热处理工艺对7A04铝合金组织和性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金由于密度小、比强度高、优良的导电性、导热性和抗蚀性以及塑性,因此被广泛应用于航空航天、汽车、机械制造、船舶及化学工业等领域。高强铝合金的性能主要取决于它的基体组织和第二相析出物的分布和形态,而第二相析出物的分布和形态则受固溶和时效热处理工艺制度影响,因此只有采用合适的固溶和时效热处理工艺制度,才能获得具有优异综合性能的高强铝合金。
     本课题研究针对7A04高强铝合金,采用不同的热处理工艺制度进行了固溶、单级时效、双级时效以及三级时效处理。对不同时效工艺热处理后的试样进行拉伸实验、冲击实验、盐雾实验以及晶间腐蚀实验;采用激光共聚焦金相显微镜、透射电子显微镜对不同固溶时效工艺热处理后的组织进行观察分析。研究结果表明,较合理的固溶热处理工艺制度是470℃时固溶1小时,该固溶工艺制度可以较好控制第二相的回溶数量,获得较好晶粒匹配度;试样经三级时效处理后,基体组织中析出细小弥散分布的第二相,具有最优的的综合机械性能,抗拉强度达到642 MPa,屈服强度达到546MPa,延伸率高达13.5%,冲击功提高到14J;拟合抗拉强度和硬度的线性回归方程为:Yi=100.742+2.919Xi,该方程较好反映了7A04高强铝合金抗拉强度和硬度的对应关系;晶间腐蚀试验表明,不同时效工艺处理的7A04铝合金没有明显的晶间腐蚀现象,但是双级时效和三级时效处理的铝合金晶间腐蚀倾向更低;盐雾腐蚀试验结果表明,三级时效处理的铝合金抗盐雾腐蚀性能较好,双级时效处理的铝合金抗盐雾腐蚀性能次之,单级时效处理的铝合金抗盐雾腐蚀性能较差。
     通过上述对7A04高强铝合金固溶、时效热处理工艺制度的研究,优化出7A04高强铝合金的最佳热处理工艺制度。
Aluminum alloy was widely used in aerospace aircraft, automotive, machinery manufacturing, chemical industry and vessel because of its low density, high specific strength, excellent conductivity and thermal conductivity, high corrosion resistance and good plasticity. The properties of the ultra-high strength aluminum alloy are due to its matrix microstructures and morphology and distributions of the second-phase precipitates affected by solution and ageing treatment. In order to obtain the excellent mechanical properties, it must be took the suitable solution-ageing treatment.
     In this paper, the mechanical properties of the ultra-high strength 7A04 aluminum alloy at different heat-treatment conditions, including solution, single-ageing, two-stage aging and three-stage aging, were investigated by room temperature tensile test, hardness and impact toughness test, neutral salt spray test and intergranular corrosion test. The microstructures were investigated by optical microcopy, laser confocal scanning microscope and transparent electron microscope. The results show that the optimal solution treatment is treated at 470℃for 1 hour. The amount of coarse second phases can be reduced effectively and the size of grain can be controlled. The mechanical properties of aluminum alloy can be greatly improved. The dispersive distribution of the second phases can be abtained by using three-stage aging treatment which has the best mechanical properties. At this condition, tensile strength, yield strength, elongation and impact toughness respectively reach 642MPa, 546MPa,13.5%, and 14J. It has been deduced the linear regression equation which could reflects the corresponding relationship between tensile strength and hardness: Yi=100.742+2.919Xi. Aluminum alloy treated by three-stage aging treatment can obtain the best resistance againt salt spray and intergranular corrosion, and aluminum alloy treated by single-ageing treatment the single-ageing treatment obtain the worst resistance againt salt spray and intergranular corrosion.
     After the results were analyzed and discussed theoretically, the heat-treatment processes were optimized.
引文
[1]海邦君.铝合金车体设计研究[J].设计制造(铁道车辆),2003,10,41(10):26-28.
    [2]四方车辆研究所.高速客车铝合金车体静强度试验报告[R].1998.
    [3]戴静敏,吴云兴.车辆用铝合金的性能及其应用(上)[J].铁道车辆,1994,(9):14-19.
    [4]马场义雄,西村嘉颜.最近的车辆用铝合金[J].(日)轻金属,1983,33(10):22-25.
    [5]戴静敏,吴云兴.车辆用铝合金的性能及其应用(下)[J].铁道车辆,1994,(9):19-24.
    [6]刘岩苗,彦英.试论铝合金车辆的发展及其应用前景[J].铁道车辆,1994,(7):33-35.
    [7]David AL, RayMH. Aluminumalloy development effortsfor compres-sion dominated structure of aircraft[J]. LightMetal Age,1991,2(9):124-125.
    [8]Heinz A, Haszler A. Recent development in aluminum alloys for aerospace applications[J]. Mater.Sci.Eng.,2000,A280:102-103.
    [9]弗利德良杰尔.高强度变形铝合金(吴学译)[M].上海:上海科学技术出版社,1963,7:46-47.
    [10]周鸿章.高强铝合金的研究进展[J].稀有金属材料与工程,2001,30(6):28-33.
    [11]马场义雄.超硬铝(EDS)及飞机铝合金发展动向(孙本良译)[J]. Aluminum Fabrication Technology(铝加工技术),1990,(4):6-8.
    [12]и.Н佛里德良杰尔,B.и杜巴特肯,E.д扎哈罗夫,邓宗铜译.北京:国防工业出版社,1965,P46.
    [13]Ludtra G M, Laughlin D E. The influence of microstructure and strength on the fracture mode and toughness of 7ⅩⅩⅩ series aluminum alloys[J]. Metal Trans,1982, 13A(3):411.
    [14]Cina B, Ranish B. New technique for reducing susceptibility to stress corrosion of high strength aluminum alloys[J]. Aluminum Industrial Products, Pittsburgh chapter:ASM, Oct,1974.
    [15]Islam M V, Wallace W. Retrogression and reaging response of 7475 aluminum alloy[J]. Metal Tech,1983,10(10):386.
    [16]Brown M H. Three-step aging to obtain high strength and corrosion resistance in Al-Zn-Mg-Cu alloys[J]. U.S.Patent4477292,1984,16:342.
    [17]Lin J, Kersker M M. Heat treatment of precipitation hardening alloys. U.S.Patent5108520,1992,28:458.
    [18]Hall M B, Martin J W. The effect of retrogression temperature on the properties of an RRA 7150 aluminum alloy[J]. Z Metallkd,1994,85(2):134.
    [19]曾 渝,尹志民等.RRA处理对超高强铝合金微观组织与性能的影响[J].中国有色金属学报,2004,7,14(7):1188-1194.
    [20]Bredenguugh P R. Light Metal Age.1985,10:18.
    [21]Kusui J, Fujii K. Materials Science Forum,1996,217-222:1823.
    [22]Leatham A G. Spray forming:alloys, products, markets[c]. In:Fourth Int. Conf. on. SF. Baltimore, USA,1999:29.
    [23]J. Gr obner, L.L. Rokhlin, T.V. Obtain, R. Schmid-Fetzer. Predictive calculation of phase formation in Al-rich Al-Zn-Mg-Cu-Sc-Zr alloys using a thermodynamic Mg-alloy database[J]. Journal of Alloys and Compounds,2007 (433):108-113.
    [24]LIli, ZHOU Tietao, LI Huan-xi, CHEN Changqi, XIONG Baiqing, SHI Li-kai. Effect of additional elements on aging behavior of Al-Zn-Mg-Cu alloys by spray forming[J].Tran. Nonferrous Met. SOC. China 2006 (16):532-538.
    [25]Wang Feng, Xiong Baiqing, Zhang yongan, Liu Hongwei, He Xiaoqing. Microstructural development of spray-deposited Al-Zn-Mg-Cu alloy during subsequent processing[J]. Journal of Alloys and Compounds,2009 (477):616-621.
    [26]He Yongdong, Zhang Xinming, Cao Zhiqiang. Effect of Minor Cr, Mn, Zr, Ti and B on Grain Refinement of As-Cast Al-Zn-Mg-Cu Alloys[J]. Rare Metal Materials and Engineering,2010,39(7):1135-1140.
    [27]张勤,崔建忠.CREM7075铝合金的微观组织和性能[J].材料导报,2002,3(1):61-65.
    [28]谢优华,杨守杰.含锆超高强铝合金的研究及发展概况[J].中国有色金属学报,2003,3(2):87.
    [29]曾渝,尹志民,潘青林等.超高强铝合金的研究现状及发展趋势[J].中南工业大学学报,2002,33(6):592-596.
    [30]徐云庆,孙仙奇等.7A04(LC4)超高强铝合金断裂韧性研究,硕士学位论文,2008.6.
    [31]J D费豪文.物理冶金学基础.卢光熙等译[M].上海科学技术出版社,1980:243.
    [32]Song RqTseng M K,Zhang B J,etc.Acta Mater,1996,44:3241.
    [33]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998,6:P232-233,P589-592,P178-179,P561.
    [34]张伟,刘金明,欧阳玲玉.提高铝合金强度的技术途径和方法[J].铝加工,2008,185(6):43-45.
    [35]张士林,任颂赞.简明铝合金手册[M].上海:上海科学技术出版社,2001,1:P10.
    [36]张景祥,张忠华,边秀房.变形铝合金晶粒细化的进展[J].轻金属加工技术,2000,28(7): 1-4.
    [37]李毅,潘庆生.LC4铝合金熔体处理与均匀化工艺研究,硕士学位论文,2002.11.
    [38]仲志国,左秀荣,翁永刚等.变形铝合金均匀化热处理的应用现状与研究进展[J].2006,10,34(1):10-13.
    [39]宁爱林,刘志义,郑青春,曾苏民.分级固溶对7A04铝合金组织与性能的影响[J].中国有色金属学报,2004,7,14(7):1211-1216.
    [40]宁爱林,曾苏民.复合强韧化对高强铝合金组织和性能的影响[J].中国有色金属学报,2003,12,13(6):1467-1471.
    [41]宁爱林,曾苏民等.7A04铝合金高温固溶的微观组织和力学性能[J].轻合金加工技术,2005,33(5):48-51.
    [42]曾苏民.影响铝合金固溶保温时间的多因素相关规律[J].中国有色金属学报,1993,5,(9)1:79-86.
    [43]尚勇,张立武.高强铝合金的热处理技术[J].上海有色金属,2005,26(2):97-102.
    [44]姚鹏.分级时效在LC4和QBe2上的应用[J]. China Molybdenum Industry,1997,4,增刊:42-43.
    [45]张录泉.7XXX系合金的双级时效[J].轻合金加工技术,1986,12:16-21.
    [46]李志辉,熊柏青等.7B04铝合金双级时效的微观组织与性能[J].稀有金属材料与工2008,37(3):521-524.
    [47]冯春,刘志义,宁爱林,曾苏民.超高强铝合金RRA热处理工艺的研究进展[J].材料导报,2006,4,20(4):98-101.
    [48]曾 渝,尹志民等.RRA处理对超高强铝合金微观组织与性能的影响[J].中国有色金属学报,2004,14(7):1188-1194.
    [49]高强.最新有色金属金相图谱大全,中国冶金工业出版社,2005,10,第一版,P732-733.
    [50]束德林.工程材料力学性能[M].机械工业出版社,2004年7,第一版,P14-15.
    [51]曾渝,尹志民.超高强铝合金的研究现状及发展趋势[J].中南工业大学学报.2002,33(6):592-596;
    [52]王长寿.LD7合金抗拉强度与硬度关系的探讨[J].理化检验—物理分册,1996,32(6):50-51.
    [53]林光磊.6063铝合金型材维氏硬度与强度的线性关系[J].轻合金加工技术,2002,30(1):29-31.
    [54]唐启义.DPS数据处理系统—实验设计、统计分析及数据挖掘[M].科学出版社,2010,2,第二版,P657.
    [55]唐明,陈宁.工程试验优化设计[M].中国计量出版社,2009,11,第一版,P119-122.
    [56]苏景新,张昭等.铝合金的晶间腐蚀与剥蚀[J].中国腐蚀与防护学报,2005,6,3(25):187-192.
    [57]继红, 蔡建平,贾成厂.盐雾环境下高强度铝合金的点蚀行为[J].中国腐蚀与防护学报,2010,30(3):197-202.
    [58]李荻,张琦,王弟珍,郭宝兰,张玉梅.LY12cz铝合金晶间腐蚀模拟试验研究[J].1998,2,28(1),1-3.
    [5:9]Buchheit R G,Morgan J P,Stoner G E. Electrochemical behavior of the T1 (A12CuLi) intermetallic compound and its role in localized corrosion of Al-2%Li-3%Cu alloys[J]. Corrosion,1994,50:120.
    [60]Buchheit R G,Wall F D, Stoner G E. Anodic dissolution-based mechanism for the rapid cracking,preexposure phenomenon demonstrated by aluminum-lithium-copper alloys[J]. Corrosion,1995,51:417.
    [61]Yan D J,Zhang Y D,Wang H S,Wang S M.Effect of ageing con-dition on SCC resistance and exfoliation corrosion behavior of 7475 and 7050 aluminum alloys[J]. Mater.Eng., 1993, (2):13-16.
    [62]杜爱华,龙晋明,裴和中.高强铝合金应力腐蚀研究进展[J].中国腐蚀与防护学报,2008,8,28(4):251-256.
    [63]刘建华,吴昊,李松梅,谢志宾.高强合金与钛合金的电偶腐蚀行为[J].北京航空航天大学学报,2003,2,29(2):124-127.
    [64]Creus J,Idrissi H,Mazille H. Corrosion behaviour of Al/Ti coating elaborated by cathodic arc PVD process ontomild steel substrate[J].Thin Solid Film,1999,346:150-154.
    [65]Foley R T. Localized corrosion of aluminum alloys-A review[J].Corrosion,1986,42:277.
    [66]Li J F,Zhang Z,Cao FH,Cheng Y L,Zhang J Q,Cao C N.Exfoli-ation corrosion and electrochemical impedance behavior of LC4 al-loy[J].The Chin.J.Nonferrous Metals,2002,12(6):1189-1193.
    [67]Yan D J,Zhang Y D,Wang H S,Wang S M.Effect of ageing con-dition on SCC resistance and exfoliation corrosion behavior of 7475 and 7050 aluminum alloys[J].Mater.Eng.,1993,(2):13-16.
    [68]Reboul M C,Bouvaist J.Exfoliation corrosion mechanisms in the 7020 aluminum alloy[J].Werkstoffe und Korrosion,1979,30:700-712.
    [69]范洪李,金元素与热处理工艺对Al—Zn—Mg—Cu铝合金的组织与力学性能影响的研究,硕士学位论文.
    [70]张琦,李获,丁学谊,张玉梅.LC4铝合金晶间腐蚀电化学机理[J].材料保护,1996,8,29(8):6-7.
    [71]GRAEDEL T E. Corrosion mechanisms for aluminum exposed to the heat atmosphere[J]. Journal of the Electrochemical Society,1989,136(4):204-212.
    [72]ELOLA A S,OTERO T F,PORRO A.Evolution of the pitting of aluminum exposed to the atmosphere[J].Corrosion,1992,48(10):854-863.
    [73]李劲风,郑子樵,任文达.第二相在铝合金局部腐蚀中的作用机制[J].材料导报,2005,2,19(2):81-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700