水相中硝基芳烃类爆炸物检测用荧光薄膜的制备和传感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基芳烃类化合物是一类重要的爆炸物,这类化合物在环境中的残留对人类和动植物的生存构成严重威胁。因此,对其在海水、地下水、土壤等环境中的检测受到了人们的普遍关注。人们相继发展了多种可用于气相和液相中检测硝基芳烃类化合物的技术,如:质谱、离子迁移谱、电化学法、荧光法、化学发光法等。与其它方法相比较,荧光方法由于其选择性好、灵敏度高、信号及参数多样而备受青睐。实际上,在过去的几年里人们制备研究了多种用于硝基芳烃类爆炸物检测的荧光均相传感器以及荧光薄膜传感器。虽然均相传感器具有简单、快速及有望实现在线检测等优点,但是从实际应用角度来说,薄膜传感器具有可重复使用、不污染待测体系、无试剂消耗、易于器件化等优点。所以对荧光薄膜传感器的研究已成为近年来人们关注的焦点。
     就荧光薄膜传感器的组成材料来讲,已有的多是荧光高分子薄膜,染料掺杂(或染料修饰)高分子薄膜,以及染料掺杂氧化物薄膜等。但是,需要指出的是,这些荧光高分子薄膜的传感性能强烈依赖于很多因素,诸如:分析物在聚合物薄膜里的穿透性、聚合物与分析物之间特有的相互作用等,而且这些高分子聚合物薄膜在液相使用时存在严重的泄漏及污染待测体系的问题。因此有必要发展一种新的制膜方法来解决上述问题。
     基于上述考虑以及本实验室已有的工作,我们以多环芳烃为传感元素,将其经由连接臂单层组装于固体基质表面,这样有可能得到对三硝基甲苯(TNT)等硝基芳烃类化合物敏感并很好解决上述问题的荧光薄膜传感器。这是因为:1、多环芳烃是一类具有荧光活性、量子产率比较高、且具有富电子结构的化合物,而TNT和其它硝基芳烃类化合物为缺电子物质,因此可通过电子授受作用而猝灭多环芳烃荧光,实现对这类化合物的传感。2、通过这种方式制备得到的薄膜材料实现了多环芳烃在固体基质表面的化学结合,从原理上能够避免泄漏问题。3、穿透性问题由于直接将荧光物种暴露于待测溶液也可得到有效解决。所以,本论文选用多环芳烃丹磺酰为传感元素,通过不同长度的连接臂介导,将其单层组装于玻
Nitroaromatic explosives are an important group of compounds in both environmental and forensic science. Water and soil can be seriously contaminated by them due to toxicities of them and their degradation products to human being, and ecosystem. Therefore, identification and quantification of traces of nitroaromatics in aqueous phase have attracted great attention during the last few years. Actually, a great variety of analytical methods have been developed for monitoring these compounds both in solution and in air, for example, mass spectrometry, ion mobility spectrometry, electrochemical methods, fluorescence, chemiluminescence, etc. Compared with other analytical techniques, fluorescence is more attractive because of its high sensitivity, high selectivity, and multiple choices in signals or parameters including emission intensity, emission wavelength, profiles of emission spectra, anisotropy, lifetime, and even excimer or exciplex formation. Actually, a number of homogeneous fluorescent sensors and fluorescent film sensors for nitro-aromatics have been designed and prepared. Although the homogeneous sensors are rapid, simple, and show promise for near real-time evaluation of nitro-aromatic contamination in environmental samples, from the viewpoint of practical use, film sensors have a number of advantages like being re-usable, no consumption of reagents and ease to be made into devices. Therefore, design and preparation of fluorescent film sensors for nitroaromatics have become the focus of the research.From the composition of the films, fluorescent film sensors can be fluorescent polymeric films, fluorophore-modified or doped polymeric or oxide films, and fluorescent conjugated polymeric films. It is interesting to note that the performance of these film sensors depends strongly on a number of factors including, at least, the permeability of the analyte in the polymeric films and the strength of the interaction between the analytes and the conjugated polymers. Furthermore, contamination to the analytical system is hard to avoid due to leaking of the chemicals from the polymeric
    film. As is well known, polycyclic aromatic hydrocarbons (PAHs) are fluorescent and of high-quantum yield and they are also electron-rich compounds. The strong electron-withdrawing ability of nitroaromatic compounds enables them to form strong electron-transfer complexes with the electron-rich PAHs which could result in a fluorescence quenching and be used to detect nitroaromatics.On the basis of the considerations mentioned above and the previous work conducted in our lab, we thought it might be an even better way to solve the problems by immobilizing a fluorescent electron-rich fluorophore, like dansyl, onto a solid substrate through a self-assembled monolayer (SAMs) terminated with suitable reactive groups. This is because, firstly, the films produced in this way can avoid, at least in theory, the leaking problem which is usually an obstacle in practical use of fluorescent film sensors. Secondly, permeability problem may be solved automatically due to direct exposing to the bulk medium of the fluorophore. And thirdly, the binding of trinitrotoluene (TNT) and other nitroaromatics with the fluorophore is natural due to electron donation and acceptance interaction between them.Three dansyl-modified fluorescent film sensors with different spacer structures have been designed and prepared in this dissertation. These film sensors have been successfully used to detect nitroaromatics in aqueous solution.In the first work, dansyl was immobilized onto glass plate surface through surface reaction with the epoxide-terminated SAM via 1, 3-diaminopropane which turns out to be a new kind of fluorescent sensing film for effectively detecting nitroaromatics in aqueous solution. Fluorescence quenching studies showed that the film is sensitive and selective to the presence of nitroaromatics due to their strong electron-withdrawing ability. The stronger electron-drawing ability of the nitroaromatic is, the stronger the quenching efficiency of the corresponding nitroaromatic is. It has been revealed that the structure and properties of the spacer connecting the sensing fluorophore and the substrate play crucial rule, via the spacer layer screening effect, for the performance of the sensing film. Therefore, it may be expected that even better sensing films can be developed in the future by simple varying the structure, the property, and the density of the spacer.In the second work, a film sensor was fabricated by covalent immobilization of the
    fluorophore, dansyl, on a glass plate surface via reaction with 1,4-diaminobutane and then with an epoxide-terminated self-assembled monolayer (SAM). As expected, the simple elongation of the spacer by using 1,4-diaminobutane instead of 1,3-diaminopropane improved the sensing performance of the film sensors to nitroaromatics.From the two works mentioned above, we know the importance of the structures and properties of the spacers connecting the sensing fluorophore and the substrate. Therefore, in the third work, 1,6-hexanediamine was adopted as the spacer to get a fluorescent film with better sensing ability. Through fluorescene quenching studies, it was found that the sensibility of the film to nitroaromatics greatly increased. It is interesting to note that the quenching efficiencies of nitrobenzene to the film is greater than that of TNT in aqueous solution which is quite different from our previous work and contrary to the conclusion that the stronger electron-drawing ability of the nitroaromatic is, the stronger the quenching efficiency is. This phenomenon is explained to be related to the conformation of the spacer on the substrate which was thought to be more compact and restrict the interaction between the fluorophore inside the spacer layer and TNT with larger molecular size. On the contrary, it is much easier for nitrobenzene to enter into the spacer layer and quench the fluorescence of the film. This explanation was further confirmed by the solvent effect studies and fluorescent anisotropy studies.
引文
[1] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Signaling recognition events with fluorescence sensors and switches[J]. Chem. Rev., 1997,97:1515-1566.
    [2] Czarnik A W. Fluorescent chemosensors for ion and molecular recognition[C]. ACS Symposium Series 538, American Chemical Society, Washington D C, 1992.
    [3] Czarnik A W. Chemical communication in water using fluorescent chemsensors[J]. Acc. Chem. Res., 1994, 27: 302-308.
    [4] Corradini R, Dossena A, Marchelli R, Panagia A, Sartor G, Saviano M, Lombardi A, Pavone V. A modified cyclodextrin with a fully encapsulated dansyl group: self-inclusion in the solid state and in solution[J]. Chem. Eur. J., 1996,2: 373-381.
    [5] van Veen N J, Flink S, Deij M A, Egberink R J M, van Veggel F C J M, Reinhoudt D N. Monolayer of a Na~+-selective fluoroionophore on glass: con- necting the fields of monolayers and optical detection of metal[J]. J. Am. Chem. Soc, 2000, 122: 6112- 6113.
    [6] Flink S, van Veggel F C J M, Reinhoudt D N. A self-assembled monolayer of a fluorescent guest for the screening of host molecules[J]. Chem. Commun., 1999, 2229-2230.
    [7] Crego-Calama M, Reinhoudt D N. New materials for metal ion sensing by self-assembled monolayers on glass[J]. Adv. Mater., 2001,13: 1171-1174.
    [8] Basabe-Desmonts L, Beld J, Zimmerman R S, Hernando J, Reinhoudt D N, Crego- Calama M. A simple approach to sensor discovery and fabrication on self- assembled monolayers on galss[J]. J. Am. Chem. Soc, 2004, 126: 7293-7299.
    [9] Fox M A. Fundamentals in the design of molecular electronic devices: long-range charge carrier transport and electronic coupling[J]. Acc. Chem. Res., 1999, 32:201-207.
    [10] Yang J S, Swager T M. Fluorescent porous polymer films as TNT chemosensors electronic and structural effects[J]. J. Am. Chem. Soc, 1998, 120: 11864-11873.
    [11] Rosel A, Zhu Z, Madigan C F, Swager T M, Bulovic V. Sensitivity gains in hemosensing by lasing action in organic polymers[J]. Nature, 2005, 876-879.
    [12] Fang Y, Ning G H, Hu D D, Lu J R. Synthesis and solvent-sensitive fluorescence properties of a novel surface-functionalized chitosan film: potential materials for reversible information storage[J]. J. Photochem. Photobiol. A, 2000, 135: 141-145.
    [13] Wang H, Fang Y, Ding L P, Gao L N, Hu D D. Preparation and nitromethane sensing properties of chitosan thin films containing pyrene and β-cyclodextrin units[J]. Thin Solid Films, 2003,
     440: 255-260.
    [14] Gao L N, Fang Y, Wen X P, Li Y G, Hu D D. Monomolecular layers of pyrene as a sensor to dicarboxylic acids[J]. J. Phys. Chem. B, 2004, 108: 1207-1213.
    [15] Ding L P, Fang Y, Jiang L L, Gao L N, Yin X. Twisted intra-molecular electron transfer phenomenon of dansyl immobilized on chitosan film and its sensing property to the composition of ethanol-water mixtures[J]. Thin Solid Films, 2004, 478: 318-325.
    [16] Lin V S Y, Lai C Y, Huang J, Xu S. Molecular recognition inside of multifuc-tionalized mesoporous silicas: toward selective fluorescence detection of dopamine and glucosamine[J]. J. Am. Chem. Soc., 2001, 123: 11510-11511.
    [17] Radu D R, Lai C Y, Wiench J W, Pruski M, Lin V S Y. Gate keeping layer effect: a poly (lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters[J]. J. Am. Chem. Soc., 2004, 126: 1640-1641.
    [18] Zhao X J, Hilliard L R, Mechery S J, Wang Y P, Bagwe R P, Jin S G, Tan W H. A rapid bioassay for single bacterial cell quantitation using bioconjugated nano-particles[J]. Proc. Nati. Acad. Sci., 2004, 101: 15027-15032.
    [19] Zhu C Q, Zhao D H, Chen J L, Li Y X, Wang L Y, Zhou Y Y, Zhuo S J, Wu Y Q. Application of L-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins[J]. Anal. Bioanal. Chem., 2004, 378: 811-815.
    [20] www. sandia. gov/mstc/pdf/smartsandbrochure. pdf
    [21] 翟秋阁,黄红梅,王柯敏,谭蔚泓,黄杉生,金燕,李邦锐.分子导线聚合物在氰根阴离子检测中的应用研究[J].高等学校化学学报,2005,26:46-48.
    [22] Raymo F M, Cejas M A. Supramolecular association of dopamine with immobi-lized fluorescent probes[J]. Org. Lett., 2002, 4: 3183-3185.
    [23] Ma A, Rosenzweig Z. Submicrometric lipobead-based fluorescence sensors for chloride ion measurements in aqueous solution[J]. Anal. Chem., 2004, 76: 569-575.
    [24] Barker S L R, Kopelman R. Development and cellular applications of fiber optic nitric oxide sensors based on a gold-adsorbed fluorophore[J]. Anal. Chem., 1998, 70: 4902-4906.
    [25] Ayadim M, Habib Jiwan J L, de Silva A P, Soumillion J Ph. Photosensing by a fluorescing probe covalently attached to the silica[J]. Tertrahedron Lett., 1996, 37: 7039-7042.
    [26] 王辉,张秀娟,张晓宏,吴世康.纳米硅胶粒子的制备及其对金属离子的识别[J].物理化学学报,2004,20:313-317.
    [27] Montalti M, Prodi L, Zaccheroni N, Falini G.. Solvent-induced modulation of collective photophysical processes in fluorescent silica nanoparticles[J]. J. Am. Chem. Soc., 2002, 124: 13540-13546.
    [28] Tsagkatakis I, Peper S, Bakker E. Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles[J]. Anal. Chem., 2001,73:315-320.
    [29] Tsagkatakis I, Peper S, Retter R, Bell M, Bakker E. Monodisphere plasticized poly(vinyl chloride) fluorescent microsphere for ionophore-based sensing and extraction[J]. Anal. Chem., 2001,73:6083-6087.
    [30] Retter R, Peper S, Bell M, Tsagkatakis I, Peper S, Bakker E. Flow cytometric ion detection with plasticized poly(vinyl chloride) microsphere containing selective ionophores[J]. Anal. Chem., 2002,74: 5240-5245.
    [31] Peper S, Tsagkatakis I, Bakker E. Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing[J]. Anal. Chim. Acta, 2001,442: 25-33.
    [32] Peper S, Ceresa A, Qin Y, Bakker E. Plasticizer-free microspheres for ionophore- based sensing and extraction based on methyl methacrylate-decyl methacrylate copolymer matrix[J]. Anal. Chim. Acta, 2003, 500: 127-136.
    [33] Cai Z P, Xu H Y. Point temperature sensor based on green upconversion emission in an Er:ZBLALiP microsphere[J]. Sens. Actuators A, 2003, 108: 187-192.
    [34] Boal A K, Rotello V M. Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds[J]. J. Am. Chem. Soc, 2000,122: 734-735.
    [35] Clark H A, Barker S L R, Brasuel M, Miller M T, Monson E, Parus S, Kopelman R. Subcellular optochemical nanobiosensors: probes encapsulated by biologically localized embedding (PEBBLE)[J]. Sens. Actuators B, 1998, 51: 12-16.
    [36] Park E J, Brasuel M, Behrend C, Philbert M A, Kopelman R. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells[J]. Anal. Chem., 2003,75:3784-3791.
    [37] Ji J, Rosenzweig N, Griffin C, Rosenzweig Z. Synthesis and application of submit- crometer fluorescence sensing particles for lysosomal pH measurements in murine macrophages[J]. Anal. Chem., 2000, 72: 3497-3503.
    [38] McNamara K P, Nguyen T, Dumitrascu G, Jin J, Rosenzweig N, Rosenzweig Z. Synthesis, characterization and application of fluorescence sensing lipobeads for intracellar pH measurements[J] . Anal. Chem., 2001, 73: 3240-3246.
    [39] Blagio G, Rosenzweig N, Rosenzweig Z. Design, synthesis, and application of particle-based fluorescence resonance energy transfer sensors for carbohydrates and glycoproteins[J]. Anal.
     Chem., 2005, 77: 393-399.
    [40] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets with randomly-ordered fiber-optic gene arrays[J]. Nat. Biotechnol., 2000, 18: 91-94.
    [41] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybrid-dization[J]. Nat. Biotechnoi., 1996, 14: 303-308.
    [42] Epstein J R, Walt D R. Fluorescence-based fiber optic arrays: a universal platform for sensing[J]. Chem. Soc. Rev., 2003, 32: 203-214.
    [43] Qiu G M, Xu Y Y, Zhu B K, Qiu G L. Novel, fluorescent, magnetic, poly-saccharide-based microsphere for orientation, tracing, and anticoagulation: preparation and characterization[J]. Biomacromolecules, 2005, 6: 1041-1047.
    [44] Albert K J, Walt D R. High-speed fluorescence detection of explosives-like vapors[J]. Anal. Chem., 2000, 72: 1947-1955.
    [45] Stitzel S E, Cowen L J, Albert K J, Walt D R. Array-to-array transfer of an artificial nose classifier[J]. Anal. Chem., 2001, 73: 5266-5271.
    [46] Steemers F J, Walt D R. Multi-analyte sensing: from site-selective deposition to randomly-ordered addressable optical fiber sensors[J]. Mikrochim. Acta, 1999, 131: 99-105.
    [47] Epstein J R, Leung A P K, Lee K H, Walt D R. High-density, microsphere-based fiber optic DNA microarrays. Biosens[J]. Bioelectron., 2003, 18: 541-546.
    [48] Michael K L, Taylor L C, Schultz S L, Walt D R. Randomly ordered addressable high-density optical sensor arrays[J]. Anal. Chem., 1998, 70: 1242-1248.
    [49] Epstein J R, Lee M, Walt D R. High-density fiber-optic genosensor microsphere array capable ofzeptomole detection limits[J]. Anal. Chem., 2002, 74: 1836-1840.
    [50] Li X L, Lou T J, Sun X M, Li Y D. Highly sensitive WO_3 hollow-sphere gas sensors[J]. Inorg. Chem., 2004, 43: 5442-5449.
    [51] Oktar O, Caglar P, Seitz W R. Chemical modulation of thermosensitive poly (N-isopropylacrylamide) microsphere swelling: a new strategy for chemical sensing[J]. Sens. Actuators B, 2005, 104: 179-185.
    [52] 许鑫华,傅英松,陈强,姚康德.聚合物荧光型纳米微粒传感器的研究进展[J].化学通报,2003,12:815-820.
    [53] Shi J J, Zhu Y F, Zhang X R, . Baeyens W R G, Garcia-Campana A M. Recent deve-lopments in nanomaterial optical sensors[J]. Trends Anal. Chem., 2004, 23: 351-360.
    [54] Goldman E R, Medintz I L, Whitley J L, Hayhurst A, Clapp A R, Uyeda H T, Deschamps J R, Lassman M E, Mattoussi H. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor[J]. J. Am. Chem. Soc., 2005,127: 6744-6751.
    [55] Krausa M, Rezne A A. Vapour and trace detection of explosives for anti- terrorism purposes[M]. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
    [56] Clifford K Ho, Itamura M T, Kelley M, Hughes R C. Review of chemical sensors for in-situ monitoring of volatile contaminants[M]. Sandia Report. Prepared by Sandia National Laboratories.
    [57] Thundat T, Chen G Y, Warmck R J. Vapor detection using resonating micro- cantilever[J]. Anal. Chem., 1995, 67: 519-521.
    [58] Goodpaster J V, McGuffin V L. Fluorescence quenching as an indirect detection method for nitrated explosives[J] . Anal. Chem., 2001,73:2004-2011.
    [59] Goldman E R, Cohill T J, Patterson C H, Anderson G P, Kusterbeck A W, Matthewmauro J. Detection of 2,4,6-Trinitrotoluene in environmental samples using a homogeneous fluoroimmunoassay[J]. Environ. Sci. Technol., 2003, 37: 4733-4736.
    [60] Schulte-Ladbeck R, Kolla P, Karst U. Trace analysis of peroxide-based explo- sives[J]. Anal. Chem., 2003, 75: 731-735.
    [61] Zhou Q, Swager T ML Methodology for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers[J]. J. Am. Chem. Soc, 1995,117: 7017-7018.
    [62] Zhou Q, Swager T M. Fluorescent chemosensors based on energy migration in conjugated polymers: The molecular wire approach to increased sensitivity[J]. J. Am. Chem. Soc., 1995, 117:12593-12602.
    [63] McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors[J]. Chem. Rev., 2000, 100: 2537-2574.
    [64] Michalske T, Edelstein N, Sigman M, Trewhella J. Basic research needs for countering terrorism[M]. Workshop Report, Prepared by Sandia National Laboratories.
    [65] Yang J S, Swager T M. Porous shape persistent fluorescent polymer films: An approach to TNT sensory materials[J]. J. Am. Chem. Soc, 1998,120:5321-5322.
    [66] Yang J S, Swager T M. Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects[J]. J. Am. Chem. Soc, 1998,120:11864-11873.
    [67] Rose A, Zhu Z, Madigan C F, Swager T M, Bulovlc V. Sensitivity gains in chemosensing by lasing action in organic polymers[J]. Nature, 2005,434: 876-879.
    [68] Liu Y, Mills R C, Boncella J M, Schanze K S. Fluorescent polyacetylene thin film sensor for
     nitroaromatics[J]. Langmuir, 2001,17: 7452-7455.
    [69] Wang H, Lin T, Bai F, Kaynak A. Fluorescence quenching behaviour of hyper- branched polymer to the nitro-compounds[N]. Proceedings of the NATO Advanced Study Institute on Nanoengineered Nanofibrous Materials, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004,459-468.
    [70] Chang C P, Chao C Y, Huang J H, Li A K, Hsu C S, Lin M S, Hsieh B R, Su A C. Fluorescent conjugated polymer films as TNT chemosensors[J]. Synth. Met., 2004, 144:297-301.
    [71] Albert K J, Walt D R. High-speed fluorescence detection of explosives-like vapors[J]. Anal. Chem., 2000, 72: 1947-1955.
    [72] Albert K J, Myrick M L, Brown S B, James D L, Milanovich F P, Walt D R. Field-deployable sniffer for 2,4-dinitrotoluene detection[J]. Environ. Sci. Technol., 2001,35: 3193-3200.
    [73] Bakaltcheva I B, Ligler F S, Patterson C H, Shriver-Lake L C. Multi-analyte explosive detection using a fiber optic biosensor[J]. Anal. Chim. Acta, 1999,399: 3-20.
    [74] Sohn H, Calhoun R M, Sailor M J. Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles[J]. Angew. Chem. Int. Ed., 2001, 40: 2104-2105.
    [75] Sohn H, Sailor M J, Magde D, Trogler W C. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles[J]. J. Am. Chem. Soc, 2003, 125: 3821-3830.
    [76] Li Z, Dong Y, Mi B, Tang Y, Dong Y, Lam J W Y, Ren Y, Sung H H Y, Wong K S, Gao P, Williams I D, Kwok H S, Tang B Z. Structural control of the photo- luminescence of silole regioisomers and their utility as sensitive region- discriminating chemosensors and efficient electroluminescent materials[J]. J. Phys. Chem. B, 2005,109: 10061-10066.
    [77] Wosnick J H, Liao J H, Swager T M. Layer-by-layer poly(phenylene ethynylene) films on silica microspheres for enhanced sensory amplification[J]. Macro- molecules, 2005, 38: 9287-9290.
    [78] Wang H, Fang Y, Cui Y L, Hu D D, Gao G L. Fluorescence properties of immobilized pyrene on quartz surface[J]. Mater. Chem. Phys., 2002, 77: 185-191.
    [79] Wang H, Fang Y, Ding L P, Gao L N, Hu D D. Preparation and nitromethane sensing properties of chitosan thin films containing pyrene and β-cyclodextrin units[J]. Thin Solid Films, 2003, 440: 255-260.
    [80] Ding L P, Kang J P, Lu F T, Gao L N, Yin X, Fang Y. Fluorescence behaviors of dansyl-functionalized delf-assembled monolayer on glass plate surface and its sensing
     properties for nitrobenzene[J]. Thin Solid Films (accepted)
    [81] Gao L N, Fang Y, Wen X B, Cui Y L, Hu D D. Monomolecular layers of pyrene as a sensor to dicarboxylic acids[J]. J. Phys. Chem. B, 2004, 108: 1207-1213.
    [82] Gao L N, Fang Y, Lü F T, Ding L P. Immobilization of pyrene on quartz plate surface via a flexible long spacer and its sensing properties to dicarbonxylic-acids[J]. Sci. China, Set. B, 2004, 47: 240-250.
    [83] Lü F T, Fang Y, Gao L N, Ding L P, Jiang L L. Selectivity via insertion: detection of dicarboxylic acids in water by a new film chemosensor with enhanced prop-erties[J]. J. Photochem. Photobiol. A, 2005, 175: 207-213.
    [84] Gao L N, Fang Y, Lü F T, Cao M W, Ding L P. Immobolization of pyrene via diethylenetriamine on quartz plate surface for recognition of dicarboxylic acids[J]. Appl. Surface Sci., 2006, 252: 3884-3893.
    [85] 王姗,房喻,张颖,王明珍,胡道道,廖奕坤.壳聚糖-CdS复合膜制备及其对吡啶的传感特性[J].物理化学学报,2003,19:514-518.
    [86] Lü F T, Gao L N, Ding L P, Jiang L L, Fang Y. Spacer layer screening effect: A novel fluorescent film sensor for organic copper (Ⅱ) salts[J]. Langmuir, 2006, 22: 841-845.
    [87] Krausa M, Rezne A. A Vapour and trace detection of explosives for anti-terrorism purposes[M]. Dordrecht: Kluwer Academic Publishers, 2004.
    [88] Rose A, Zhu Z, Madigan C F. Sensitivity gains in chemosensing by lasing action in organic polymers[J]. Nature, 2005, 434: 876-879.
    [89] Laser sensor detects TNT vapor[N]. Chemical and Engineering News, 2005, 83: 11.
    [90] 美国科学家发明超灵敏炸药探测器[N].科学时报,2005,4,15.
    [91] Yinon J. Field detection and monitoring of explosives[J]. Trends Anal. Chem., 2002, 21: 292-301.
    [92] Batlle R, Carlsson H, Holmgren E, Colmsjo A, Crescenzi C. On-line coupling of supercritical fluid extraction with highperformance liquid chromatography for the detection of explosives in vapour phases[J]. J. Chromatogr. A, 2002, 963: 73-82.
    [93] Batlle R, Carlsson H, Tollback P, Colmsjo A, Crescenzi C. Enhanced detection of nitroaromatic explosive vapors combining solid-phase extraction-air sampling, supercritical fluid extraction and large-volume injection-GC[J]. Anal. Chem., 2003, 75: 3137-3144.
    [94] Walsh M E. Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector[J]. Talanta, 2001, 54: 427-438.
    [95] Bader M, Goen T, Muller J, Angerer J. Analysis of nitroaromatic compounds in urine by gas chromatography-mass spectrometry for the biological monitoring of explosives[J]. J. Chromatogr. B, 1998, 710: 91-99.
    [96] Khayamian T, Tabrizchi M, Jafari M T. Analysis of 2,4,6-trinitrotoluene, penta- erythritol tetranitrate and cyclo-l,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry[J].Talanta, 2003, 59:327-333.
    [97] Naal Z, Park J H, Bernhard S, Shapleigh J P, Batt C A, Abruna H D. Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion[J]. Anal. Chem., 2002, 74: 140-148.
    [98] Shankaran D R, Gobi K V, Matsumoto K, Imato T, Toko K, Miura N. Highly sensitive surface plasmon resonance immunosensor for parts-per-trillion level detection of 2,4,6-trinitrophenol[J]. Sens. Actuators B, 2004, 100: 450-454.
    [99] Clifford K Ho, Itamura M T, Kelley M. Review of chemical sensors for in-situ monitoring of volatile contaminants[M]. California: Sandia National Laboratories, 2001.
    [100]Schulte-Ladbeck R, Kolla P, Karst U. Trace analysis of peroxide-based explo- sives[J]. Anal. Chem., 2003, 75:731-735.
    [101]Patra D, Mishra A K. Fluorescence quenching of benzo[k]fluoranthene in poly (vinyl alcohol) film: a possible optical sensor for nitro aromatic compounds[J]. Sens. Actuators B, 2001, 80: 278-282.
    [102] Wang Y, Wang K M, Shen G L, Yu R Q. A selective optical chemical sensor for o-nitrophenol based on fluorescence quenching of curcumin[J]. Talanta, 1997,44: 1319-1327.
    [103]Lakowicz J R, Pinciples of fluorescence spectroscopy[M], 2nd ed., Kluwer Academic/ Plenum Publisher, New York, 1999.
    [104] Swager T M. The molecular wire approach to sensory signal amplification[J] . Acc. Chem. Res, 1998,31:201-207.
    [105] Yang J S, Swager T M Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials[J]. J. Am. Chem. Soc, 1998, 120: 5321-5322.
    [106] Yang J S, Swager T M. Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects[J] . J. Am. Chem. Soc, 1998, 120:11864-11873.
    [107] Williams V E, Yang J S, Lugmair C G, Miao Y J, Swager T M. Proceedings of SPIE-the international society for optical engineering[C]. 1999,3710:402-408.
    [108] Rose A, Lugmair C G, Miao Y-J, Kim J, Levitsky I A, Williams V E, Swager T M. Proceedings of SPIE-the international society for optical engineering[C]. 2000,4038: 512-518.
    [109] Liu Y, Mills R C, Boncella J M, Schanze K S. Fluorescent polyacetylene thin film sensor for nitroaromatics[J]. Langmuir, 2001,17: 7452-7455.
    [110]Yamaguchi S, Swager T M. Oxidative cyclization of bis(biaryl)acetylenes: synthesis and photophysics of dibenzo[g,p]chrysene-based fluorescent poly- mers[J]. J. Am. Chem. Soc, 2001, 123: 12087-12088.
    [111]Zhao D, Swager T M. Sensory Responses in solution vs solid state: a fluorescence quenching study of poly(iptycenebutadiynylene)s[J]. Macromolecules, 2005,38: 9377- 9384.
    [112] Chen L H, McBranch D, Wang R, Whitten D. Surfactant-induced modification of quenching of conjugated polymer fluorescence by electron acceptors: applications for chemical sensing[J]. Chem. Phys. Lett., 2000, 330: 27-33.
    [113] Zimmerman S C, Lemcoff N G Synthetic hosts via molecular imprinting — are universal synthetic antibodies realistically possible[J]. Chem. Commun., 2004, 5-14.
    [114] Ren B Y, Gao F, Tong Z, Yan Y. Solvent polarity scale on the fluorescence spectra of a dansyl monomer copolymerizable in aqueous media[J]. Chem. Phys. Lett., 1999, 307: 55-61.
    [115]Kurth D G, Bein T. Surface reactions on thin layers of silane coupling agents[J]. Langmuir, 1993, 9: 2965-2973.
    [116] Chen S H, Frank C W. Fluorescence probe studies of self-assembled monolayer films[J]. Langmuir, 1991,7:1719-1726.
    [117]Crego-Calama M, Reinhoudt D N. New materials for metal ion sensing by self- assembled monolayers on glass[J]. Adv. Mater., 2001, 13: 1171-1174.
    [118]Basabe-Desmonts L, Beld J, Zimmerman R S, Hernando J, Mela P, Garcia Parajo M F, van Hulst N F, van den Berg A, Reinhoudt D N, Crego-Calama M. A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass[J]. J. Am. Chem. Soc., 2004, 126:7293-7299.
    [119] Zheng Y, Orbulescu J, Ji X, Andreopoulos F M, Pham S M, Leblanc R M. Development of fluorescent film sensors for the detection of divalent copper[J]. J. Am. Chem. Soc, 125: 2003, 2680-2686.
    [120]Ivanov I N, Dabestani R, Buchanan A C, Sigman M E. Fluorescence decay study of anisotropic rotations of substituted pyrenes physisorbed and chemically attached to a fumed silica surface[J]. J. Phys. Chem. B, 2001, 105: 10308-10315.
    [121]Schmitt H, Altenburger R, Jastorff B, Schuurmann G Quantitative structure -activity analysis of the algae toxicity of nitroaromatic compounds[J]. Chem. Res. Toxicol, 2000,13:441-450.
    [122] Zhang Y, Gattas-Asfura K M, Li C, Andreoponlos F M, Pham S M, Leblanc R M. Design of a membrane fluorescent sensor based on photo-cross-linked PEG hydrogel[J]. J. Phys. Chem. B, 2003, 107: 483-488.
    [123] Wei T X, Huang C H;Xie P H, Hou Y J, Zhang B W, Liu F Q, Ibrahim K, Qian H J. Effect of Steric hindrance on photoinduced electron transfer of self-assembled monolayers of three isomeric Ru(II)-bipyridine complexes on ITO electrode[J]. Phys. Chem. Chem. Phys., 2000,2: 1333-1337.
    [124]Taton T A, Mucic R C, Mirkin C A, Letsinger R L. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structure[J]. J. Am. Chem. Soc, 2000, 122: 6305-6306.
    [125]Hostetler M J, Murray R W. Colloids and self-assembled monolayers[J].Curr. Opin. Colloid Interface Sci., 1997, 2: 42-49.
    [126]Ulman A. Formation and structure of self-assembled monolayers[J]. Chem. Rev., 1996, 96: 1533-1554.
    [127]Crego-Calama M, Reinhoudt D N. New materials for metal ion sensing by self-assembled monolayers on glass[J]. Adv. Mater., 2001, 13: 1171 -1174.
    [128] Credo G M, Boal A K, Das K, Galow T H, Retello V M, Feldheim D L, Gorman C B. Supramolecular assembly on surfaces: manipulating conductance in non covalently modified mesoscale structures[J]. J. Am. Chem. Soc, 2002, 124: 9036- 9037.
    [129]Kohli P, Blanchard G J. Design and demonstration of hybrid multiplayer structures: layer-by-layer mixed covalent and ionic interlayer linking chemistry[J]. Langmuir, 2000, 16: 8518-8524.
    [130]Biesmans G, Verbeek G, Verschuere B, van der Auweraev M, de Schryver F C. On the fluorescence of anthracene chromophores in Langmuir-Blodgett films[J]. Thin Solid Films, 1989, 169: 127-142.
    [131]Xu X-H, Bard A J. Immobilization and hybridization of DNA on an aluminum (III) alkane-bisphonate thin film with electrogenerated chemiluminescent detection[J]. J. Am. Chem. Soc, 1995, 117:2627-2631.
    [132]Mallouk T E, Gavin J A. Molecular recognition in lamellar solids and thin films[J]. Acc. Chem. Res., 1998,31:209-217.
    [133] Fisher G L, Hooper A E, Opila R L, Allara D L, Winograd N. The interaction of vapor deposited Al atoms with CO_2H groups at the surface of a self-assembled alkanethiolate monolayer on gold[J]. J. Phys. Chem. B, 2000, 104: 3267-3273.
    [134] Zhang Y, Gattas-Asfura K M, Li C, Andreoponlos F M, Pham S M, Lebianc R M. Design of a embrane fluorescent sensor based on photo-cross-linked PEG hydrogel[J]. 3. Phys. Chem. B, 2003,107:483-488.
    [135]Flink S, van Veggel F C J M, Reinhoudt D N. A self-assembled monolayer of a fluorescent guest for the screening of host molecules[J]. Chem. Commun., 1999, 21: 2229-2230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700