液压振动系统的伺服控制器研究及其DSP实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压伺服系统是控制领域中的一个重要的组成部分。被控对象(液压振动台)具有负载压力和额定功率相当大的特点,因此要求传输和控制的功率要相当可观;而且它还具有数学模型阶数高、闭环频带宽度窄、稳定性差等特点。
     本课题以“铁马工程”项目为背景,以液压振动台为被控对象,伺服控制器的设计和实现为工作的核心。首先基于液压振动系统的数学模型,对系统的稳定性和动态特性加以分析,并在此基础上设计不同的控制算法以达到展宽频带宽度的要求。
     在实际应用中按照技术和性能指标要求,以及参考行业的经验知识,采用双闭环的控制方法。内闭环控制器用来调节三级电液伺服阀,外闭环控制器用来调节整个液压振动系统跟踪的快速性、减小系统的稳态误差和展宽系统跟踪的频带宽度。
     采用DSP技术的伺服控制器的设计和实现是整个课题的核心内容。不仅能够实现对液压振动系统的控制,还能够实现上位机的实时监测和控制。符合工业标准的CompactPCI总线技术也是该控制器的特色之一。控制器的软件可以分为跟上位机通讯模块和伺服控制模块。
     同时,在理论仿真和实际现场调试之间,还有一个重要的环节就是电模拟仿真(即半实物仿真)。设计、制作液压振动系统的电模拟模型仿真系统也是工作的重要内容之一。然后结合双闭环控制器和电模拟仿真模型,验证所设计的控制方法和所搭建的控制器的有效性,并进一步模拟现场可能出现的各种情况,得到仿真结论。
     最后将所做的仿真工作在现场进行验证,对“铁马工程”中所采用的伺服控制系统的各个参数进行调整,直到各项性能指标都达到了用户的需求。
The servo HPVS (hydraulic pressure vibration system) is an important part in control region. The hydraulic pressure vibration platform is considered the controlled object. The design of appropriate platform of controller and implement are the main work. The controlled object HYVP (hydraulic pressure vibration platform) has the property of big loading pressure and rating power, so it need considerable transmitted and control power, it also has the property of high-level math model, and narrow frequency width in closed-loop, and bad stability.
     This thesis is based on the HPVS in the“Tiema project”. It begins with the math model’s building, simulation research in theory and half- practicality, then design the appropriate platform of controller, at last it must be verified in the industry local. First calculate the math model of each department of the HPVS, and analyze it’s character of the scope with frequency in theory, and base on this some different control methods are designed to resolve the system’s stability and expand it’s frequency band. The method of adding line trap and acceleration feedback which based on the character of frequency, the method for the problem of designing tracking regulator is transformed to the designing of state adjustor which based on the line system theory, we can get the good control result with these methods. In industry we adopt the method of double close-loop controller because we must consider the technique target and economy target together.
     It’s the core of this thesis that the controller’s design with the technology of Digital Signal Processor (DSP). It can not only control the HPVS, but also it can realize the real-time supervise and control on PC. It’s one of important features of that the CompactPCI technology which accords with the industry standard. The software of the controller contains the module of communication with PC and the module of servo control.
     There is an important step which between the simulation in theory and the debugging in industry locale must to be done, the step is electric simulation (it’s also mean half-real simulation). Design and produce the HPVS’s electric simulate model, combine with the double close-loop controller, Simulate the system’s self-excited phenomenon and the badly signal’s character, and to find the root reason and the solution method.
     At last all the results of simulator in theory and electric simulation have been
引文
1 刘长年. 液压伺服系统优化设计理论. 北京: 冶金工业出版社. 1989
    2 王裕清, 韩成石. 液压传动与控制技术. 煤炭工业出版社. 1997.1
    3 李连升, 刘绍球. 液压伺服理论与实践. 国防工业出版社. 1990
    4 周恩涛. 可编程控制器原理及其在液压系统中的应用. 机械工业出版社. 2003.1
    5 Y. F. Xiong, S. Lequoc, H. Cheng. Adaptive Control of a Synchronizing Servo System. SAE Technical Paper Series. 1992
    6 B. Yao, F. Bu, J. Reedy, and G. T-C. Chiu. Adaptive Robust Motion Control of Single-rod Hydraulic Actuators: Theory and Experiments. Proc. IEEE American Control Conf.. 1999. 2
    7 孙亮. MATLAB 语言与控制系统仿真. 北京工业大学出版社. 2001
    8 孙亮, 杨鹏. 自动控制原理. 北京工业大学出版社. 1999.8
    9 陶永华. 新型 PID 控制及其应用(第 2 版). 机械工业出版社. 2002
    10 刘金琨. 先进 PID 控制及其 MATLAB 仿真. 电子工业出版社. 2004.9
    11 郑大钟. 线性系统理论. 北京: 清华大学出版社. 2002
    12 薛定宇. 反馈控制系统设计与分析. 北京: 清华大学出版社. 2000
    13 易继锴, 侯媛彬. 智能控制技术. 北京工业大学出版社. 1999.9
    14 Lennart Ljung System Identification Toolbox For Use with MATLAB. The Math Works. Inc. 2002.7
    15 Isidarl A. Nonlinear Control Systems: An Introduction. Lecture Notes in Control and Information Science. 71. Springer. Berlin: 1995
    16 D. Cheng. Global Linearization of Nonlinear System Via Feedback. IEEE Trans Auto Control. 1995
    17 Transfer Functions for Moog Servovalves. Technical Bulletin 103.1994
    18 C. C. Nguyen, S. S. Antrazi, Z. L. Zhou, and C. E. Campbell. Analysis and experimentation of a Stewart platform-based force/torque sensor. Int. J. Robot. Automat. 1992. 7(3): 133~140
    19 D. R.Kerr. Analysis, Properties, and Design of a Stewart-platform Transducers. Transmissions Automat Design. 1989. 111: 24~28
    20 B.Yao and M.Tomizuka. Adaptive Robust Control of MIMO Nonlinear Systems in Semi-strice-feedback forms.Automatica. Submitted for Publication. 2000
    21 P. Gao and S.M. Swei. A Six-degree-of-freedom Micro-manipulator Based on Piezoelectric Translator. Nanotechnol. 1999. 10:447~452
    22 K. A. Edge and F. G. de Almeida. Decentralized Adaptive Control of a Directly Driven Hydraulic Manipulator Part I: theory. Inst. Mech. Eng.. 1995. 209(5): 191~196
    23 M.R Sirouspour and S.E.Salcudean. On the nonlinear control of hydraulic servo-systems. iProc. Int. Conf. Robotics and Automation. 2000.3 :1276~1282
    24 王念旭等. DSP 基础与应用系统设计. 北京航空航天大学出版社. 2002.7
    25 苏涛. DSP 实用技术(第 1 版). 西安电子科技大学出版社. 2002
    26 Tom. Shanley, Don. Anderson. PCI System Architecture Fourth Edition. 北京:电子工业出版社. 2000
    27 Christopher Inacio, Denise Ombres. The DSP Decision Fixed Point or Floating. IEEE Spectrum. 1996.9 :72~74
    28 CPCI-ADDA Reference Manua. ALPHI Technology Corporation. 1998.5
    29 李东升, 张勇, 许四毛. Protel 99SE 电路设计技术入门与应用. 电子工 业出版社. 2002.2
    30 高西(M.S. Ghausi). 现代滤波器设计: 有源 RC 和开关电容. 科学出版社. 1989
    31 李远文. 有源滤波器设计. 人民邮电出版社. 1986
    32 侯媛彬, 汪梅, 王立琦. 系统辨识及其 MATLAB 仿真. 科学出版社, 2004.1
    33 周彤. 面向控制的系统辨识导论. 清华大学出版社. 2004.1
    34 朱豫才, 张湘平, 虞水俊. 过程控制的多变量系统辨识. 国防科技大学出版 社. 2005.1
    35 The Tool for Compressing Vehicle Development Time. MTS System Corpration. 2003.6
    36 A. J. Patel and K. F. Ehmann. Volumetric error Analysis of a Stewart Platform-based Machine Tool. Ann. CIRP. 1997.46(1): 287~290
    37 T. Huang, D. J. Whitehouse, and J. Wang. The Local Dexterity, Optimal Architecture and Design Criteria of Parallel Machine Tools. Ann. CIRP. 1998. 47(1): 347~351
    38 W.S. Yu and T.S. Kuo. Continuous-time Indirect Adaptive Control of the Electro-hydraulic Servo Systems. IEEE Trans. Contr. Syst. Technol. 1997. 5: 163~177
    39 G. Vossoughi and M. Donath. Dynamic Feedback Linearization for Electro-hydraulic Actuated Control System. J. Dyn. Syst., Meas.. Contr. 1995. 117: 468~477
    40 K.M. Lee, S. Arjunan. A Three-degrees-of-freedom Micromotion in-parallel Actuated Manipulator. IEEE Trans. Robot. Automat. 1999. 7:238~247
    41 J. Wang , O. Masory. On the accuracy of a Stewart platform—Part 1: The Effect of Manufacturing toLerances. Proc. IEEE Int. Conf. Robotics and Automation. Atlanta. GA. 1993. 5: 114~120
    42 R. Hoffman, M. C. McKinnon. Vibration Modes of an Aircraft Simulator System. Proc. 5th World Congress for the Theory of Machines and Mechanisms (ASME). 1979. 3: 611~616.
    43 Meng Tang, Liu Chen. The System Bandwidth Analysis in Electro-hydraulic Servo System with PDF Control[CD]. Control Conference, 2004. 5th Asian, 2004.7, 3:1737 - 1745
    44 Cheng Guan, Shanan Zhu. Adaptive Time-varying Sliding Mode Control for Hydraulic Servo System[CD]. Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. 2004.12, 3:1774 - 1779
    45 Linming Liu, Yonggao Zhang. Double Closed Loop Control and Analysis for a Static Synchronous Series Compensator[CD]. Power Electronics Specialists, 2005 IEEE 36th Conference on. 2005.6:354 - 360

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700