakitaA, HeJY, NakagawaT. High-performance frontal analysis-high performance liquid chromatographic system for stereoselective determination of unbound ketoprofen enantiomers in plasma after direct sample injection [J]. J Pharm Sci,1992, 81(7):710~715
    [7]Ohara T, Shibukawa A, Nakagawa T. Capillary electrophoresis/frontal analysis for microanalysis of enantioselective protein binding of a basic drug [J]. Anal Chem,1995, 67(19):3520~3525
    [8]Sebille B, Zini R, Madjar C, etal. Separation procedures used to reveal and follow drug-protein binding [J]. journal of chromatography B:biomedical sciences and applications,1990,531,51~77
    [9]Wainer IW. Enantioselective high-performance liquid affinity chromatography as a probe of ligand-biopolymer interactions:an overview of a different use for high-performance liquid chromatographic chiral stationary phases [J]. J Chromatogr A,1994,666 (1-2):221~234
    [10]Cann J R. Theory and Practice of Gel Electrophoresis of Interacting Macromolecules [J]. Anal Biochem,1996,237 (1):1~16
    [11]Groff M. Riffel K, Song H, etal. Stabilization and determination of a PPAR agonist in human urine using automated 96-well liquid-liquid extraction and liquid chromatography/tandem mass spectrometry[J]. J Chromatogr B,2006,842 (2):122~130
    [12]Musteata F M, Pawliszyn J. Study of Ligand-Receptor Binding Using SPME: Investigation of Receptor, Free, and Total Ligand Concentrations [J]. J Proteome Res,2005, 4(3):789-800
    [13]Fu HF, Guan JY, Bao JJ. A Hollow Fiber Solvent Microextraction Approach to Measure Drug-Protein Binding[J]. Anal Sci,2006,22 (12):1565-1569
    [14]Oravcova J, Bohs B, Lindner W. Drug-protein binding studies new trends in analytical and experimental methodology[J]. J Chromatogr B,1996,677 (1):1~28
    [15]Hage D S, Tweed S A. Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions [J]. J Chromatogr B,1997,699 (1-2):499~525
    [16]Rezaee M, AssadiY. Hosseini M M, etal. Determination of organic compounds in water using dispersive liquid-liquid microextraction [J]. J Chromatogr A,2006,1116(1/2):1-9
    [17]Garci'a-Lo'pez M, Rodri'guez I, Cela R. Development of a dispersive liquid-liquid microextraction method for organophosphorus flame retardants and plastizicers determination in water samples [J]. J Chromatogr A,2007,1166 (1/2):9-15
    [18]Shi Z G, Lee H K. Dispersive Liquid-Liquid Microextraction Coupled with Dispersive u-Solid-Phase Extraction for the Fast Determination of Polycyclic Aromatic Hydrocarbons in Environmental Water Samples [J]. Anal Chem,2010,82(4):1540~1545
    [19]Cao J Y, Qiu Y S, Wang D J. J South China Agric Univ,1999,18,248
    [20]周东丰,王向群,吴文源. 精神药品临床应用指导原则
    [1]Gotoh T, Matsushima K, Kikuchi K I. Adsorption of Cu and Mn on covalently cross-linked alginate gel beads [J]. Chemosphere,2004,55 (1):57~64
    [2]Mahmoud M E, Kenawy IM M, MM.A.H, etal. Removal,preconcentration and determination of trace heavy metalions in water samples by AAS via chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropylamine ion exchanger[J]. Desalination,2010, 250(1):62~70
    [3]Pehlivan E, Cetin S. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer [J]. J Hazard Mater,2009, 163(1):448~453
    [4]Arain MA, Wattoo FH, M H S Wattoo, etal. HPLC Simultaneous determination of metalions as complexes of pentamethylene dithiocarbamate in Indus river water, Pakistan [J]. Arabian Journal of Chemistry,2009,2 (1):25~29
    [5]Liu By, Zhang Y, Mayer D, etal. Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection [J]. electrophoresis,2012, 33(8):1247~1250
    [6]Hwang G H, Han W K, Park J S, etal. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode [J]. Talanta,2008, 76(2):301~308
    [7]Blazewicz A, Dolliver W, Sivsammye S, etal. Determination of cadmium, cobalt, copper, iron, manganese, and zinc in thyroid glands of patients with diagnosed nodular goitre using ion chromatography[J]. J Chromatogr B,2010,878(1):34-38
    [8]Zuo P, Yin B C, Ye B C. DNAzyme-based microarray for highly sensitive determination of metal ions [J]. Biosens Bioelectron,2009,25 (4):935~939
    [9]Kazi T G, Jalbani N, Arain M B, etal. Determination of toxic elements in different brands of cigarette by atomic absorption spectrometry using ultrasonic assisted acid digestion [J]. Environ Monit Assess,154 (1-4):155~167
    [10]Kazi T G, Khan S, Baig JA, etal. Separation and preconcentration of aluminum in parenteral solutions and bottled mineral water using different analytical techniques [J]. J Hazard Mater,172(2-3):780~785
    [11]Nasu A, Yamaguchi S, Sekine T. Solvent extraction of copper(I) and (II) as thio Cyanate complexes with tetrabutylammonium ions into chloroform and with trioctylphosphine oxide intohexane[J]. AnalSci,1997,13(6):903~911
    [12]Saran R, Baul T S B, Srinivas R, etal. Simultaneous determination of trace heavy-metals in waters by atomic-absorption spectrometry after preconcentration by solvent-extraction [J]. Anal Lett,1992,25(8):1545-1557
    [13]A. Bavili Tabrizi. Development of a cloud point extraction-spectrofiuorimetric method for trace copper (Ⅱ) determination in water samples and parenteral solutions [J]. J Hazard Mater B,2007,139(2):260~264
    [14]DivrikliU, KartalAA, SoylakM, etal. Preconcentration of Pb(Ⅱ), Cr(Ⅲ), Cu(Ⅱ)5Ni(Ⅱ) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations [J]. J Hazard Mater,2007,145 (3):459~464
    [15]Ohzeki K, Minorikawa M, Yokota F, etal. Enrichment of trace amounts of copper as chelate compounds using a finely divided ion-exchange resin [J]. Analyst,1990,115(1):23~28
    [16]Tao G H, Fang Z. Dual stage preconcentration system for flame atomic absorption spectrometry using flow injection on-line ion-exchange followed by solvent extraction [J]. J Anal Chem,1998,360 (2):156~160
    [17]M.Soylak, S.Saracoglu, U.Divrikli, etal. Coprecipitation of heavy metals with erbium hydroxide for their flame atomic absorption spectrometric determinations in environmental samples [J]. Talanta,2005,66 (5):1098-1102
    [18]Soylak M. Erdogan N D. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations [J]. J Hazard Mater,2006,137 (2):1035~1041
    [19]Poole C F. New trends in solid-phase extraction [J]. Trends Anal Chem,2003,22 (6):362~ 373
    [20]Dean J R. Extraction Methods for Environmental Analysis, Wiley, New York,1998
    [21]Jain V K, Mandalia H C, Gupte H S, etal. Azocalix[4]pyrrole Amberlite XAD-2:new polymeric chelating resins for the extraction, preconcentration and sequential separation of Cu(II), Zn(II) and Cd(II) in natural water samples [J]. Talanta,2009,79(5):1331~1340
    [22]Zhu X, Wu M, Gu Y. D-Cyclodextrin-cross-linked polymer as solid phase extraction material coupled with inductively coupled plasma mass spectrometry for the analysis of trace Co(II) [J].Talanta,78,565~569
    [23]Gotoh T, Matsushima K, Kikuchi K I. Adsorption of Cu and Mn on covalently cross-linked alginate gel beads [J]. Chemosphere,2004,55 (1):57~64
    [24]Hua Y, Jiang X q, Ding Y, etal. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles [J]. Biomaterials,2002,23 (15):3193~3201
    [25]Xiao L, Ben W W. Fine Chemicals,2006,23 (8):733~737
    [26]Chang Y F, Liu Z Q, Zhao J L, etal. Journal of Shijiazhuang University,2007,9 (6):41 ~ 43
    [27]HO Y S. Second order kinetic model for the sorption of cadmium onto tree fern:A comparison of linear and nonlinear methods [J]. Water Research,2006,40:119~125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700