光催化降解斯蒂酚酸性能及一体式光催化—膜分离反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛光催化作为一种高级氧化技术,正被广泛深入研究,研究的核心内容集中在TiO_2催化性能的提高,以及分离回用催化剂,二者是二氧化钛光催化技术实际应用的前提与基础。
     论文以2,4,6-三硝基间苯二酚(2,4,6-Trinitroresorcinol,又称斯蒂酚酸)为目标降解物;采用在TiO_2表面复合电子捕获剂SnO_2,提高其光生电子和光生空穴的分离效率,提高光催化效率;采用在TiO_2晶格掺入少量N,提高催化剂的可见光活性;以Fe_3O_4为磁核,制备磁性复合光催化剂,实现催化剂的磁分离;将膜分离与光催化技术有机地结合起来,组成光催化-膜分离反应器,实现光催化悬浮体系中催化剂的回用及反应连续运行。主要研究工作结果:
     (1)TiO_2光催化悬浆体系可有效降解有毒有机污染物三硝基间苯二酚(斯蒂酚酸),在一定的紫外光强度下,TiO_2投加量存在最佳值,本实验条件下最佳投加量为1g·L~(-1);采用二元线性回归分析可知,反应时间对于评估ln(C_0/C)是显著变量;增加降解底物初始浓度,光催化降解反应速率下降;适量加入电子受体,如O_2、H_2O_2、Fe~(3+)、Cu~(2+)和Zn~(2+)等可提高体系的降解效率;低pH有利于斯蒂酚酸的降解;斯蒂酚酸紫外扫描特征峰随光催化反应的进行不断降低,体系TOC去除率的变化趋势与斯蒂酚酸的基本符合,说明斯蒂酚酸被光催化降解,体系TOC的降低是降解最终产物CO_2离开体系所致。
     (2)采用均匀沉淀法,在TiO_2表面沉积SnO_2,制备TiO_2-SnO_2复合光催化剂,最佳制备条件为:沉淀剂NH_4HCO_3的浓度和加入速度分别为1.0 mol·L~(-1)和0.2 mL·s~(-1);Sn~(4+)浓度为0.02 mol·L~(-1);搅拌速度200 r·min~(-1);反应温度20℃;TiO_2与SnO_2质量比为9:1,焙烧温度为600℃,对50 mg·L~(-1)斯蒂酚酸的去除率达93.2%,而相同条件下,商品TiO_2对斯蒂酚酸的去除率为79.9%。SnO_2-TiO_2复合催化剂由锐钛矿相TiO_2和四方晶型SnO_2所组成,样品表面的Sn/Ti原子比高于体相的Sn/Ti原子比,形成复合型SnO_2-TiO_2光催化剂;SnO_2的引入使复合半导体带隙增加0.1 eV,在半导体n-p复合作用下,表面形成的Sn-O-Ti键,促进光生载流子在复合半导体上的传递,实现光生电子和空穴的有效分离,提高了光催化效率。
     (3)采用均匀沉淀法,制备出N掺杂型氧化钛光催化剂。硫酸钛与碳酸氢铵反应产生的沉淀,经过超声波洗涤分离后,在氮气气氛下经300℃焙烧,制得N掺杂氧化钛光催化剂,在不损失紫外段催化能力的情况下,提高了催化剂的可见光活性,光吸收区发生红移,其吸收带边拓展至468 nm。洗涤对于非金属N的掺杂至关重要,经洗涤后焙烧的样品,呈现特殊的黄色,实现了N的掺杂,未经洗涤而直接焙烧的样品无黄色出现。由于非金属N的掺杂,造成了Ti-O成键的变化,可能形成了N-Ti-O的不对称伸缩振动峰,同时掺杂的N高度分散在TiO_2中,并在TiO_2中形成N-Ti-O网络,O原子的电子结合能减小。N掺杂催化剂中的TiO_2以混晶的形式存在,N的掺杂可以弥补催化剂颗粒低温焙烧条件下在晶型上的不足,呈现出良好的光催化活性。
     (4)以Fe_3O_4为磁核,采用机械力化学法制备TiO_2/Fe_3O_4磁性复合光催化剂,其质量比为m(TiO_2):m(Fe_3O_4)=3:1,Fe~(3+)离子部分取代了Ti-O-Ti网络中的Ti~(4+)离子,形成Ti-O-Fe桥氧结构。磁性复合催化剂与纯TiO_2光催化性能接近。由于采用的球磨设备为陶瓷材料,在球磨过程中有少量SiO_2杂质的掺入,但并未影响催化剂的光催化性能与磁分离性能。催化剂的光催化反应为动力学一级反应。采用自制的磁分离器,对复合催化剂进行磁分离实验,分离率可达93%左右。
     (5)在光催化-膜分离反应器中,选用孔径为0.1μm~0.2μm的聚丙烯中空纤维微滤膜,可实现对粒径为20nm二氧化钛能达到很好的截留效果。本实验的最佳操作压力为0.020 MPa,在光催化反应常用的二氧化钛浓度范围内,催化剂浓度对膜通量的影响不大,增大曝气量可以减缓沉积层污染,降低膜阻力,本实验的经济曝气量为0.4 m~3·h~(-1);当料液pH值接近二氧化钛的等电点时,膜通量较大,pH值偏离等电点时,膜通量减小;料液中不同电解质的存在,影响TiO_2颗粒表面电荷性质,CaCl_2的加入使膜阻力减小,Na_2SO_4的加入使膜阻力增大,NaCl的加入对膜通量影响不大。膜可逆阻力是造成膜污染的主要因素,可通过控制膜抽吸压力、合理选择曝气量、间歇抽吸等工艺条件减缓膜可逆污染;污染的膜依次用清水冲洗、超声波清洗、0.5%NaOH+0.2%NaClO浸泡,0.5%HCl浸泡后可使膜通量恢复99%以上。
     采用光催化-膜分离反应器降解斯蒂酚酸模拟污水,二氧化钛浓度为1.5 g·L~(-1),滤膜操作压力为0.02 MPa,采用抽吸13 min,停抽2 min的运行模式,水力平均停留时间为2 h,在30 d的运行时间内,出水浊度去除率>99.9%。
As a kind of advanced oxidation processes, TiO_2 photocatalysis is being deeply andwidely studied recently. The key of the research focuses on the improvement ofphotoreaction activity of TiO_2 catalyst, and the separation and recycle of the catalyst. Bothare the precondition and foundation of the practical applications of TiO_2 photocatalysis.
     To evaluate the photocatalytic activity of samples, the photooxidation of 2, 4,6-Trinitroresorcinol (styphnic acid) was carried out in a series of experiments. To improvephotocatalytic efficiency of TiO_2 catalyst, SnO_2 acted as electron captor was coupled on thesurface of TiO_2 to heighten separation ratio of photo-generated electrons and holes.Nonmetal ion N was involved in the crystal lattice of TiO_2 which brought about thevisible-light sensitization of TiO_2. Magnetic photocatalyst (TiO_2/Fe_3O_4), which are liableto be separated and recycled, were prepared using Fe_3O_4 as support. To accomplish therecycle of catalyst membrane filtration technology was combined with Photooxidation andmake the system run continuously. The primary study was listed as following:
     (1) Poisonous organic pollutant 2, 4, 6-Yrinitroresorcinol (styphnic acid) could bedegraded effectively in TiO_2 photocatalytic suspension system. An optimal concentration ofTiO_2 existed under a definite irradiation degree of UV, 1g·L~(-1) in the experiment. The resultsof duality linear regression indicated that the reaction time was an important variable forthe evaluation of ln(C_0/C). Reaction velocity of photocatalytic degradation decreased withthe accretion of the initial consistence of the pollutant. The fitting addition of O_2, H_2O_2,Fe~(3+), Cu~(2+) and Zn~(2+) which played the role as electron acceptor could raise the degradationrate of the reaction. And a lower pH was favorable to the degradation of styphnic acid. Theabsorption of character peek of styphnic acid was reduced with the operation of thereaction, which was consistent with the trend of TOC degradation rate. It indicated thedegradation of the organic pollutant.
     (2)TiO_2-SnO_2 coupled catalytic particles have been prepared with SnO_2 aggrading onTiO_2 in the method of symmetrical precipitation. The best way to obtain the catalysts shouldbe: 1.0 mol·L~(-1) NH_4HCO_3 acted as precipitator dropped at the velocity of 0.2 mL·s~(-1) intothe solution with the initial concentration of Sn~(4+) 0.02 mol·L~(-1), and pulsator stirred at aspeed of 200 r·min~(-1) simultaneously, the whole reaction acted at 20℃, the mass ratio ofTiO_2 and SnO_2 was 9:1. Then the deposition should be calcined at 600℃. The degradationrate of 50 mg·L~(-1) 2, 4, 6-Trinitroresorcinol was 93.2%in compared with 79.9%when economical TiO_2 was used as catalyst. TiO_2-SnO_2 coupled catalyst were composed withanatase TiO_2 and square crystalline SnO_2. Sn/Ti atom ratio on the samples surface washigher than which was in the inner phase and coupled SnO_2-TiO_2 was formed. Because ofthe involvement of SnO_2, the energy gap of the coupled catalyst was increased by 0.1 eV.Effectively separation of photo-generated electrons and holes was accomplished andphotocatalytic efficiency was improved because of the photo carrier transmitted in coupledcatalyst on the surface of which Sn-O-Ti bond was shaped.
     (3) N-doped photocatalyst was prepared by symmetrical precipitating action. N-dopingcould be carried out at a lower temperature (300℃), and NH_4HCO_3 was chosen asprecipitating agent and source of nitrogen. N-doped photocatalyst was obtained throughultrasonic separation and calcinations in N_2 atmosphere of the deposit, which was generatedin the reaction of Ti(SO_4)_2 and NH_4HCO_3. Moreover, the catalyst showed excellentphotocatalytic activity under the irradiation of UV and visible light, light absorptionshowed red-shift and absorption region has been enlarged to 468nm. Washing determine thepossibility of N-doped. The samples calcined after washing was specially yellow whichindicated N was doped, while the samples without treatment of washing showed white. TheTi-O bond changed because of the doping of nonmetal ions N. It was estimated theformation of N-Ti-O asymmetric deformation vibrations band. Doped N was dispersed intothe TiO_2 crystal lattice simultaneously, and the N-Ti-O net was shaped consequencely. Theelectron binding energy of O atom decreased. Photocatalyst existed in the formation ofdifferent crystal phase. N-doping could counteract the disadvantages of the crystal shape ofobtained catalyst calcined under lower temperatures, and the catalyst showed goodperformance of photoreaction.
     (4)Magnetic photocatalyst TiO_2/Fe_3O_4 (the mass ratio is 3:1) has been prepared in themethod of mechanochemistry using Fe_3O_4 as magnetic support. Ti~(4+) in the crystal lattice ofTi-O-Ti has been partially substituted by Fe~(3+), which brought about the structure of Ti-O-Febridging oxygen. The photocatalytic ability of obtained coupled catalyst was close to theability of purchased TiO_2. The doping of SiO_2 impurity brought in the process ofmechanical attrition, which was ascribed to the equipment by chinaware material, has notinfluenced the photocatalytic ability and magnetic separation ability of catalyst.Photocatalytic reaction was first-order reaction kinetics. The experiments have been carriedout to test the ability of magnetic separation of catalyst with magnetic reactor which weremade by ourselves. The separation rate was as high as 93%which meant the bettermagnetic separate ability of prepared catalyst.
     (5)TiO_2 particles of 20nm diam. in suspension liquor could be intercepted very well inphotocatalysis-membrane separation reactor, in which polypropylene hollow fibermembrane of 0.1μm~0.2μm diam. has been used. The optimum pressure in the operationwas 0.02MPa. The concentration of catalysts effects lightly to membrane flux in theaverage concentration range of photocatalytic reaction. Increasing aeration intensity couldmitigate the pollution degree on deposit layer and reduce the resistance of membrane, theeconomical aeration intensity is 0.4m~3·h~(-1) in the system. Membrane flux would increasewhen solution pH approach to the equipotential point of TiO_2, vice versa. Differentelectrolyte in the solution made influence to the property of charge on the surface ofparticles: CaCl_2 make the resistance decreased, Na_2SO_4 increased and the exist of NaCleffected slightly. Studies showed that the reversible resistance is the main reason causingmembrane fouling. Controlling suction pressure, choosing logical aeration intensity andperiodic running can greatly alleviate membrane reversible fouling. Flux of pollutedmembrane could be recovered up to 99%by means of washing by water, ultrasoniccleaning, dipping in 0.5%NaOH+0.2%NaClO liquid, and then 0.5%HCl in turn.
     The photocatalytic of 2, 4, 6-Trinitroresorcinol experiments was carried out inphotocatalysis-membrane separation reactor. The concentration of 20 nm diam. TiO_2 was1.5 g·L~(-1), operation press 0.02 MPa, 13 minutes of suction time 2 minutes of suctionsuspended time, about 2h of waterpower average settle time. The continuous operation for30 days is described, the results showed that turbidity removal of out water was>99.9%.
引文
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37~38
    2 Ollis D F, Pelizzetti E, Serpone N. Photocatalyzed destruction of water contaminants. Environmental Science and Technology, 1991, 25(9): 1522~1529
    3 Hernandez-Alonso M D, Coronado J M, Javier M A, Soria J, Loddo V, Augugliaro V. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions. Applied Catalysis B: Environmental, 2002, 39(3): 257~267
    4 Kositzi M, Antoniadis A, Poulios I, Kiridis I, Malato S. Solar photocatalytic treatment of simulated dyestuff effluents. Solar Energy, 2004, 77(5): 591~600
    5 Qamar M, Saquib M, Muneer M. Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide. Dyes and Pigments, 2005, 65(1): 1~9
    6 Comparelli R, Fanizza E, Curri M L, Cozzoli P D, Mascolo G, Passino R, Agostiano A. Photocatalytic degradation of azo dyes by organic-capped anatase TiO_2 nanocrystals immobilized onto substrates. Applied Catalysis B: Environmental, 2005, 55:81~91
    7 Xie Y, Yuan C, Li X. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 252:87~94
    8 Shankar M V, Cheralathan K K, Arabindoo B, Palanichamy M, Murugesan V. Enhanced photocatalytic activity for the destruction of monocrotophos pesticide by TiO_2/Hβ. Journal of Molecular Catalysis A: Chemical, 2004, 223(1-2): 195~200
    9 Parra S, Stanca S E, Guasaquillo I, Thampi K R. Photocatalytic degradation of atrazine using suspended and supported TiO_2. Applied Catalysis B: Environmental, 2004, 51(2): 107~116
    10 Kormali P, Dimoticali D, Tsipi D, Hiskia A, Papaconstantinou E. Photolytic and photocatalytic decomposition of fenitrothion by PW_(12)O_(40)~(3-) and TiO_2: a comparative study. Applied Catalysis B, 2004, 48(3): 175~183
    11 郑巍,刘维屏,宣日成,卢建杭.附载TiO_2光催化降解咪呀胺农药.环境科学,1999,20(1):73~76
    12 王琪金,彭展雄.几种酰胺类除草剂的光降解及其致突变性.环境科学,1999,20(4):51~54
    13 Oyama T, Aoshima A, Horikoshi S, Hidaka H, Zhao J, Serpone N. Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO_2 dispersions under sunlight irradiation. Solar Energy, 2004, 77(5):525~532
    14 Hidaka H, Zhao J. Photodegradation of surfactants Catalyzed by a Titania Semcondnetor. Colloids sruf., 1992, 67:165~182
    15 肖邦定,胡凯,刘剑彤,丘昌强,陈珠金,黄毅.水离子表面活性剂在人工光源辐射下以光催化降解.中国环境科学,1999,19(1):9~13
    16 Palmisano L, Schiavello M, Sclafani A, Matra G, Borello E, Coluccia S. Photocatalytic oxidation of phenol on TiO2 Powders. Applied Catalysis, 1994, 3(2~3): 117~132
    17 郁志勇,王文华,彭安,曹福苍.水溶液中4-氯酚在光照下的矿化和聚合化.环境科学,1998,19(6):45~51
    18 Garcia T, Solsona B, Murphy D M, Antcliff K L, Taylor S H. Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. Journal of Catalysis, 2005, 229:1~11
    19 唐玉斌,王郁,林逢凯,胥峥,林铸炉.多环芳烃蒽、屈在水体中的光解动力学模拟研究.中国环境科学,1999,19(3):262~265
    20 张志军,王志成,王克欧,郑明辉.二氧化钛催化下的氯代二苯并-对-二恶英光解反应.环境化学,1996,15(1):47~51
    21 Das D P, Parida K, De B R. Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation. Journal of Molecular Catalysis A: Chemical, 2006, 245: 217~224
    22 张青红,高濂,郭景坤.TiO_2纳米晶光催化降解铬酸根离子的研究.高等学校化学学报,2000,21(10):1547~155l
    23 Skubal L R, Meshkov N K. Reduction and removal of mercury from water using arginine-modified TiO_2. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148:211~214
    24 Ohtani B, Okugawa Y, Nishimoto S, Kagiya T. Photocatalytic activity of titania powders suspended in aqueous silver nitrate solution: correlation with pH-dependent surface structures. Journal of Physics and Chemistry, 1987, 91(13): 3550~3555
    25 Reiche H, Dunn W W, Bard A J. Heterogeneous photocatalytic and photosynthetic deposition of copper on Titanium dioxide and tungsten(Ⅵ) oxide powders. The Journal of Physical Chemistry, 1979, 83(17): 2248~2251
    26 Papp J, Sen H S, Kershaw R, Dwight K, Wold A. Titanium(Ⅳ) oxide photocatalysts with palladium. Chemistry of Materials, 1993, 5:284~288
    27 Augugliaro V, Galvez J B, Vazquez J C, Lopez E G, Loddo V, Lopez Munoz M J, Rodriguez S M, MarciG, Palmisano L, Schiavelio M, Ruiz J S. Photocatalytic oxidation of cyanide in aqueous TiO_2 suspensions irradiated by sunlight in mild and strong oxidant conditions. Catalysis Today, 1999, 54(2-3): 245-253
    
    28 Chen S, Cao G Photocatalytic oxidation of nitrite by sunlight using TiO_2 supported on hollow glass microbeads. Solar Energy, 2002, 73(1): 15-21
    
    29 Dunlop P S M, Byrne J A, Manga N, Eggins B R. The photocatalytic removal of bacterial pollutants from drinking water. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 355-363
    
    30 Cho S P, Hong S C, Hong S I. Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter. Chemical Engineering Journal, 2004, 98(3): 245-253
    
    31 Schrank S G, Jose H J, Moreira R F P M, Schroder H F. Elucidation of the behavior of tannery wastewater under advanced oxidation conditions. Chemosphere, 2004, 56(5): 411-423
    
    32 Kositzi M, Poulios I, Malato S, Caceres J, Campos A. Solar photocatalytic treatment of synthetic municipal wastewater. Water Research, 2004, 38(5): 1147-1154
    
    33 Obee T N, Brown R T. TiO_2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene and 1,3-butadiene. Environmental Science and Technology, 1995, 29: 1223-1231
    
    34 Noguchi T, Fujishima A, Sawunytama P, Hashimoto K. Photocatalytic degradation of gaseous formaldehyde using TiO_2 film. Environmental Science and Technology, 1998, 32:3831-3833
    
    35 Obuchi E, Sakamoto T, Nakano K. Photocatalytic decomposition of acetaldehyde over TiO_2/SiO_2 catalyst. Chemical Engineering Science, 1999, 54: 1525-1530
    
    36 Nimlos M R, Wolfrum E J, Brewer M L, Fennell J A, Bintner G. Gas-phase heterogeneous photocatalytic oxidation of ethanol: pathways and kinetic modeling. Environmental Science and Technology, 1996, 30: 3102-3110
    
    37 Benoit-Marquie F, Wilkenhoner U, Simon V, Braun A, Oliveros E, Maurette M T. VOC photodegradation at the gas-solid interface of a TiO_2 photocatalyst part I: 1-butanol and 1-butylamine. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 132: 225-232
    
    38 Luo Y, Ollis D F. Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity. Journal of Catalysis, 1996, 163: 1-11
    
    39 d'Hennezel O, Pichat P, Ollis D F. Benzene and toluene gas-phase photocatalytic degradation over H_2O and HCL pretreated TiO_2: by-products and mechanisms. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 118(3): 197~204
    40 Obee T N, Hay S O. Effects of moisture and temperature on the photooxidation of ethylene on titania. Environmental Science and Technology, 199, 31:2034~2038
    41 Cao L, Spiess F J, Huang A, Suib S L, Obee T N, Hay S O, Freihaut J D. Heterogeneous photocatalytic oxidation of 1-butene on SnO_2 and TiO_2 films. Journal of Physical Chemistry B, 1999, 103:2912~2917
    42 李功虎,马胡兰,安纬珠.纳米二氧化钛气相光催化降解三氯乙烯.催化学报,2000,21(4):350~354
    43 Figueras F, Flores J L, Delahay G, Giroir-Fendler A, Bourane A, Claeens J-M, Desmartin-Chomel A, Lehaut-Burnouf C. Bifunctional mechanism for the selective catalytic reduction of NOx on Rh/sulfated titania. Journal of Catalysis, 2005, 232: 27~33
    44 Lim T H, Jeong S M, Kim S D, Gyenis J. Photocatalytic decomposition of NO by TiO_2 particles. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 134: 209~217
    45 Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K. Role of oxygen vacancy in the plasma-treated TiO_2 photoeatalyst with visible light activity for NO removal. Journal of Molecular Catalysis A: Chemical, 2000, 161:205~212
    46 Rincon A G, Pulgarin C. Effect of pH, inorganic ions, organic matter and H_2O_2 on E. coli K12 photocatalytic inactivation by TiO_2: Implications in solar water disinfection. Applied Catalysis B: Environmental, 2004, 51(4): 283~302
    47 McLoughlin O A, Kehoe S C, MeGuigan K G, Duffy E F, Touati F A, Gernjak W, Alberola I O, Rodriguez S M, Gill L W. Solar disinfection of contaminated water: a comparison of three small-scale reactors. Solar Energy, 2004, 77(5): 657~4564
    48 Huang Z, Maness P, Blake D M, Wolfrum E J, Smolinski S L, Jacoby W A. Bactericidal mode of titanium dioxide photoeatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 130:163~170
    49 Yu J C, Xie Y, Tang H Y, Zhang L, Chan H C, Zhao J. Visible light-assisted bactericidal effect of metalphthnlocyanine-sensitized titanium dioxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156:235~241
    50 韩伟,张泮河,曹务春,杨东玲.一种新型网膜对SARS冠状病毒的抑制作用.生物化学与生物物理进展,2004,31(11):982~985
    51 Zhang K H, Cao W L, Zhang J C. Solid-phase photocatalytic degradation of PVC by Tungstophosphoric acid-a novel method for PVC plastic degradation. Applied Catalysis A: General, 2004, 276(1-2): 67~73
    52 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.第一版.北京:化学工业出版社,2002
    53 Serpone, N. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 104: 1~12
    54 施利毅,戴清,袁春伟.SnO_2-TiO_2复合颗粒的形态结构及其光催化降解染料溶液的研究.高校化学工程学报,2000,14(6):548~551
    55 颜秀茹,宋宽秀,霍明亮,辛春伟,王建萍.SnO_2/TiO_2纳米粒子的光催化性能.天津大学学报,2002,35(6):740~743
    56 颜秀茹,李晓红,霍明光,郭伟巍,巩永进.纳米SnO_2-TiO_2的制备及其光催化性能.物理化学学报,2001,17(1):23~28
    57 柳清菊,杨喜昆,刘强,王宝玲.TiO_2/SnO_2复合薄膜的清水性能研究.无机材料学报,2003,18(6):1331~1336
    58 鞠剑峰,施磊,李澄俊,徐铭.纳米TiO_2-WO_3的制备及对甲醛的光催化降解.精细化工,2004,21(3):181~184
    59 Song K Y, Park M K, Kwon Y T, Lee H W, Chung, W J, Lee W I. Preparation of transparent particulate MoO_3/TiO_2 and WO_3/TiO_2 films and their photocatalytic properties. Chemistry of Materials, 2001, 13(7): 2349~2355
    60 姚秉华,杨莉,杨国农,赵青.复合光催化剂CeO_2/TiO_2的制备及性能研究.化学研究与应用,2004,16(4):463~465
    61 赵春,钟顺和.Cu/ZnO-TiO_2复合半导体光催化材料的制备与表征.无机化学学报,2004,20(9):1131~1136
    62 Wang C, Xu B, Wang X, Zhao J. Preparation and photocatalytic activity of ZnO/TiO_2/SnO_2 mixture. Journal of Solid State Chemistry, 2005, 178:3500~3506
    63 Pal B, Sharon, M, Nogami G. Preparation and characterization of TiO_2/Fe_2O_3 binary mixed oxides and its photocatalytic properties. Materials Chemistry and Physics, 1999, 59(3): 254~261
    64 Jung K Y, Park S B. Photoactivity of SiO_2/TiO_2 and ZrO_2/TiO_2 prepared by sol-gel method. Materials Letters, 2004, 58:2897~2900
    65 Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer processes in colloidal CdS-TiO_2 and CdS-AgI systems. The Journal of Physical Chemistry, 1990, 94:6435~6440
    66 袁志好,王玉红,孙永昌,王晶,别利剑,段月琴.太阳光活性的铁酸铝-二氧化钛纳米复合光催化剂.中国科学B化学,2005,35(6):471~477
    67 Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 85:247~255
    68 Zalas M, Laniecki M. Photocatalytic hydrogen generation over lanthanides-doped titania. Solar Energy Materials and Solar Cells, 2005, 89:287~296
    69 李慧泉,李越湘,周新木,彭绍琴,吕功煊,李树本.La_2O_3掺杂TiO_2光催化剂的制备和性能.分子催化,2004,18(4):304~309
    70 Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 127:107~110
    71 Yao W, Fang H, Ou E, Wang J, Yan Z. Highly efficient catalytic oxidation of cyclohexane over cobalt-doped mesoporous titania with anatase crystalline structure. Catalysis Communications, 2006, 7:387~390
    72 张前程,张凤宝,张国亮,张晓萍.超细钴掺杂二氢化钻的制备、表征及气相光催化性能.燃料化学学报,2004,32(2):240~243
    73 Burns A, Hayes G, Li W, Hirvonen J, Demaree J D, Shah S I. Neodymium ion dopant effects on the phase transformation in sol-gel derived titania nanostructures. Materials Science and Engineering: B, 2004, 111:150~155
    74 Dvoranova D, Brezova V, Mazur M, Malati M A. Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental, 2002, 37: 91~105
    75 Klosek S, Raftery D. Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol. Journal of Physics and Chemistry B, 2001, 105(14): 2815~2819
    76 Choi W, Terrain A, Hoffmann M R. The RoDe of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 1994, 98(51): 13669~13679
    77 Asahi R, Ohwaki T, Aoki K. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269~271
    78 Silveyra R, Saenz L, Flores W, Marti'nez V, Elguezabal A. Doping of TiO_2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation. Catalysis Today, 2005, 107-108:602~605
    79 Wawrzyniak B, Morawski A W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO_2 photocatalyst containing nitrogen. Applied Catalysis B: Environmental, 2006, 62:150~158
    80 Hong X, Wang Z, Cai W, Lu F, Zhang J, Yang Y, Ma N, Liu Y. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide. Chemistry of Materials, 2005, 17(6): 1548~1552
    81 彭绍琴,江风益,李越湘.N掺杂TiO_2光催化剂的制备及其可见光降解甲醛.功能材料,2005,36(8):1207~1209
    82 Aita Y, Komatsu M, Yin S, Sato T. Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process. Journal of Solid State Chemistry, 2004, 177:3235~3238
    83 Kobayakawa K, Murakami Y, Sato Y. Visible-light active N-doped TiO_2 prepared by heating of titanium hydroxide and urea. Journal of Photochemistry and Photobiology A Chemistry, 2005, 170(2): 177~179
    84 Gandhe A R, Naik S P, Fernandes J B. Selective synthesis of N-doped mesoporous TiO_2 phases having enhanced photocatalytic activity. Microporous and Mesoporous Materials, 2005, 87:103~109
    85 Premkumar J. Development of super-hydrophilicity on nitrogen-doped TiO_2 thin film surface by photoelectrochemical method under visible light. Chemistry of Materials, 2004, 16(21): 3980~3981
    86 Yang M, Yang T, Wong M. Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films, 2004, 469-470:1~5
    87 Yamada K, Nakamura H, Matsushima S, Yamane H, Haishi T, Ohira K, Kumada K. Preparation of N-doped TiO_2 particles by plasma surface modification. Comptes rendus-Chimie, 2006, 9:788~793
    88 Suda Y, Kawasaki H, Ueda T, Ohshima T. Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films, 2005, 475(1-2): 337~341
    89 Liu G, Li F, Chert Z, Lu G, Cheng H. The role of NH_3 atmosphere in preparing nitrogen-doped TiO_2 by mechanochemical reaction. Journal of Solid State Chemistry, 2006, 179:331~335
    90 Mrowetz M, Balcerski W, Colussi A J, Hoffmann M R. Oxidative power of nitrogen-doped TiO_2 photocatalysts under visible illumination. The Journal of Physical Chemistry B, 2004, 108(45): 17269~17273
    91 Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 2004, 265(1): 115~121
    92 Ho W, Yu J C, Lee S. Low-temperature hydrothermal synthesis of S-doped TiO_2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 2006, 179: 1171~1176
    93 Madhusudan R K, Baruwati B, Jayalakshmi M, Mohan Rao M, Manorama S. S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 2005,178:3352~3358
    94 Barazzouk S, Hotchandani S, Vinodgopal K, Kamat P V. Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible-light irradiation. Journal of Physics and Chemistry B, 2004, 108(44): 17015~17018
    95 Shen M, Wu Z, Huang H, Du Y, Zou Z, Yang P. Carbon-doped anatase TiO_2 obtained from TiC for photocatalysis under visible light irradiation. Materials Letters, 2006, 60: 693~697
    96 Xu C, Killmeyer R, Gray M L, Khan S U M. Photocatalytic effect of carbon-modified n-TiO_2 nanoparticles under visible light illumination. Applied Catalysis B: Environmental, 2006, 64:312~317
    97 汤心虎,谭淑英,张辉龙,金腊华.纳米TiO_2混合晶体的制备及其光催化降解活性.环境化学,2005,24(3):311~314
    98 Sun R, Nishikawa T, Nakajima A, Watanabe T, Hashimoto K. TiO_2/polymer composite materials with reduced generation of toxic chemicals during and after combustion-effect of HF-treated TiO_2. Polymer Degradation and Stability, 2002, 78: 479~484
    99 Luo H, Takata T, Lee Y, Zhao J, Domen K, Yan Y. Photoeatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chemistry of Materials, 2004, 16(5): 846~849
    100 Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K. Photoreactions on LaTiO_2N under Visible Light Irradiation. The Journal of Physical Chemistry A, 2002, 106(29): 6750~6753
    101 Ishikawa A, Takata T, Matsumura T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfides Ln_2Ti_2S_2O_5 as stable photocatalysts for water oxidation and reduction under visible-light irradiation. The Journal of Physical Chemistry B, 2004, 108(8): 2637~2642
    102 华南平,吴遵义,杜玉扣,邹志刚,杨平.Pt、N共掺杂TiO_2在可见光下对三氯乙酸的催化降解作用.物理化学学报,2005,21(10):1081~1085
    103 程萍,顾明元,金燕苹.TiO_2光催化剂可见光化研究进展.化学进展,2005,17(1):8~14
    104 Abe R, Sayama K, Arakawa H. Dye-sensitized photocatalysts for efficient hydrogen production from aqueous I solution under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166:115~122
    105 Assabane A, Ichou Y A, Tahiti H, Guillard C, Herrmann J. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid). Applied Catalysis B, 2000, 24(2): 71-87
    106 Chen D, Ray A K. Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO_2. Applied Catalysis B: Environmental, 1999, 23(2-3): 143-157
    107 Rincon A G; Pulgarin C. Effect of pH, inorganic ions, organic matter and H_2O_2 on E. coli K12 photocatalytic inactivation by TiO_2: Implications in solar water disinfection. Applied Catalysis B: Environmental, 2004, 51(4): 283~302
    108 丘永,陈洪龄,汪效祖,徐南平.水热法制备纳米TiO_2及其等电点的研究.高校化学工程学报,2005,19(1):129~133
    109 傅剑锋,季民,金洛楠,安鼎年.TiO_2光催化降解水中天然有机物富里酸的动力学模型.化工学报,2005,56(6):1009~1014
    110 Stathatos E, Petrova T, Lianos P. Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films. Langmuir, 2001, 17(16): 5025~5030
    111 仇雁翎,李田,马俊华.石英棒负载TiO_2膜光催化降解苯酚影响因素研究.工业水处理,2005,25(4):53~56
    112 牟柏林,侯天意,霍丽娟,孙申美.天然沸石负载ZnO/SnO_2复合半导体的光催化活性.硅酸盐学报,2005,33(11):1366-1370
    113 Kleine J, Peinemann K V, Schuster C, Warnecke H J. Multifunctional system for treatment of wastewaters from adhesive-producing industries: separation of solids and oxidation of dissolved pollutants using doted microfiltration membranes. Chemical Engineering Science, 2002, 57:1661~1664
    114 陈士夫,赵梦月,陶跃武.玻璃纤维附载TiO_2光催化降解有机磷农药.环境科学,1996,17(4):33~35
    115 魏宏斌,徐迪民.固定相TiO_2膜的制备及其光催化活性.中国给水排水,2002,18(7):57~59
    116 El Madani M, Guillard C, Perol N, Chovelon J M, El Azzouzi M, Zrineh A, Herrmann J M. Photocatalytic degradation of diuron in aqueous solution in presence of two industrial titania catalysts, either as suspended powders or deposited on flexible industrial photoresistant papers. Applied Catalysis B: Environmental, 2006, 65:70~76
    117 Daoud W A, Xin J H, Zhang Y. Surface funetionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surface Science, 2005, 599:69~75
    118 杨阳,陈爱平,古宏晨,戴智铭,古政荣,陶咏.以膨胀珍珠岩为载体的漂浮型TiO_2光催化剂降解水面浮油.催化学报,2001,22(2):177~180
    119 Femandz A, Lassaletta G; Jimenez V M. Preparation and characterization of TiO_2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environment, 1995, 7:49~63
    120 Teekateerawej S, Nishino J, Nosaka Y. Design and evaluation of photocatalytic micro-channel reactors using TiO_2-coated porous ceramics. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179:263~268
    121 陈小泉,刘焕彬.陶瓷基纳米二氧化钛膜的制备与性能研究.现代化工,2005,25(3):34~36
    122 陈天虎,史晓莉,彭书传.凹凸棒石-SiO_2纳米复合材料制备和表征.硅酸盐通报,2005(1):112~114
    123 刘秀兰,孙汉文,庞秀言,鲁秀国.铝片TiO_2薄膜在降解4BS染料中的应用.河北大学学报,2005,25(2):161~164
    124 Beydoun D, Areal R, Low G, et al. Novel photocatalyst: titania coated magnetite activity and photodissolution. Physics and Chemistry: B, 2000, 104(18): 4387~4396
    125 黄河,蒋展鹏,杨宏伟,李睿华.溶胶—凝胶法制备磁载光催化剂.环境污染治理技术与设备,2004,5(1):65~68
    126 包淑娟,张校刚,刘献明.载光催化剂TiO_2/SiO_2/γ-Fe_2O_3的制备及其催化氧化性能.功能材料,2004,35(1):108~111
    127 汤育欣,陶杰,陶海军,王玲,秦琦.一种磁载光催化剂的制备及光催化活性的研 究.南京航空航天大学学报,2006,38(2):239~244
    128 Kagaya S, Shimizu K, Arai R, Hasegawa K. Separation of titanium dioxide photocatalyst in its aqueous suspension by coagulation with basic aluminium chloride. Water Research, 1999, 33(7): 1753~1755
    129 范益群,史载锋,徐南平,时钧.光催化膜反应器用于亚甲基蓝的降解.南京化工大学学报,1999,21(5):49~52
    130 Xi W, Geissen S. Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Research, 2001, 35(5): 1256~1262
    131 Sopajaree K, Qasim S A, Basak S, Rajeshwar K. An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Journal of Applied Electrochemistry, 1999(29): 533~539
    132 何圣兵,王宝贞.生物膜—膜生物反应器处理生活污水的试验研究.给水排水,2002,28(11):21~24
    133 殷峻,陈英旭.膜生物反应器中的膜污染问题.环境污染治理技术与设备,2001,2(3):62~68
    134 孙洪贵,夏海平,蓝伟光.分离膜材料的污染与清洗.功能材料,2002,33(1):26~28
    135 李申生.太阳常数与太阳辐射的能量分布.太阳能,2003(4):5~6
    1 Diebold U. The surface of titanium dioxide. Surface Science Reports, 2003, 48(5-8): 53~229
    2 Goswami D Y. Engineering of solar photocatalytic detoxification and disinfection processes. Advances in Solar Energy, 1995, 10: 165~173
    3 Ollis D E Contaminant degradation in water: Heterogeneous photocatalysis degrades halogenated hydrocarbon contaminants. Environment Science Technology, 1985, 19(6): 480~484
    4 Horikoshi S, Hidaka H. Photodegradation mechanism of heterocyclic two-nitrogen containing compounds in aqueous TiO_2 dispersions by computer simulation. Journal of Photochemistry and Photobiology, 2001, 141A: 201~207
    5 Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of Catalysis, 1990, 122: 178~192
    6 Skubal L R, Meshkov N K. Reduction and removal of mercury from water using arginine-modified TiO_2. Journal of Photochemistry and Photobiology, 2002, 148A: 211~214
    7 O'Rregan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991, 353(6346): 737~740
    8 孙秀云,周学铁,李燕,王连军,王俊德.发射光谱Boltzmann法测量毛细管放电产生的电热高密度等离子体温度之误差分析.光谱学与光谱分析,2003,23(3):563~565
    9 张东翔,张凌云,黎汉生.浆态光催化反应器有机模拟废水光催化氧化特性与动力学.化工学报,2006,57(5):1159~1165
    10 郁志勇,王文华,彭安.4-氯苯酚在水溶液中的光化学反应(Ⅱ)反应动力学研究.环境化学学报,1997,17(3):317~320
    11 苏均和.概率论与数理统计.上海:上海财经大学出版社,1999
    12 Litter M I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999, 23:89~114
    13 De A K, Chaudhuri B, Bhattacharjee S, Dutta B K. Estimation of·OH radical reaction rate constants for phonel and chlorinated phenols using UV/H_2O_2 photo-oxidation. Journal of Hazardous Materials B, 1999, 64(1): 91~104
    14 Zhao M, Chen S, Tao Y. Photocatalytic degradation of organophosphorus pesticides using thin films of TiO_2. J. Chem. Technol. Biotechnol, 1995, 64:339~344
    15 Ohno T, Haga D, Fujihara K, Kaizaki K, Matsumura M. Effects of iron(Ⅲ) ions on photocatalytic and photoelectrochemical properties of titanium dioxide. Journal of Physics and Chemistry, 1997, 101(33B): 6415~6419
    16 Ohno T, Miyamoto Z, Nishijima K, Kanemitsu H, Yuan F. Sensitization of photocatalytic activity of S- or N-doped TiO_2 particles by adsorbing Fe~(3+) cations. Applied Catalysis A: General, 2006, 302:62~68
    17 Chen S, Cao G. Photocatalytic oxidation of nitrite by sunlight using TiO_2 supported on hollow glass microbeads. Solar Energy, 2002, 73(1): 15~21
    18 Gandhe A R, Fernandes J B. A simple method to synthesize N-doped rutile titania withenhanced photocatalytic activity in sunlight. Journal of Solid State Chemistry, 2005, 178:2953~2957
    19 D'Oueira J C, Al-Sayyed G; Pichat P. Photodegradation of 2- and 3-chlorophenol in TiO_2 aqueous suspensions. Environment Science Technology, 1990, 24(7): 990~996
    20 施利毅,戴清,袁春伟.SnO_2-TiO_2复合颗粒的形态结构及其光催化降解染料溶液的研究.高校化学工程学报,2000,14(6):548~552
    21 Sadtler Research Laboratories, Inc. Standard ultra-violet spectra(UV 15165-15807). USA, 1969
    22 Rachel A, Sarakha M, Subrahmanyam M, Boule P. Comparison of several titanium dioxides for the photocatalytic degradation of benzenesulfonic acids. Applied Catalysis B: Environmental, 2002, 37:293~300
    23 孙秀云,李燕,王俊德,人工神经网络法对多组分大气污染物的同时监测.光谱学与光谱分析,2003,23(4):739~741
    1 曹立新,万海保,王淑彬,霍丽华,席时权.表面结构对SnO_2半导体纳米粒子荧光性质的影响.光谱学与光谱分析,1999,19(5):651~654
    2 任成军,钟本和,刘恒,张允湘.纳米二氧化钛薄膜光催化剂的合成及特性.高校化学工程学报,2004,18(1):57~61
    3 Ohsaki H, Kanai N, Fukunaga Y, Suzuki M, Watanabe T, Hashimoto K. Photo-catalytic properties of SnO_2/TiO_2 multilayers. Thin Solid Films, 2006, 502:138~142
    4 施利毅,古宏晨,李春忠,房鼎业,张怡,华彬.复合光催化剂的制备和性能.催化学报,1999,20(3):338~342
    5 Bedja I, Kamat P V. Capped semiconductor colloids: Synthesis and photoelectron-chemical behavior of TiO_2 capped SnO_2 nanocrystallites. Journal of Physical Chemistry, 1995, 99(22): 9182~9188
    6 Vindogopal K, Kamat P V. Enhanced rates of photocatalytic degradation of azo dye using SnO_2/TiO_2 coupled semiconductor thin films. Environmental Science and Technology, 1994, 29(3): 841~845
    7 Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO_2/TiO_2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chemistry Material, 1996, 8(8): 2180~2187
    8 Shi L, Li C, Gu H, Fang D. Morphology and properties of ultra_fine SnO_2-TiO_2 coupled semiconductor particles. Materials Chemistry and Physics, 2000, 62:62~67
    9 Hotchandani S, Kamat P V. Preparation and photochemical characterization of thin SnO_2 nanocrystalline semiconductor films and their sensitization with bis(2-bipyridine) (2-bipyridine-4-dicarboxylic acid) ruthenium(Ⅱ) complex. Journal of Physical Chemistry, 1994, 98:4133~4140
    10 Yu J C, Yu J G; Ho W K, Jiang Z T, Zhang L Z. Effects of F~- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chemistry of Materials, 2002, 14(9): 3808~3816
    11 Yu J G; Yu H G, Cheng B, Zhao X J, Yu J C, no W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO_2 thin films prepared by liquid phase deposition. Journal of Physical Chemistry B, 2003, 107(50): 13871~13879
    12 李懋强.湿化学法合成陶瓷粉料的原理和方法.硅酸盐学报,1994,2:85~90
    13 颜秀茹,宋宽秀,霍明亮,付贤松,辛春伟.纳米SnO_2的制备条件及其光催化活性.应用化学,2002,19(8):750~753
    14 徐自力,薛宝永,杨秋景,谢超,张剑宝,杜尧国.纳米TiO_2-SnO_2的制备及其对庚烷的气相光催化性能.应用化学,2004,21(10):980~984
    15 梅长松,钟顺和.Cu/SnO_2-TiO_2催化剂的结构、光吸收性能和催化反应性能.化学物理学报,2005,18(5):821~826
    16 程银兵,马建华,吴广明,沈军,王珏.热处理对溶胶.凝胶TiO_2薄膜的晶相转变和性能影响.功能材料,2003,34(1):73~75
    17 Karuppuchamy S, Nonomura K, Yoshida T, Sugiura T, Minoura H. Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics, 2002, 151(1-4): 19~27
    18 彭峰,任艳群.TiO_2-SnO_2复合纳米膜的制备及其光催化降解甲苯的活性.催化学报,2003,24(4):243~247
    19 井立强,付宏刚,王德军,魏霄,孙家钟.掺Sn的纳米TiO_2表面光致电荷分离及光催化活性.物理化学学报,2005,21(4):378~382
    20 李晓红,颜秀茹,张月萍,霍明亮,郭伟巍.TiO_2/SnO_2复合催化剂的制备及光催化降解敌敌畏.应用化学,2001,18(1):32~35
    21 Dhurinskii B F, Gatid D, Sergushin N P, Nefedov V I, Salyn YA V. Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides. Russian Journal of Inorganic Chemistry, 1975, 20:2307~2314
    22 Kutty T R N, Avudaithai M. Photocatalytic activity of tin-substituted TiO_2 in visiblelight. Chemical Physics Letters, 1989, 163 (1): 93~97
    1 Asahi R, Ohwaki T, Aoki K Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269~271
    2 Ohno T, Mitsui T, Matsumura M. TiO_2-photocatalyzed oxidation of adamantane in solutions containing oxygen or hydrogen peroxide. Journal of Photochemistry and PhotobiologyA: Chemistry, 2003, 160(1): 3~9
    3 Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO_2 photocatalysts by wet-method N doping. Applied Catalysis A: General, 2005, 284:131~137
    4 Jang J S, Kimb H G, Jia S M, Baea S W, Jungc J H, Shond B H, Lee J S. Formation of crystalline TiO_(2-x)N_x and its photocatalytic activity. Journal of Solid State Chemistry, 2006, 179:1067~1075
    5 Jansen M, Letschert H P. Inorganic yellow-red pigments without toxic metals. Nature, 2000, 404(6781): 980~982
    6 Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chemistry of Materials, 2002, 14(9): 3808~3816
    7 Yu J G, Yu H G; Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO_2 thin films prepared by liquid phase deposition. Journal of Physical Chemistry B, 2003, 107(50): 13871~13879
    8 Suda Y, Kawasaki H, Ueda T, Ohshima T. Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture. Thin Solid Films, 2005, 475(1-2): 337~341
    9 Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B: Environmental, 2003, 42(4): 403~409
    10 辛柏福,井立强,付宏刚,孙志华,任志宇,王百齐,蔡伟民.掺杂Cu的TiO_2纳米粒子的制备、表征及其光催化活性。高等学校化学学报,2004,25(6):1076~1080
    11 尹荔松,沈辉,张进修.纳米TiO_2粉晶的光学特性研究.电子学报,2002,30(6):808~810
    12 Spanos N, Tsevis A, Koutsoukos P G; Marcel M Electro-kinetic measurements on plugs of doped titania, colloids and surfaces A. Physicochemical and Engineering Aspects, 1998, 141(1): 101~109
    13 Yu J G, Zhou M H, Cheng B, Zhao X J, Preparation, characterization and photocatalytic activity of in situ N,S-codoped TiO_2 powders. Journal of Molecular Catalysis A: Chemical, 2006, 246 (1-2): 176~184
    14 Saha N C, Tompkins H G Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. Journal of Applied Physics, 1992, 72(7): 3072~3079
    15 唐玉朝,黄显怀,俞汉青,胡春.N掺杂TiO_2光催化剂的制备及其可见光活性研究.无机化学学报,2005,21(11):1747~1751
    16 Kuroda Y, Mori T, Yagi K, Makihata N, Kawahara Y, Nagao M, Kittaka S. Preparation of visible-light-responsive TiO_(2-x)N_x photocatalyst by a sot-gel method: Analysis of the active center on TiO_2 that reacts with NH_3. Langmuir, 2005, 21(17): 8026~8034
    17 Markovits A, Ahdjoudj J, Minor C. A theoretical analysis of NH_3 adsorption on TiO_2. Surface Science, 1996, 365(3): 649~661
    18 Hadjiivanov K. FTIR study of CO and NH_3 co-adsorption on TiO_2(rutile). Applied Surface Science, 1998, 135(1-4): 331~338
    19 Nyquist R A, Kagel R O. Infrared apectra of inorganic compounds (3800-45cm~(-1)). London: Academic Press, 1971
    20 邱炜,陈爱平,刘威,刘伟,施利毅.掺氮光敏化纳米晶TiO_2的研制.华东理工大学学报(自然科学版),2005,31(1):79~82
    21 Wawrzyniak B, Morawski A W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO_2 photocatalyst containing nitrogen. Applied Catalysis B: Environmental, 2006(62): 150~158
    22 黄德如,汪仁庆.无机和配位化合物的红外和拉曼光谱.第一版.北京:化学工业出版社,1986
    23 王燕茗,陈长章,罗军华,高冬寿,李定,吴茂祥,马锦波.SO_4~(2-)/TiO_2、PO_4~(3-)/TiO_2、BO_3~(2-)/TiO_2系列固体酸的酸性、结构和晶相的研究.结构化学,1999,18(3):175~181
    24 尚静,徐自力,杜尧国,李静敏.TiO_2纳米粒子的结构、表面特性及光催化活性研究.无机材料学报,2001,16(6):1211~1216
    25 唐新硕,王新平,金松寿.SO_4~(2-)/ZrO_2型超强酸酸中心形成机理研究.中国科学(B辑),1994,24(6):584~595
    26 刘双怀,周根陶,彭定坤,周贵恩,陆斌.二氧化钛超微粉末的热分析及结构转变.化学物理学报,1994,7(3):227-232
    27 张清敏,徐濮.扫描电子显微镜和X射线微区分析.天津:南开大学出版社,1988
    28 Larrubial M A, Ramis G; Busca G. An FT-IR study of the adsorption of urea and ammonia over V_2O_5-MoO_3-TiO_2 SCR catalysts. Applied Catalysis B: Environmental, 2000, 27:145~151
    29 Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M. Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 2004, 265:115~121
    30 Bacsa R, Kiwi J, Ohno T, Albers P, Nadtochenko V. Preparation, Testing and Characterization of Doped TiO_2 Active in the Peroxidation of Biomolecules under Visible Light. Journal of Physics and Chemistry: B, 2005, 109:5994~6003
    31 Mozia S, Tomaszewska M, Kosowska B, Grzmil B, Morawski A W, Kalucki K. Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation. Applied Catalysis B: Environmental, 2005, 55:195~200
    32 Diwald O, Thompson T L, Goralski E G, Walck S D, Yates J T. The effect of nitrogen ion implantation on the photoactivity of TiO_2 rutile single crystals. Journal of Physics and Chemistry B, 2004, 108(1): 52~57
    33 Nosaka Y, Matsushita M, Nishino J, Nosaka A Y. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Science and Technology of Advanced Materials, 2005, 6:143~148
    34 Wagner C D, Riggs W M, Davis L E, Moulder J F. Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Perkin-Elmer Co., 1979
    35 Yamada K, Nakamura H, Matsushima S, Yamane H, Haishi T, Ohira K, Kumada K. Preparation of N-doped TiO_2 particles by plasma surface modification. Comptes rendus -Chimie, 2006, 9(5-6): 788~793
    36 Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental. Journal of Solid State Chemistry, 2005, 178:3293~3302
    37 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988
    1 李凤生,杨毅,马振叶,姜炜.纳米功能复合材料及应用.北京:国防工业出版社.2003
    2 吴其胜,高树军,张少明,杨南如.机械力化学合成纳米晶PZT的研究.硅酸盐学报,2003,31(12):1197~1121
    3 赵昆渝,严丙勇,李智东,李莉,朱心昆,段云彪,刘国玺,马秋花,葛伟萍.机械合金化制备TiB_2粉末的机理研究.机械工程材料,2004,28(3):25~27
    4 Eric G, Frederic B, Jean C N. Some recent developments in mechanical activation and mechanochemistry. Journal of Material Chemistry, 1999(9): 305~314
    5 Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Materials Science and Engineering: A, 2001,304-306:151~158
    6 Small D A, MacKay G R, Dunlap R A. Hydriding reactions in ball-milled titanium. Journal of Alloys and Compounds, 1999, 284:312~315
    7 严红革,陈振华.反应球磨技术原理及其在材料制备中应用.功能材料,1997,28(1):15~18
    8 吴自清,金名惠,邱于兵.TiO_2/SiO_2/Fe_3O_4的光催化性能及动力学.化工进展,2006,25(1):69~74
    9 Wagner C D, Moulder J F, Davis L E, Riggs W M. Handbook of X-ray photoelectron spectroscopy, Physical Electronics Division. Eden Prairic: Perking-Elmer Corporation, 1978
    10 杨鹤,张正业,李生华,金元生.金属磨损自修复层的x光电子能谱研究.光谱学与光谱分析,2005,25(6):945~948
    11 夏启斌,李忠,奚红霞,赵祯霞.Fe~(3+)和Ce~(3+)掺杂对TiO_2光催化剂性能的影响.化工学报,2005,56(9):1666~1672
    12 许振华,徐自力,杨秋景,薛宝永,马玉芹,刘星娟,杜尧国.铁掺杂TiO_2纳米粒子光催化氧化庚烯的研究.吉林大学学报(理学版),2005,43(3):372~376
    13 Daude N, Gout C, Jouanin C. Electronic band structure of titanium dioxide. Physical Review B, 1977, 15(6): 3229~3235
    14 Sanjines R, Tang H, Berger H, Gozzo F, Margaritondo G, Levy F. Electronic structure of anatase TiO_2 oxide. Jourual of Applied Physic, 1994, 75(6): 2945~2951
    15 余锡宾,王桂华,罗衍庆,李和兴.Fe/Ti/Si复合微粒的表面结构和催化活性.化学学报.2000,58(6):548~553
    16 付宏刚,王建强,任志宇,闫鹏飞,于海涛,信柏福,袁福龙.Fe~(3+)-TiO_2/SiO_2薄膜催化剂的结构对其光催化性能影响.高等学校化学学报,2003,24(9):1671~1676
    17 苏文悦,傅贤智,魏可镁,张汉辉,林华香,王心晨,李旦振.TiO_2光催化剂的光谱研究.光谱学与光谱分析,2001,21(1):32~34
    18 包淑娟,张校刚,刘献明,辛凌云,屈建平.磁载WO_3-TiO_2/SiO_2/Fe_3O_4复合光催化剂的制备及其光催化活性.催化学报,2003,24(12):909~913
    19 关凯书,尹衍升,姜秋鹏.TiO_2-SiO_2复合薄膜光催化活性与亲水性关系的研究.硅酸盐学报,2003,31(3):219~228
    1 Augugliaro V, Garcia-Lopez E, Loddo V, Malato-Rodriguez S, Maldonado I, Marci G, Raffaele M, Palmisano L. Degradation of lincomycin in aqueous medium: Coupling of solar photocatalysis and membrane separation. Solar Energy, 2005, 79:402~408
    2 Le-Clech P, Lee E, Chen V. Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Research, 2006, 40:323~330
    3 Molinari R, Grande C, Drioli E, Palmisano L, Schiavello M. Photocatalytic membrane reactors for degradation of organic pollutants in water. Catalysis Today, 2001, 67: 273~279
    4 Molinari R, Palmisano L, Drioli E, Schiavello M. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. Journal of Membrane Science, 2002, 206:399~415
    5 Molinari R, Borgese M, Drioli E, Palmisano L, Schiavello M. Hybrid processes coupling photocatalysis and membranes for degradation of organic pollutants in water. Catalysis Today, 2002, 75:77~85
    6 Fu J, Ji M, Wang Z, Jin L, An D. A new submerged membrane photocatalysis reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst. Journal of Hazardous Materials B, 2006, 131: 238~242
    7 Lee S H, Choo K H, Lee C H. Use of ultrafiltration membrane for the separation of TiO_2 photocatalysts in drinking water treatment. Industrial & Engineering Chemistry Research, 2001, 40:1712~1719
    8 Xi W, Gelssen S. Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration. Water Research, 2001, 35(5): 1256~1262
    9 Zhao Y, Xing W, Xu N, Wong F. Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension. Journal of Membrane Science, 2005, 254:81~88
    10 钟璟,赵宜江,李红.陶瓷微滤膜回收偏钛酸过程中的膜污染机理.高校化学工程学报,1998,(2):136~140
    11 Chin S S, Chiang K, Fane A G. The stability of polymeric membranes in a TiO_2 photocatalysis process. Journal of Membrane Science, 2006, 275:202~211
    12 王猛,柴晓利.膜生物反应器处理生活污水的工艺及膜材料的选择.环境科学与技术,2001,95(3):1~4
    13 翟小蔚,潘涛,Verstraete W.中空纤维膜应用于两段式好氧生物反应器的研究,环境工程,2001,19(4):7~10
    14 秦烜,张甲耀.一体式膜生物反应器的膜污染及对策.环境科学技术,2003,26(6):46~48
    15 魏春海,黄霞,赵曙光,文湘华.SMBR在次临界通量下的运行特性.中国给水排水,2004,20(11):10~13
    16 Fernandez-Ibanez P, Blanco J, Malato S, Nieves F J de las. Application of the colloidal stability of TiO_2 particles for recovery and reuse in solar photocatalysis. Water Research, 2003, 37:3180~3188
    17 Bacchin P, Aimar P, Sanchez V. Influence of surface interaction on transfer during colloid ultra_filtration. Journal of Membrane Science, 1996, 115:49~63
    18 王晓丽,傅学起,陈长龙,高博.大豆分离蛋白污染的聚砜膜清洗实验研究.安全与环境学报,2004,4(4):25~27
    19 Abdullah M, Low G K C, Matthews RW. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. The Journal of Physical Chemistry, 1990, 94:6820~6825

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700