大直径高强度高塑性高弹性模量铝合金研制及淬火残余应力演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以微观组织设计为核心,采用相图—微观组织设计—工艺—性能的研究思路,进行了相图计算、相变分析及相的鉴定,为工艺设计提供了科学可靠的理论和实验依据,研制出新型大尺寸喷射沉积超高强度高弹性模量高塑性铝合金(Al—10.0Zn—3Mg—1.6Cu—0.8Ni—0.8Zr,Fe<0.1wt%,Si<0.05wt%)。
     提出了优晶理论:晶粒尺寸最优(本合金是7μm)、析出相最优、固溶程度最优和这三者配合最优。以相图为基础,通过长时间多级固溶,将组织统一为单一的细小均匀的充分再结晶组织,实现最佳固溶序列和时效脱溶序列的合理匹配,实现强度、塑性和弹性模量等综合性能同步提高。
     为该合金设计了全套工艺,特别是开发出独特的四级固溶工艺和三级时效工艺,对φ150×260mm试样实现平均抗拉强度σ_b=770MPa,平均屈服强度σ_(0.2)=730MPa,平均延伸率δ=9%,平均弹性模量E=75.5GPa。提出了理想固溶时效工艺设计理论及经验公式。合金性能整体水平达到了美国2002年最新开发的7085合金的研究水平(平均抗拉强度σ_b=770MPa,平均延伸率δ=11%,平均弹性模量E=72GPa)。
     自动化控制的关键在于确认设备之间的核心关系式及明确判别标准,可以实现喷射沉积材料的组织稳定性和最优化,大幅度提高喷射沉积材料的质量。通过研究喷射沉积工艺流程自动化控制的五个核心关系式,为喷射沉积设备全面自动化改造奠定了核心技术。
     系统和全面地深入研究了淬火热应力、塑性变形、残余应力、淬火界面、试样形貌的演变规律,建立了一系列拓扑模型,发现了淬火角端效应、淬火动态薄膜效应、微观和宏观淬火塑性变形机制、塑性变形驱动力机理、应力变化规律、残余应力形成机制及分布规律、淬火塑性变形区形状变化规律和厚度对淬火残余应力影响规律等等,创立了全新的淬火残余应力研究体系,全面突破了70年代日本学者米谷茂建立的残余应力两层结构的经典模型。
With microstructure design as the core,phase diagram - microstructure design - processing technology - properties is supposed as the main route for materials design.And the phase diagrams,corresponding phase transformation and phase of the Al-Zn-Mg-Cu alloy are calculated and characterized.All of these help the design of high strength,high modulus and high ductility aluminum alloys,and as an example the lager section jet spray aluminum alloy (Al-10.0Zn -3Mg-1.6Cu-0.8Ni-0.8Zr,Fe<0.1 wt%,Si<0.05wt%)is designed in the present paper.
     The optimum grain and particle size theory is proposed for design of high performance aluminum alloys.The matching of grain of matrix, precipitate and the solution extent is the core of high performance aluminum alloy.Based on the phase diagram,a homogeneous and fully recrystallized fine grain and the optimum matching of solution and precipitation sequence are obtained by long time three-stage solution treatment.The strength, ductility and modulus of the investigated alloy are improved together.
     An empirical equation for solution and aging treatment of the investigate alloy is proposed.A complete processing technology,especially the four-stage solution treatment and three-stage aging treatment,for the investigated alloy is developed in the present paper.The average ultimate strength of the investigated alloy by this series of processing technology is 770MPa;average yield strength is 730MPa,average elongation rate is 9%and average modulus is 75.5Gpa inφ150×260mm workpice.The mechanical properties are better than those of the alloy 7085,which is developed by US in 2002.
     The equations for description of the relationship between equipments play a critical role for computer control of jet spray equipments,which can improve the quality of ingots substantially.Five critical equations are proposed in the present paper,which made the foundation for computer control of jet spray equipments.
     A series of topological models are proposed for analysis of residual stress of aluminum workpieces,which completely discard the classical two-layer structure model by Japanese researchers in the 70s for investigation of residual stress.The thermal stress,plastic deformation and residual stress of quenched workpieces are systemically and thoroughly investigated with this series of topological model.The comer effect,quenching dynamic film effect, micro- and macro-plastic deformation mechanism due to quenching,driving force for plastic deformation,stress evolution pattem,the formation and distribution mechanism of residual stress and so on are revealed with the topological model.A completely novel system for investigation of residual stress is established.
引文
[1]曾苏民,袁季岗.我国铝加工的回顾与展望.西南铝内部资料.2005.
    [2]肖亚庆.铝合金材料及其制备技术的现状与发展趋势.中国铝业公司会议报告.2007.
    [3]Kubaschewski O,Alcock CB.Metallurgical Thermodynamic Chemistry.4th ed.Oxford,UK:Pergamon Press;1967.
    [4]Kubaschewski O,Alcock CB.Metallurgical thermodynamic chemistry.5th ed.Oxford,UK:Pergamon Press;1979.
    [5]Hultgren R,Orr R,Anderson P,Kelley KK.Selected Values of the Thermodyn- amic Properties of Binary Alloys.New York:John Wiley and Sons;1963.
    [6]Hultgren R,Desai PD,Hawkins DT,et al.Selected Values of the Thermodynamic Properties of Binary Alloys.Metals Park,OH:American Society for Metals;1973.
    [7]Brewer L,Lamoreaux RH.Thermochemical properties.In:Molybdenum- physicochemical properties of its compounds and alloys,Intemational Atomic Energy Agency,Vienna,1908,11-191 and Brewer L,Lamoreaux RH.Phase diagrams.In:Molybdenum:physico-chemical properties of its compounds and alloys,Vienna:International Atomic Energy Agency;1908;195-356.
    [8]Rudy E.Z Metallk 1963;54:112-22.
    [9]Rudy E.Z Metallk 1963;54:213-23.
    [10]Kaufman L,Bernstein H.Computer calculation of phase diagrams.New York:Academic Press;1970.
    [11]Pelton AD,Schmalzried H.Metall Trans 1973;4:1395-404.
    [12]Spencer PC,Barin I.Mater in Engin Applications 1979;1:167-79.
    [13]Sharma RC,Chang YA.Thermodynamics and phase relationships of transition metal sulfur systems Ⅲ.Thermodynamic properties of the Fe-S liquid and the calculation of the Fe-S phase diagram.Met Trans 1979;106-118.
    [14]Hillert M.Physica B 1981;103:31.342 Y.A.Chang et al./Progress in Materials Science 49(2004)313-345
    [15]Lukas HL,Weiss J,Henig E-Th.CALPHAD 1982;6-229.
    [16]Gabriel A,Gustafson P,Ansara I.CALPHAD 1987;11-203.
    [17]Schmid R.A thermodynamic analysis of the Cu-O system with an associated solution model.Metall Trans B 1983;14B:473.
    [18] Chuang Y-Y, Hsieh K-C, Chang YA. Thermodynamics and phase relationships of transition metal sulfur systems V. A re-evaluation of the Fe-S binary system. Met Trans 1985;16B:277.
    [19] Chuang YY, Chang YA, Schmid R, et al.Magnetic contributions to the thermodynamic functions of alloys and the phase equilibria of the Fe-Ni system below 1200 K. Met Trans 1986;17A: 1361.
    [20] Chuang Y-Y, Chang YA. A thermodynamic analysis and calculation of the Fe-Ni-Cr phase diagram. Metall Trans A 1987;18A:733.
    [21] Hsieh K-C, Chang YA. Thermochemical description of the ternary iron-nickel- sulfur system. Can Met Quarterly 1987;26:311.
    [22] Chen S-W, Jan C-H, Lin J-C, et al.Phase equilibria of the Al-Li binary system. Met Trans A 1989;20A:2247.
    [23] Kattner UR, Lin J-C, Chang YA. Thermodynamic assessment and calculation of the Ti-Al system. Met Trans 1992;23A:2081.
    [24] Murray J, Peruzzi A, Abriata JP. J Phase Equilibria (USA) 1992; 13:277.
    [25] Chen S-L, Chang YA. A thermodynamic analysis of the Al-Zn system and phase diagram calculation. CALPHAD 1993;17:113.
    [26] Sundman B, Jansson B, Anderson J-O. CALPHAD 1985;9:153.
    [27] Eriksson G, Hack K. Metall Trans B 1990;21B: 1013.
    [28] Thompson WT, Eriksson G, Bale CW, et al. Applications of F*A*C*T in high temperature materials chemistry. Electrochemical Society, Inc (USA) 1997:16-30.
    [29] Dinsdale AT, Hodson SM, Barry TI, et al.Proc. 27th Annual Conference of Metallurgists, CIM, Montreal, 1988. Computations using MTDATA of metal-matte-slag-gas equilibria. 11, 59.
    [30] Andersson J-O, Guillermet AF, Hillert M, et al.Acta Metall 1986;34:437.
    [31] Lukas HL, Weiss J, Kattner U, Henig E-Th. Manual of the computer programs BINGSS.TERGSS, QUAGSS, BINFKT, QUAFKT, AND PMLFKT, version 11, Jan 1988.
    [32] Oates WA, Wenzl H. CALPHAD 1992; 16:73.
    [33] Oates WA, Wenzl H. CALPHAD 1993;17:35.
    [34] Chen S-L, Kao CR, Chang YA. Intermetallics 1995;3:233.
    [35] Zhang F, Huang W, Chang YA. CALPHAD 1997;21:337.
    [36] Bragg WL, Williams EJ. Proc Roy Soc 1934;A145:699.
    [37] Bragg WL, Williams EJ. Proc Roy Soc 1935;A151:540.
    [38] Wagner C, Shottky W. Z Phys Chem 1930;B11:163.
    
    [39] Chen S-L, Daniel S, Zhang F, et al.Schmid-Fetzer R. On the calculation of multicomponent stable phase diagrams. J Phase Equilibria 2001;22:373-8.
    [40] PANDAT software for multicomponent phase diagram calculation by computherm, LLC, 437 S. Yellowstone Dr., Madison, WI. 2000.
    [41] Chen S-L, Chou K-C, Chang YA. On a new strategy of phase diagram calculation, 1. Basic principles. CALPHAD 1993;17:237.
    [42] Chen S-L, Chou K-C, Chang YA. On a new strategy of phase diagram calculation, 2. Binary systems. CALPHAD 1993;17:287.
    [43] Muggianu YM, Gambino M, Bros JP. J Chimie Physique 1975;72:83.
    [44] Liang, H. Thermodynamic modeling and experimental investigation of the Al-Cu-Mg-Zn quaternary system. Ph.D. Thesis, University of Wisconsin, Madison, WI., 1998.
    [45] Daniel S, Chang YA. unpublished work, University of Wisconsin, Madison, WI., 2001.
    [46] Yan X-Y, Chang YA, Xie F-Y, et al. Calculated phase diagrams of aluminum alloys from binary Al-Cu to multicomponent commercial alloys. J Alloy Compounds 2001;320:151-60.
    [47] PanAluminum-A thermodynamic database for a 14 component aluminum alloy system, 2001,CompuTherm, LLC, 437 S. Yellowstone Dr., Madison, WI.Y.A. Chang et al. / Progress in Materials Science 49 (2004) 313-345 343
    [48] Yan X-Y, Chang YA, Yang Y, et al.He M-H. A thermodynamic approach for predicting the tendency of multicomponent metallic alloys for glass formation. Intermetallic 2001;9:535-8.
    [49] Lin XH, Johnson WL. J Appl Phys 1995;78:6514.
    [50] Kracek FC. J Phys Chem 1930;34:1588.
    [51 ] Chang YA, Neumann JP, Mikula A, et al.INCRA Monograph VI. Phase diagrams and thermodynamic properties of ternary copper-metal systems. New York: The International Copper Research Association, Inc.; 1979.
    [52] Chang YA, Neumann JP, Choudary UV. INCRA monograph VII. Phase diagrams and thermodynamic properties of ternary copper-sulfur-metal systems. New York: The International Copper Research Association, Inc.; 1979.
    [53] Chang YA, Hsieh K-C. Phase diagrams of ternary copper-oxygen-metal systems. Metals Park, OH: ASM International; 1989 44073.
    [54] Rhines F. Phase diagrams in metallurgy, their development and applications. New York: McGraw-Hill; 1951.
    [55] WinPhad software for binary phase diagram calculation by CompuTherm, LLC, 437 S. Yellowstone Dr., Madison, WI. 53719,1998.
    [56] Zhang F. CompuTherm, LLC, 437 S. Yellowstone Dr., Madison, WI. Private communication, 2001.
    [57] Ansara I, Dinsdale AT, Rand MH. Editors, COST 507: Thermochemical Database for Light Metals Alloys, European Communities, Luxembourg, ISBN 92-828-3902-8, 1998.
    [58] Hillert M, Staffanson LI. Acta Chem Scand 1970;24:3618.
    [59] Harvig H. Acta Chem Scand 1971;25:3199.
    [60] Sundman B, Agren J. J Phys Chem Solids 1981 ;42:297.
    [61] Dupin N, Ansara H. J Phase Equilibria 1993;14:451.
    [62] Zhang F, Chen S-L, Chang YA, et al. An improved approach for obtaining thermodynamic descriptions of intermetallic phases: application to the Cr-Ta System. Intermetallics 2001;9:1079-83.
    [63] Zhang F, Chen SL, Chang YA, et al.A thermodynamic description of the Ti-Al system. Intermetallics 1997;5:471.
    [64] Du Y, Clavagurea N. J Alloys and Comp 1996;237:20-32.
    [65] Ansara I, Dupin N, Lukas HL, et al.J Alloys and Comp 1997;247:20-30.
    [66] Huang W, Chang YA. A thermodynamic analysis of the Ni-Al system. Intermetallics 1998;6:487-98 Corrigendum: Intermetallics, 1999, 7, 625-626.
    [67] Chang YA, Chen S-L, Zhang F, et al. Improving multicomponent phase diagram calculations. In: Turch PEA, Gonis A, Shull RD, editors. CALPHAD and Alloy Thermodynamics. Warrendale, PA: TMS; 2002. p. 53-60.
    [68] Zhang F, Chang YA, Du Y, et al. Modeling of the fcc phases using the cluster-site approximation in the Ni-Al system. Acta Mater 2003;51:207-16.
    [69] Oates WA, Wenzl H, Mohri T. CALPHAD 1996;20:37.
    [70] Redlich O, Kister A. Ind Eng Chem 1948;40:345.
    [71] de Fontaine D. Solid State Physics 1994;47:33-176.
    [72] Oates WA, Wenzl H. The cluster/site approximation for multicomponent solutionsa practical alternative to the cluster variation method. Scr Mater 1989;35:623.
    [73] Oates WA, Zhang F, Chen S-L, et al.An improved cluster/site approximation for the entropy of mixing in multicomponent solid solutions. Phys Rev B1999;59B:11221-5.
    [74] Yang CN. A generalization of the quasi-chemical method in the statistical theory of superlattices. J Chem Phys 1945; 13:66.
    [75] Yang CN, Li YY. Generalized theory of the quasi-chemical method in the statistical theory of superlattices. Chinese J Phys 1947;7:59.
    [76] Li YY. Quasi-chemical theory of order for the copper gold system. J Chem Phys 1949; 17:447.
    [77] Li YY. Quasi-chemical method in the statistical theory of regular mixtures. Phys Rev 1949;76:972.
    [78] Kikuchi R. Phys Rev 1951 ;81:988. 344 Y.A. Chang et al. / Progress in Materials Science 49 (2004) 313-345
    [79] Lee J. New Monte Carlo algorithm: entropic sampling. Phys Rev Lett 1993;71:211.
    [80] Ferreira LG, Wolverton G, Zunger A. Valuating and improving the cluster variation method entropy functional for Ising alloys. J Chem Phys 1998;108:2912.
    [81] Ferreira LG, Mbaye AA, Zunger A. Effect of chemical and elastic interactions on the phase diagrams of isostructural solids. Phys Rev 1987;B35:6475.
    [82] Zhang J, Oates WA, Zhang F, et al. Chang YA. Cluster/site approximation of the ordering phase diagram for Cd-Mg alloys. Intermetallics 2001;9:5-8.
    [83] Frantz C, Gantois M. J App Crystallog 1971;4:387.
    [84] Asta M, McCormack R, de Fontaine D. Phys Rev B 1993;48:748.
    [85] Zhang F, Oates WA, Chen S-L, et al.Cluster-site approximation (CSA) calculation of phase diagrams. In: McNallan M, Opila E, editors. High Temp.erature Corrosion and Materials Chemistry III. The Electrochemical Society, Pennington, NJ; 2001. p.241-52 12.
    [86] Sigli C, Sanchez JM. Acta Mater 1985;33:1097.
    
    [87] Pasturel A, Colinet C, Paxton AT, et al.J Phys Condens Matter 1992;4:945.
    [88] PanEngine is the calculation engine from PANDAT, a Dynamically Linked Library (DLL) that can be used to create custom software applications, 2001, CompuTherm, LLC, 437 S. Yellowstone Dr., Madison, WI.
    [89] Chang YA, Yan X-Y, Daniel SL, et al. PANDA and PanEngine-their applications in multicomponent phase diagram calculation and microstructure prediction. In: Zhao J-C, Fahrmann M, Pollock TM, editors. Materials design approaches and experiences. Warrendale, PA: TMS; 2001. p. 85-96.
    [90] Xie F-Y, Kraft T, Zuo Y, et al. Acta Mater 1999;47:489-500.
    [91] Xie F-Y. Ph.D. Thesis, University of Wisconsin-Madison, 1999.
    [92]Liang H,Kraft T,Chang YA.Importance of reliable phase equilibria in studying microsegregation in alloys:Al-Cu-Mg.Mater Sci Engin 2000;A292:96-103.
    [93]Xie F-Y,Kraft T,Chu M,et al.Microstructure and microsegregation in a directionally solidified quatemary Al-rich Al-Cu-Mg-Zn Alloy.In:Anjier JL,editor.Light Metals 2001.Warrendale,PA:TMS;2001.p.1085-90.
    [94]Yan XY,Ding L,Chen S-L,et al.Predicting microstructure and microsegregation in multicomponent aluminum alloys.In:Anjier JL,editor.Light metals 2001.Warrendale,PA:TMS;2001.p.1091-7.
    [95]Yan X-Y,Xie F-Y,Chu M,et al.Microsegregation in Al-4.5Cu wt pct Alloy:Experimental investigation and numerical modeling.Mater Sci Engin 2001;A302:268-74.
    [96]Xie F-Y,Yan X-Y,Ding L,et al.A study of microstructure and microsegregation on aluminium 7050 alloys.Mater Sci Engin 2003;A:in press.
    [97]Bellen P,Hari Kumar KC,Wollants P.Z Metallkd 1996;87:972
    [98]栗丽,李焕喜,周铁涛等.Zn及Ni元素对喷射成形铝合金组织特征和时效行为的影响.稀有金属.2005年6月.第29卷第3期.368-370
    [99].v.Milman,A.L.Sirko,D.V.Lotsko.etal.Miracle.Mater.Sci.Forum Vols.396-402(2002)p1217-1222
    [100]Venkateswarlu P,Bharadwaja S S N,Krupanidhi S.B.Thin Solid Films,2001,3 89:84
    [101]刘晓涛 崔建忠.AI-Zn-Mg-Cu系超高强铝合金的研究进展.材料导报.2005年3月第19卷第3期,47-51
    [102]Smith W F.张泉等,译.工程合金的组织和性能[M].北京:冶金工业出版社,1984.
    [103]王祝堂.铝合金及其加工手册[M].长沙:中南工业大学出版社,2000.94
    [104]张永安,朱宝宏,刘红伟等。Zn含量对喷射成形7X X X系高强铝合金,中国有色金属学报.2005年7月第15卷第7期,1013-1018.
    [105]刘晓涛 崔建忠.AI-Zn-Mg-Cu系超高强铝合金的研究进展.材料导报.2005年3月第19卷第3期,47-51.
    [106]陈吉安,杨春生,周勇等.微桥结构镍膜的弹性模量和残余应力研究.微细加工技术.2003年9月第3期,66-71.
    [107]薄宏.Al-Zn-Mg-Cu系超高强铝合金中的相及热处理制度的研究:[学士学位论文].长沙:中南大学,2007.
    [108]周娟.喷射成形高强铝合金热处理制度及组织性能研究:[硕士学位论文].长 沙:中南大学,2007.
    [109]ZhongQing Zhou,Peter F.Thomson,YeeCheong Lam etal.numerical analysis of residual stress in hot-rolled steel strip on the run-out table,journal of materials technology 132(2003):184-197.
    [110]Lin G.Y,Zhang H,Zhu W etal.Residual stresses in quenched 7075 aluminium alloy plates,Trans.Nonf.Met.Soc.China,2003(13):641-644.
    [111]Y.Nakayama,T.Takaai and S.Kimura.Evaluation of Surface Residual Stresses in Cold-Rolled 5083 Aluminum Alloy By X-ray Method.Materials Transactons,JIM,1993,34(6):496-503.
    [112]Subine Denis,Pierre Archambault,Elisabeth Gautier.Prediction of Residual Stress and Distortion of Ferrous and Non Ferrous Metals:current status and future developments.Proc.3rd International Conference on Quenching and Control of Distortion,1999(24-26):263-276.
    [113]曾苏民,杨扬,曹金荣等.7075铝合金模锻淬火残余内应力的消除,中国有色金属学报,1999(9):111-114.
    [114]张定铨,何加文著.材料中残余应力的X射线衍射分析和作用,西安交通大学出版社,1994.4:13-14.
    [115]米古茂.朱荆璞,邵会孟,译.残余应力的产生和对策.北京:机械工业出版社,1983.
    [116]胡少虬.7075铝合金厚板淬火残余应力的数值分析:[硕士学位论文].长沙:中南大学,2004.
    [117]E.R.G埃克特,R.M.德雷克,著.传热与传质分析.航青,译.北京:科学出版社,1983.
    [118]胡少虬,曾苏民.无相变合会淬火热应力演变机理的理论模型--(1)角端和边缘淬火热应力模型与淬火角端效应,稀有金属材料与工程,2006(4):538-541.
    [119]胡少虬,曾苏民.无相变合金淬火热应力演变机理的理论模型--(2)表层和内部淬火热应力模型及淬火动态薄膜效应,稀有金属材料与工程,2006(5):774-778.
    [120]胡少虬,曾苏民.无相变合金淬火热应力演变机理的理论模型--(3)淬火热应力拓扑模型及形状影响热应力规律,稀有金属材料与工程,2006(6):895-899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700