Ni-Cr-Al合金沉淀早期的微观相场模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Ni-Cr-Al三元合金为对象,基于微观相场模型,只需输入唯一基本参数——原子间相互作用势,毋需输入无实际物理意义的参数,即可获得原子图像的演化、长程序参数和浓度的变化、平均长程序参数、平均浓度以及体积分数的变化过程,描述合金沉淀全过程的原子簇聚、有序化过程。本文研究了不同合金成分、不同温度下的沉淀序列和沉淀机制,分析了Cr原子替代行为以及分级时效对合金有序相尺寸、体积分数的影响。主要结论如下:
     当Al、Cr含量较低时,Ni-Cr-Al合金按非经典形核长大机制同时沉淀出L1_2相和D0_(22)相。随Cr含量增加,D0_(22)相沉淀机制由非经典形核长大向混合机制过渡,进一步向等成分有序化+失稳分解机制过渡;L1_2相沉淀机制由非经典形核长大向混合机制过渡。随Al含量增加,L1_2相沉淀机制由非经典形核长大向混合机制过渡,进一步向等成分有序化+失稳分解机制过渡,D0_(22)相逐渐消失。当Al、Cr含量都较高时,L1_2相和D0_(22)相沉淀机制都为失稳分解机制。
     沉淀温度在873K-1373K范围内,随着温度提高,L1_2相和D0_(22)相的沉淀机制由等成分有序化+失稳分解机制转化为混合机制,进一步向非经典形核机制过渡;沉淀相形貌由片状向球状过渡。
     非经典形核长大机制的孕育期最长,失稳分解机制的孕育期最短,混合机制居中。随Al、Cr含量增加,孕育期缩短;随着温度的提高,孕育期延长。
     合金沉淀温度低于1223K时,首先以等成分有序化+失稳分解机制沉淀出非化学计量比L1_2相。随后,Cr原子在L1_2相有序畴界处偏聚,进一步沉淀出D0_(22)相。部分D0_(22)相在L1_2相内沉淀。温度升高,L1_2相体积分数增加,D0_(22)相体积分数减少。1373K时,首先以非经典形核机制同时沉淀L1_2和D0_(22)相,D0_(22)相逐渐缩小直至消失,最终形成单一L1_2相。
     Ni_(75)Al_(25-x)Cr_x合金中,Cr原子与Al原子同时发生有序化,共同占据L1_2相的β-格点,形成复合L1_2相(Ni_3Al_(1-x)Cr_x)。在L1_2相畴界,Cr原子逐步取代Al原子位置,最终形成D0_(22)相(Ni_3Cr)。Ni_(75-x)Al_(25)Cr_x合金沉淀过程中,当Cr原子分数超过3%时,L1_2相内Cr原子在α-格点、β-格点占位几率接近极限值,在L1_2相相界Cr原子浓度逐步提高,形成D0_(22)相。
     在873K到1173K温度范围内,Ni-Cr-Al合金沉淀温度升高时,在L1_2相内的Cr原子在α-格点和β-格点的占位几率都提高,L1_2相体积分数增加,D0_(22)相体积分数减少。
     在中间处理阶段,合金沉淀机制为非经典形核长大;时效处理时,沉淀机制为等成分有序化+失稳分解混合机制。时效温度提高时(973K-1373K),L1_2相尺寸增大,有序相体积分数提高;而降低中间处理温度,时效温度不变,L1_2有序相颗粒数量增多,直径减小,体积分数变化很小。与单级时效相比,二级时效和三级时效工艺可增大沉淀相颗粒尺寸和提高体积分数。
The Ni-Cr-Al alloys are studied in this paper. The interaction energies of atoms are only the input parameter, and the evolution of atom morphology, the long range order(lro) parameter and concentration, the averaged lro parameter and concentration and volume fraction can be gotten based on the microscope phase-field model, and atomic clustering and ordering during the precipitation process of alloy could be obtained. The precipitation mechanism and precipitation sequence with different composition and temperature, the substitution behavior of Cr atoms, and the influence of progressive aging to the size and volume fraction of ordering phases are investigated.
     The L1_2 and D0_(22) phases are precipitated by non-classical nucleation and growth mechanism during the precipitation process of Ni-Cr-Al alloy with lower Al and Cr concentration at 873K. With the increasing of Cr content, the precipitation mechanism of D0_(22) phases transforms from non-classical nucleation and growth to the mixture of growth and spinodal decomposition gradually and convert to congruent ordering+spinodal decomposition at last, the precipitation mechanism of L1_2 phases transit to the mixture of growth and spinodal decomposition. When Al content increase, the precipitation mechanism of L1_2 phases change to the mixture of growth and spinodal decomposition gradually and convert to congruent ordering+spinodal decomposition at last. D0_(22) phases disappear gradually. L1_2 and D0_(22) phases precipitate by spinodal decomposition mechanism when Al and Cr contents are higher.
     In the temperature range of 873K to 1373K, the precipitation mechanisms of L1_2 and D0_(22) phases transit from congruent ordering+spinodal decomposition to mixture mechanism and to non-classic nucleation with increasing of temperature. The shapes of precipitates become spheroid from slice shape.
     The incubation period of non-classical nucleation and growth mechanism is the longest and that of spinodal decomposition is the shortest, mixture mechanism is mediacy. The incubation period is short with increasing Al and Cr contents and become long gradually with increasing of temperature.
     Nonstoicheometric L1_2 phases are precipitated with congruent ordering+spinodal decomposition mechanism when the temperature is lower than 1223K, then Cr atoms gather at phases boundaries of L1_2 phases, D0_(22) phases are formed gradually. The other of D0_(22) phases appear inside of L1_2 phases. The volume of D0_(22) phases decrease with the temperature rising. At 1373K, L1_2 and D0_(22) phases precipitate simultaneously by non-classical nucleation and growth mechanism, the particles of D0_(22) phases diminish and disappear gradually, L1_2 phases grow and single L1_2 phases are formed at last.
     The ordering of both Al and Cr atoms takes place simultaneously during the precipitation process of Ni_(75)Al_(25-x)Cr_x alloy. Both atoms occupyβsites together, and complex L1_2 phases(Ni_3Al_(1-x)Cr_x) are formed. Cr atoms substitute Al atoms at the boundary of L1_2 phases, and then the D0_(22) phases(Ni_3Cr) are formed. The limits of occupation probabilities of Cr atαandβ-lattice in L1_2 phases reached when Cr fraction exceeds 3% in Ni_(75-x)Al_(25)Cr_x alloy, the concentration of Cr rises at L1_2 phases boundaries, and D0_(22) phases are formed.
     The occupation probabilities of Cr atoms atαandβlattice in L1_2 phase increase with the temperature increasing in the range of 873K to 1173K, the volume of L1_2 phase increase and that of D0_(22) phases decrease.
     The non-classical nucleation and growth mechanism is present at the stage of middle heat treatment, and precipitation mechanism transit to congruent ordering+spinodal decomposition at the stage of aging(973K~1373K). The size and volume of L1_2 phases increase with the rising of temperature of aging, and they decrease with the decreasing of temperature of middle heat treatment. The size and volume of ordering phases in re-aging and three step aging are longer than those in single stage aging.
引文
1 戴起勋,赵玉涛编著.材料科学研究方法.国防工业出版社.2004.8
    2 James P.Schaffer 编著,余永宁,强文江译.工程材料科学与设计.机械工业出版社.第二版.2003.4 p597-624
    3 Computational Materials Science: A Science Reuolution about to materialize, White paper, March 1999, by materials Component Stretegic Simulation initiative, DOE, USA
    4 G.B.Olson. Designing a new material World. Science. 2000,228:993
    5 D.罗伯[德].项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2002:3
    6 O.F.Sankey, D.J.Niklewski. An initio multicenter tight-binding model for molecular -dynamic simulations and other applications in covalent systems. Phys.Rev.B. 1989(40): 3979
    7 H.O.Kirchnert, L.P.Kubin and V.Pontikis. In Proceedings of NATO ASI on computer simulation in Materials Science, Nano/Meso/Macroscopic Space and Time Scales, Volume 308 of NATO Advanced Science Institutes Seris, Series E: Applied Sciences. 1996:451
    8 S.Muller, L.W.Wang, A.Zunger. First Principles kinetic theory of precipitate evolution in Al-Zn alloys. Modelling Simul.Mater.Sci.Eng. 2002,10:131
    9 T. Kupper, N. M asbaum. Simulation of particle growth and ostwald ripening via the CHE. Acta metall. Mater. 1994, 42(6): 1847-1858
    10 J. Hafner. Atomic-scale computational materials science. Acta mater. 2000, 48:71
    11 刘俊明,刘治国,吴状春.Cu-Co合金失稳分解动力学.物理学报.1995,44(2):319
    12 A.G. Khachatuyran, Theory of Structural Transformations in Solids, New York, Wiley,1983:23
    13 R.W .Cahn, P.Haasen,E.J.Kramer. Phase transformation in materials(材料的相变)[M]. Beijing: Science Press(北京:科学出版社), 1998:255
    14 G.M. Pound. Perspectives on nucleation. Metallurgical Trans. 1985, 16A: 487
    15 F.K. Legous, Y. W. Lee, H. Ⅰ. Influence of crystallography upon critical nucleus shapes and kinetics of homogeneous f.c.c-f.c.c nucleation -Ⅱ .The non-classical regime. Aaronson. Acta Metal. Mater. 1984, 32(10): 1837
    16 J .S. Langer, A. J. Schwartz. Kinetics of nucleation in near-critical fluids. Phys. Rev. A. 1980, 21:948
    17 H. Wendt, EHaasen. Nucleation and growth of γ′ precipitates in Ni-14at. %Al alloy. Acta metal. Mater. 1983, 31(10): 1649
    18 R.Kampmann, R.Wagner. Atomic transport and defects in material by neutron scattering. Berlin: Springer Verlag, 1986,73
    19 A. W. Zhu. Evolution of size distribution of shearable ordered precipitates under homogeneous deformation: application to an Al-Li alloy. Acta Metal. Mater.. 1997,45(10): 4213
    20 E.D. Siebert, Knobler C M. Measurements of homogeneous nucleation near a critical solution temperature. Phy. Rev. Lett.. 1984,52:1133
    21 M. Kumar, R. Sasilumar, N. Kesavan. Competition between nucleation and early growth of ferrite from austenite studies using cellular automation simulations. Acta metal. Mater. 1998, 46(17): 6291
    22 冯端.金属物理学第二卷相变.北京:科学出版社,1998:195
    23 D. Fontaine.K-space symmertry rules for order-disorder reactions. Acta metal. 1975, 23:553
    24 D. Fontaine.Ordering instabilities and pretransitional effects. Metall Trans. 1981, 12 A: 559
    25 D.E.Laughlin, J .W. Cahn. Spinodal decomposition in age hardening copper-T itanium Acta Metall.. 1975, 23:329
    26 J.S.Langer. Fluctuations, Instabilities, and Phase transitions. New York: Plcnum Press, 1975:19
    27 K.Binder. Time-dependent Ginzburg-Landau theory of nonequilibirium relaxation. Phys. Rev. B. 1973, 8:3423
    28 K.Binder, M.Krumbaar. Investigation of metastable states and nucleation in the kinetic Ising model. Phys. Rev. B. 1974, 9(8): 2328
    29 C.Unger, W.K.Lein. Nucleation theory near the classical spinodal. Phys. Rev. B.1984, 29:2698
    30 郭柏灵 黄海洋 蒋慕容,金兹堡—朗道方程,科学出版社,2002,1—26
    31 S.Y.HU, L.Q.CHEN. A phase field model for evolving microstructures with strong elastic inhomogenety. Acta mater. 2001, (49): 1879-1890.
    32 Y.H.Wen, Y.Wang, L.Q.Chen. Coarsening dynamics of self-accommodating coherent patterns. Acta Mateialia. 2002, (50): 13-21.
    33 K.Wu, J.E.Morral, and Y.Wang. A phase field model ofmicrostructural changes due to the kirkendall effect in two-phase diffusion couples. Acta mater. 2001, (49): 3401- 3408.
    34 L.Q.Chen, Yunzhi Wang.The continuum field approach to modeling microstructural evolution. Jom. 1996, (12): 12-18.
    35 Y.Ustinovshikov, V.Koretsky. Computer simulation of the intermetallics formation process. Computational Materials Science. 1998, (11): 74-86.
    36 M.Hillert. A model-based continuum treatment of ordering and spinodal decomposit- Ⅰ on. Acta mater. 2001, (49): 2491-2497.
    37 G.Rubin, A.G.Khachaturyan. Three-Dimensional model of precipitation of ordered intermetallics. Acta mater. 1999,47(7): 1995-2002.
    38 Y.Wang,L.Chen,and A.G.Khachatuyran. In Proceedings of NATO ASI on computer simulation in Materials Science, Vol.eds.: H.O.Kirchnert, L.P.Kubin, and V.Pontikis, Volume 308 of NATO Advanced ascience Institutes Seris, Series E: Applied Sciences. 1996:325
    39 T.Miyazaki, T. Koyama,T. Kozakai. Computer simulation of the phase transformati- on in real alloy systems based on the phase field method. Materials Science and Eng I ineering. 2001 (A312): 38-49.
    40 R.Podufi,L.Q.Chen. Computer simulation of morphological evolution and coarsen- ing of δ' (Al_3Li) precipitates in Al-Li alloys. Acta mater.1998, 46(11): 3915 -3928.
    41 J.Z. Zhu, L.Q.Chen, J.Shen. Morphological evolution during phase separation and coarsening with strong inhomogeneous elasticity. Modeling Simul.Mater. Sci. Eng. 2001, (9): 499-511.
    42 R.Poduri,L.Q.Chen. Computer simulation of the kinetics of order-disorder and phase separation during precipitation of δ' (Al_3Li) in AI-Li alloys. Acta mater.1997, 45(1): 245-255.
    43 R.Poduri, L.Q.Chen. Non-classical nucleation theory of ordered intermetallic precipitates - application to the Al-Li alloy. Acta mater. 1996, 44(10): 4253-4259.
    44 L.Q.Chen, A.G.Khachaturyan. Computer simulation of decomposition reactions accompanied by a congruent ordering of the second kind. Scripta Metallurgica et materialia. 1991, 25:61-66.
    45 L.Q.Chen, A.G.Khachaturyan. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta metall.mater. 1991, 39(11): 2533-2551.
    46 李晓玲.δ′相沉淀过程原子层面计算机研究.西北工业大学博士论文.2002.
    47 赵宇宏.合金沉淀过程原子尺度计算机模拟.西北工业大学博士论文.2003
    48 黄乾尧,李汉康等编著.高温合金.北京:冶金工业出版社.2000.4
    49 陈国良.高温合金学.北京:冶金工业出版社.1988.5
    50 J.Z.Zhu, Z.K.Liu, V.Vaithyanathan, L.Q.Chen. Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scripta Materilia. 2001,46:401
    51 W.Huang, Y.A.Chang. A thermodynamic analysis of the Ni-Al system. Intermetallics, 1998,6(6):487-498
    52 Du Yong and Calvaguera narcis. Thermodynamic assessment of the Al-Ni system. J. alloys and compounds, 1996,237(1):20-32
    53 L.Q.Chen, D.Fan. Computer Simulation Model for Coupled Grain Growth and Ostwald Ripening-Application to Al_2O_3-Z_rO_2 Two-phase Systems. J.Am.Ceram.Soc. 1996,79(5): 1163
    54 J.Z.Zhu, Z.K.Liu, V.Vaithyanathan, L.Q.Chen. Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scripta Materilia. 2001,46:401
    55 L.Q.Chen, Y.Z.Wang. The Continuum Field Approach to Modelling Microstructural Evolution. JOM. 1996,December: 13
    56 L.Q.Chen. Phase-Field Models for Microstructure Evolution. Annu.Rev.Mater.Res. 2002,32:113
    57 L.Q.Chen, Wolverton, V.Vaithyanathan, Z.K.Liu. Modelling Solid-State Phase Transformations and Microstructure Evolution. Mrs Bulletin. 2001, March
    58 V.Vaithyanathan, C.Wolverton, L.Q.Chen. Multiscale Modelling of Precipitate Microstructure Evolution. Physical Review Letters. 2002, 88(12): 125503-1
    59 T.Koyama,T.Miyazaki, M.Mebed. Computer Simulations of Decomposition in Real Alloy Systems Based on the Modified Khachatuyran Diffusion Equation. Metallurgical and Materials Transactions A. 1995,26A(10): 2617
    60 T.Miyazaki, A.Takeuchi, T.Koyama. Computer Simulations of the Phase Decomposition on Cu-Cc binary alloys based on the non-linear diffusion equation. J.Mater.Sci.. 1992,27:2444
    61 李晓玲.δ′相沉淀过程原子层面计算机研究.西北工业大学博士论文.2002:14
    62 李晓玲,陈铮,刘兵,刘晓光.δ′相早期沉淀过程的计算机模拟.自然科学进展.2002,12(1):74
    63 Xiaoling Li, Zheng Chen, Bing Liu, Yongxin Wang. Transition from Metastability to instability in Dynamics for the Precipitation of δ′(Al_3Li). Rare Metals. 2001,20(4): 1
    64 T.M.Pollock, A.S.Argon. Directional coarsening in Ni-based single crystals with high volume fractions of coherent precipitates. Acta metall.mater. 1994, 42(6): 1859-1874
    65 赵宇宏,陈铮,王永欣,唐丽英,卢艳丽.三元体系γ′相和θ相沉淀早期计算机研究.稀有金属材料与工程.2004,33(7):701
    66 赵宇宏,陈铮,王永欣,唐丽英.低铝含量Ni75AlxV75-x合金早期沉淀过程的原子尺度计算机模拟.2004,14(4):534
    67 Zhao Yuhong, Chen Zheng, Wang .Yongxin, Lu Yanli. Atomic-scale computer simulation for early precipitation process of Ni_(75)Al_(10)V_(15) alloy. Progress in Natural Science. 2003,13(11): 77-79
    68 Yuhong Zhao, Zheng Chen, Xiaoling Li. Computer Simulation of Strain-induced Morphological Transformation of Coherent Precipitates. J.Univ.Sci.Technol. Beijing (M.M.M.). 2003,10(4): 55
    69 马良.外场作用下δ′相沉淀过程原子层面计算机研究.西北工业大学硕士论文.2003:20
    70 W.Huang,Y.AChang. Thermodynamic properties of the Ni-Al-Cr system. Intermetallics, 1999,7:863-874
    71 N.Dupin, I.Ansara. B.Sundman. Thermodynamic Re-Assessment of the ternary system Al-Cr-Ni. Calphad,2001,25 (2):279-298
    72 L.Q.Chen. Computer simulation of spinodal decomposition in ternary systems. Acta metall mater, 1994,42(10): 3503-3513
    73 Long Qing Chen. A computer simulation technique for spinodal decomposition and ordering in ternary systems. Scripta Metallurgica et materialia, 1993, 29:683-688
    74 C.Pareige, D.Blavette. Simulation of the FCC→FCC+Ll_2+DO_(22) Kinetic Reaction. Scripta mater. 2001,44:243-247
    75 H.Zapolsky, C.Pareige, L.Marteau, D.Blavette. Atom Probe Analyses and Numerical Calculation of Ternary Phase Diagram in Ni-Al-V System. Calphad. 2001,25(1): 125-134
    76 R.Poduri, L.Q.Chen. Computer-simulation of atomic ordering and compositional clustering in the pseudobinary Ni_3Al-Ni_3V system. Acta mater. 1998, 46:1719-1729
    77 Y.H.Wen, Y.Wang, L.Q.Chen. Influence of an applied strain field on microstructural evolution during the α_2→ O phase transformation in Yi-Al-Nb system. Acta mater. 2001,40(1):13-20
    78 Y.H.Wen, Y.Wang, L.A.Bendersky, L.Q.Chen. Microstructural evolution during the α_2 →α_2 + O transformation in Ti-Al-Nb system: phase field simulation and experimental validation. Acta mater. 2000,48(16):4125-4135
    79 W.Chen, N.Ma, K.Wu, Y.Z.Wang. Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-al-V. Scipta Meter. 2004,50:471-476
    80 F.Lechermann, M.Fahnle, J.M.Sanchez. First-principles investigation of the Ni-Fe-AI system. Intermetallics, 2005,13:1096-1109
    81 T.Mohri, Y.Chen. First-principles investigation of Ll_0-disorder phase equilibria of Fe-Ni, -Pd, and -Pt binary alloy systems. J. Alloys and Compounds, 2004, 383: 23-31
    82 ER.Alonso, G.H.Rubiolo. Ordering and phase separation around Ti_(50)Al_(25)Mo_(25) composition in ternary Yi-Al-mo bec alloys. J. Alloys and Compounds, 2004,363:90-98
    83 P.Broz, M.Svoboda. J.Bursik, et al. Theoretical and experimental study of the influence of Cr on the γ + γ′ phase field boundary in the Ni-Al-Cr system. Materials Science and Engineering A.2002,325.59-65
    84 K.Wu, Y.A.Chang and Y.Wang. Simulating interdiffusion microstructures in Ni-Al-Cr diffusion couples: a phase field approach coupled with CALPHAD database, Scripta Materialia, 2004, (50)8:1145-1150
    85 C.Pareige, F.Soisson, G.Martin, D.Blavette. Ordering and phase separation in Ni-Cr-Al: monte carlo simulations vs three-dimensional atom probe. Acta mater, 1999,47(6): 1889-1899
    86 C.Pareige-Schmuck, ESoisson, D.Blavette. Ordering and phase separation in low supersaturated Ni-Cr-Al alloys:3D atom probe and Monte Carlo simulation. Materials Science Engineering A, 1998, 250:99-103
    87 Z.H.Liu, H.Liu, X.X.Zhang, et al. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon Physics Letters A, 2004,329(8): 214-220
    88 Ren zhi'an, Che guangcan, Jia shunlian, et al. Effect of Mg and contents in MgCNi_3, and structure and suoercinductivity of MgCni_(3-x)Co_x. Science in China(A). 2001,44(9):1204-1208
    89 A.V.Pimenov, A.V.Boris, Li Yu, et al. Nickel Impurity-Induced Enhancement of the Pseudogap of Cuprate High-Tc Superconductors. Phys. Rev. Lett. 2005,94(22):227003-1
    90 Jiri Cermak, Ales Gazda, Vera Rothova. Interdiffusion in ternary Ni_3Al/Ni_3Al-X diffusion couples with X=Cr, Fe,Nb and Ti. 2003 Intermetallics. 11 (9):939-946
    91 A.O.Mekhrabov, M.V.Akdeniz and M.M.Arer. Atomic ordering characteristics of Ni_3Al intermetallics with substitutional ternary additions. Acta Materialia, 1997,45(3): 1077-1083
    92 张永刚,韩雅芳,陈国良,郭建亭,万晓景,冯涤主编.金属间化合物结构材料.北京:国防工业出版社.2001:195-200
    93 S.Ochiai, Y.Oya and T.Suzuki. Alloys behaviour of Ni_3Al,Ni_3Ga,Ni_3Si and Ni_3Ge. Acta metal, 1984, 32:289-298
    94 A.Marty, M.Bessiere and F.Bley. Determination of long range order in Ni-base ternary alloys by X-Ray anomalous diffraction using synchrotron radiation. Acta matall.mater., 1990,(38)2:345-350
    95 Y.P.Wu, N.C.Tso, J.M.Sanchen. Modeling of ternary site occupation in Ll_2 ordered intermetallics. Acta.metal. 1989, 37(10): 2835-2840
    1 A. GKhachatuyran. Theory of Structural Transformations in Solids. Wiley, New Tork, 1983: 23-60.
    2 L. Q. Chen, A. G. Khachaturyan. Computer simulation of decomposition reactions accompanied by a congruent ordering of the second kind. Scripta Metallurgica et materialia. 1991, 25: 61-66.
    3 L. Q. Chen, A. G. Khachaturyan. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta metall. mater. 1991, 39(11): 2533-2551.
    4 R. Poduri, L. Q. Chen. Computer simulation of morphological evolution and coarsening of δ' (Al_3Li) precipitates in Al-Li alloys. Acta mater. 1998, 46(11): 3915-3928.
    5 R. Poduri, L. Q. Chen. Computer simulation of the kinetics of order-disorder and phase separation during precipitation of δ' (Al_3Li) in Al-Li alloys. Acta mater.1997, 45(1): 245-255.
    6 R. Poduri, L. Q. Chen. Non-classical nucleation theory of ordered intermetallic precipitates - application to the Al-Li alloy. Acta mater. 1996, 44(10): 4253-4259.
    7 C. Pareige, D. Blavette. Simulation of the FCC→FCC+Ll_2+DO_(22) Kinetic Reaction. Scripta mater. 2001, 44: 243-247
    1 I. Ansara, N. Pupin, H. L. Lukas, B. Sunman. Thermodynamic assessment of the Al-Ni system. J. Alloys and Compounds. 1997, 247: 20-30
    2 H. Wendt, EHaasen. Nucleation and growth of γ' precipitates in Ni-14at. %Al alloy. Acta metal. Mater. 1983, 31(10): 1649
    3 T. A. Abinandanan, F. Haider and GMartin. Solid-Solid Phase Translations. TMS, Warrendale, PA, 1994: 443
    4 R. Poduri, L. Q. Chen. Computer simulation of morphological evolution and coarsening of δ'(Al_3Li) precipitates in Al-Li alloys. Acta mater.1998, 46(11): 3915 -3928.
    5 R. Caudron, M. Barrachin, Y. Finel. In situ diffuse scatterings of neutrons on binary alloys. Phsica B: Condensed Matter. 1992, 180(6): 822-824
    6 L. Kaufman, H. Berstein. Computer calculation of phase diagrams. Academie press, new York, 1970.
    7 W. Huang, Y. A. Chang. Thermodynamic properties of the Ni-Al-Cr system. Intermetallics, 1999, 7: 863-874
    8 N. Dupin, I. Ansara. B. Sundman. Thermodynamic Re-Assessment of the ternary system Al-Cr-Ni. Calphad, 2001, 25(2): 279-298
    9 C. Pareige, F. Soisson, G. Martin, D. Blavette. Ordering and phase separation in Ni-Cr-Al: monte carlo simulations 'vs three-dimensional atom probe. Acta mater, 1999, 47(6): 1889-1899
    10 C. Pareige-Schmuck, F. Soisson, D. Blavette. Ordering and phase separation in low supersaturated Ni-Cr-Al alloys: 3D atom probe and Monte Carlo simulation. Materials Science Engineering A, 1998, 250: 99-103
    11 D. Blavette, E. Cadal and B. Deconihout. The role of the atom probe in the study of nickel based superalloys. Materials characterization. 2000, 44(11): 133-157
    12 A. Menand, E. Cadel, C. Pareige, D. Blavette. Three-dimensional atomic scale microscope with the atom probe. Ultramicroscopy, 1999, (78): 63-72
    13 S. Duval, S. Chambdand and P. Caron et al. Phase composition and chemical order in the single crystal Nickel base superalloy MC2. Acta Metal. Mater., 1994, 42(1): 185-194
    14 W. A. Soffa and D. E. Laughlin. Decomposition and ordering processes involving thermodynamically first-order order-disorder transformations. Acta metal., 1989, 37(11): 3019-3028.
    15 J. W. Cahn. J. E. Hilliard. Free energy of a nonuniform system Ⅰ. Interracial free energy. J. Chem. Phys. 1958, 28(2): 258
    16 李晓玲.Al-Li沉淀过程原子层面计算机研究.西北工业大学博士论文.2002.
    17 赵宇宏.合金沉淀过程原子尺度计算机模拟.西北工业大学博士论文.2003
    18 戴吉岩,张静华,金志雄,李斗星,叶恒强.γ/γ′-α定向共晶合金高温时效组织的高分辨电镜研究.金属学报.1994,30(1):A1-A6
    19 H. Zapolsky, C. Pareige, L. Marteau, D. Blavette. Atom Probe Analyses and Numerical Calculation of Ternary Phase Diagram in Ni-Al-V System. Calphad. 2001, 25(1): 125-134
    20 L. Letellier, A. Bostel and D. Blavette. Direct observation of boron segregation at grain-boundaries in astrology by atomic tomography. Scipta Metall. 1994, 30(12): 1503-1508
    21 L. Letellier, M. Guttmann and D. Blavette. Atomic scale investigation of grain-botmdaries microchemistry in boron-doped nickel-based superalloys astrology woth a 3D atom probe. Philos. Mag. 1994, 70: 189-194
    1 W. Huang, Y. A. Chang. Thermodynamic properties of the Ni-Al-Cr system. Intermetallics, 1999, 7: 863-874
    2 N. Dupin, I. Ansara. Sundman B. Thermodynamic Re-Assessment of the temary system Al-Cr-Ni. Calphad, 2001, 25(2): 279-298
    3 R. Poduri, L. Q. Chen. Computer simulation of morphological evolution and coarsening of δ' (Al_3Li) precipitates in Al-Li alloys. Acta mater., 1998, 46(11): 3915 -3928.
    4 Chu Zhong, Chen Zheng, Wang Yongxin, Lu Yanli, Li Yongsheng. Microscopic phase-field simulation of Ll_2 and DO_(22) phases during the early precipitation process of Ni-Cr-Al alloy. J. University of science and technology Beijing, (in press)
    5 A. D. Brailsford, P. Wynblatt. The dependence of Ostwald ripening kinetics on particle volume fraction. Acta Metal. Nater., 1979. 27: 489
    6 A. J. Ardell. Late-Stage two-dimensional coarsening of circular clusters, Phys. Rev. B., 1990, 41(4): 2554
    7 S. Q. Xiao, P. Haasen. Herm investigation of homogeneous decomposition in a Ni-12at. %Al alloy. Acta metal mater., 1991, 39(4): 651
    1 Jiri Cermak, Ales Gazda, Vera Rothova. Interdiffusion in ternary Ni_3Al/Ni_3Al-X diffusion couples with X=Cr, Fe, Nb and Ti. 2003 Intermetallics. 11(9): 939-946
    2 A. O. Mekhrabov, M. V. Akdeniz and M. M. Arer. Atomic ordering characteristics of Ni_3Al intermetallics with substitutional temary additions. Acta Materialia, 45(3)1997, 1077-1083
    3 S. Ochiai, Y. Oya and T. Suzuki. Alloys behaviour of Ni_3Al, Ni_3Ga, Ni_3Si and Ni_3Ge. Acta metal, 1984, 32: 289-298
    4 A. Marty, M. Bessiere and F. Bley. Determination of long range order in Ni-base temary alloys by X-Ray anomalous diffraction using synchrotron radiation. Acta matall. mater., 1990, (38)2: 345-350
    5 S.Duval, S.Chambrland and P.Caron et al. Phase composition and chemical order in the single crystal Nickel base siperalloy MC2. Acta Metal.Mater,1994,42(1): 185-194
    
    6 C.Pareige, F.Soisson, GMartin, D.Blavette. Ordering and phase separation in Ni-Cr-Al: monte carlo simulations vs three-dimensional atom probe. Acta mater, 1999,47(6): 1889-1899
    
    7 D.Blavette, E.Cadal and B.Deconihout. The role of the atom probe in the study of nickelObased superalloys. Materials Characterization. 2000,44(11) :133-157
    
    8 Chu Zhong, Chen Zheng, Wang Yongxin, Lu yanli and Zhang jianjun. Microscopic phase-field simulation of atom Substitution behavior in Ni-Cr-Al alloy. Chinese Physics Letters. 2005,22(8):1841-1844
    1 陈国良.高温合金学.北京:冶金工业出版社.1988.5
    2 黄乾尧,李汉康等编著.高温合金.北京:冶金工业出版社.2000.4.
    3 W. Huang, Y. A. Chang. Thermodynamic properties of the Ni-Al-Cr system. Intermetallics, 1999, 7: 863-874
    4 N. Dupin, I. Ansara. B. Sundman. Thermodynamic Re-Assessment of the ternary system Al-Cr-Ni. Calphad, 2001, 25(2): 279-298
    5 中国机械工程学会热处理专业委员会《热处理手册》编委.热处理手册.北京:机械工业出版社.2001.7,579-582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700