双目立体视觉及三维反求研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以对物体表面进行三维曲面重构为目的,构建不同的双目被动立体视觉系统,对视觉系统的立体标定、图像匹配、密集点云重建、细分曲面拟合等方面展开了深入的研究,并对细分法的快速收敛性判据的计算方面做了一些有益的探索工作。最后给出了双目立体视觉系统在三维人脸识别中的实例应用。
     本文的主要工作如下:
     提出基于复小波的相位相关算法对图像对进行密集匹配。考虑顺序匹配约束、连续性约束和相关性约束等条件,通过函数波峰拟和与亚像素位移因子迭代技术,对图像进行多分辨小区域匹配,获得对应点的亚像素级实时配准效果。该方法较好地克服了由传统傅里叶变换周期性引起的边界跳跃等问题,又较Gabor变换具有从粗到细的多分辨匹配搜索能力,对光线变化等具有较强的鲁棒性,可密集重建物体表面三维点云信息。最后运用细分曲面拟合技术,对物体表面进行层次局部加细的曲面重建。
     构建一种基线自适应的双目被动立体视觉系统,可根据被测物体的采样距离与所需精度等参数通过单片机自适应地驱动基线长度,由于调整基线和拍摄抖动会引起系统立体标定参数的改变,需引入新的半自标定技术,该技术可实时精确获取新的标定结果。另外,为解决传统双相机精确同步采样困难的问题,构建一种基于单相机的双目被动立体视觉系统,并为此提出了与之相应的标定算法,解决了非针孔模型下的相机自动标定问题。
     对细分法的收敛性分析也做了相关的工作。p-范数联合谱半径是由复方阵的有界集定义的,可用来判别细分法的收敛性。这里研究了整数值的p-范数联合谱半径,给出一些基本公式,并对∞-范数下的Berger-Wang关系式给出一个简单的证明。另外,对细分随机矩阵特征值进行了估计。
     最后,作为对本文研究内容的实例应用,提出了一种新的三维人脸识别方法。该方法采用基于单个相机的双目立体视觉系统对人脸进行采样,根据人脸对称性假设,运用补洞与纠错技术进行自动点云优化,继而采用简化的CANDIDE-3模型作为细分初始控制网格,局部加细地进行细分曲面分层次拟合操作,采用测地线映射技术对不同表情进行归一化,并分别建立人脸数据库。运用从粗到细的策略进行三维人脸的比对与识别,该识别方法也同时支持通过图像序列反求的三维人脸信息。实验结果表明,采用新的单相机立体视觉系统在提高重建精度的同时,很大程度上避免了由于双相机拍摄不同步引起的重建鲁棒性降低问题。而采用细分曲面作为存储结构,在节约空间的前提下,为分层次比对筛选提供了理论支持。该系统成本较低,适合在许多领域推广应用。
In this paper, a different passive binocular stereo vision system to get 3D surface reconstruction is presented. An in-depth research is done in vision system calibration, image matching, dense point cloud reconstruction, subdivision surface fitting and so on. Moreover, there is also some useful work on rapid computation of convergence criterion of subdivision rules. Finally, some examples are given by applying the binocular stereo vision system to face recognition.
     The main research achievements are as follows in detail:
     Based on complex wavelet, a phase correlation algorithm is put forward to match images intensively. Considering order matching constraint, continuity constraint and correlation constraint conditions, multiresolution image regional matching is done through peak fitting and iteration of sub-pixel displacement factor, which leads to sub-pixel real-time matching results for corresponding points. This method makes it feasible to overcome boundary jumping and other problems caused by the periodicity of traditional Fourier transform. Meanwhile, it has coarse-to-fine multiresolution capacity to match and search, which Gabor transform don't have. In addition, it has higher robust for light changing and could reconstruct 3D point cloud information densely. Finally, subdivision surface fitting technique is applied to get object-level local refinement of the surface reconstruction.
     A passive binocular stereo vision system with adaptive baseline is introduced. Here, "adaptive" means the length of baseline can be drived adaptively by SCM (Single Chip Micyoco) according to sample distance and required accuracy. Since adjusting baseline and shakable shooting may change the stereo calibrated parameters, a new semi-automatic calibration technology is put forward, which can gain new real-time calibration accurately. Furthermore, in order to improve the synchronization sampled by traditional dual-camera, a new passive binocular stereo vision system based on single camera is presented, as well as corresponding calibration algorithm, which solves the auto-calibration problem of non-pinhole model.
     There is also some work on the convergence analysis of subdivision method. It is well-known that the p-norm joint spectral radius is defined by a bounded collection of square matrices with complex entries and of the same size, which is used as convergence criterion of subdivision rules. The p-norm joint spectral radius for integers is investigated here, as well as some basic formulas and a simple proof of Berger-Wang's relation concerning the∞-norm joint spectral radius. In addition, estimate of the eigenvalues of subdivision stochastic matrices is studied here, as well as some search algorithms from graph theory.
     At last, an improved 3D face recognition method as well as a new binocular stereo vision system based on single camera are proposed in this paper. Under the assumption that face is symmetrical, the point cloud is optimized automatically by filling holes and correcting. Then, simplified CANDIDE-3 model is used as initial subdivision controlling mesh, refined locally and levelly fitted. Meanwhile, Geodesic mapping technique is applied to normalize different expressions and face database is built respectively. Furthermore, pyramid structure is employed to compare and recognize 3D faces, which is also suitable for reverse seeking 3D face information. Experiments show that the new stereo vision system not only improves reconstruction accuracy, but also avoids robust decreasing caused by non synchronous shooting of two cameras. Moreover, subdivision surfaces used as storage can save space and provide theoretical support for comparison. Considering its low cost, the system is feasible to spread in many fields.
引文
[1]Arie Kariel,Yuri Belsky,Yoram Reich.Decomposing the problem of constrained surface fitting in reverse engineering[J].Computer Aided Design,2005,37:399-417
    [2]单东日.反求工程CAD建模中点云数据区域分割及特征约束重构技术研究[D].杭州:浙江大学,2003
    [3]P.J.Phillips,H.Wechsler,J.Huang,P.Rauss.The FERET database and evaluation procedure for face-recognition algorithms.Image and Vision Computing Journal,1998,16(5):295-306
    [4]许智钦,阎明等.逆向工程技术三维激光扫描测量[J].天津大学学报,2001,34(3):404-407
    [5]Christoper,J.Rolls.CAD model construction from CMM and Laser scanning data for reverse engineering[D].Canada:University of Windsor,2001
    [6]张可.基于双目立体视觉原理的自由曲面三维重构[D]。武汉:华中科技大学,2005
    [7]周佳立,张树有,杨国平.基于双目被动立体视觉的三维人脸重构与识别[J].自动化学报,2009,35(2):123-131
    [8]周佳立,张树有.基于双目被动立体视觉的脚型建模与比对方法[J].计算机辅助设计与图形学学报,2009,21(6):782-788
    [9]D.Marr,Vision,W.H.Freeman and company,San Francisco.中译本:视觉计算理论,姚国正、刘磊、汪云九译,科学出版社,1988
    [10]L.Piegl and W.Tiller.A menagerie of rational B-spline circles,IEEE Computer Graphics and its Application,1989,9(1),48-56
    [11]P.Bezier.Numerical Control:Mathematics and Applications,John Wiley and Sons,New York,1972
    [12]施法中.计算机辅助几何设计与非均匀有理B样条.北京:北京航空航天大学出版社,1994
    [13]S.M.Yergeest.CAD surface data exchange using STEP.Computer Aided Design,1991,20(8):269-281
    [14]T.DeRose,M.Kass and T.Truong.Subdivision surfaces in character animation. In Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, 1998:85-96
    [15] R. Y. Tsai. An efficient and accurate camera calibration technique for 3D machine vision. In: Proc. CVPR, 1986: 364-374
    [16] J. Weng,P. Cohen, M. Herniou. Calibration of stereo cameras using a non-linear distortion model. In: Proc. International Conf. on Pattern Recognition, 1990: 246-253
    [17] B. Hakan, S. K. Mohamed. A three-step camera calibration method. IEEE Trans. on Instrumentation and Measurement, 1997,46(5): 1165-1172
    [18] Janne Heikkila, Olli Silven. A four-step camera calibration procedure with implicit image correction. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Puerto Rico. 1997: 1106-1112
    [19] J. Weng, P. Cohen, M. Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Trans. on PAMI, 1992, 14(10): 965-980
    [20] D. C. Brown. Close-range camera calibration. Photogrammetric Engineering, 1971, 37 (8): 855-866
    [21] W. Faig. Calibration of close-range photogrammetry systems: Mathematical formulation. Photogrammetric
    [22] D. Gennery. Stereo-camera calibration. In Proceedings of the 10th Image Understanding Workshop, pages 101 - 108, 1979
    [23] S. Ganapathy. Decomposition of transformation matrices for robot vision. Pattern Recognition Letters, 2:401-412, Dec. 1984
    [24] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation, 3(4):323 - 344, Aug. 1987
    [25] 0. Faugeras and G. Toscani. The calibration problem for stereo. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 15-20, Miami Beach, FL, June 1986. IEEE
    [26] G. Wei and S. Ma. A complete two-plane camera calibration method and experimental comparisons. In Proc. Fourth International Conference on Computer Vision,pages 439-446,Berlin,May 1993
    [27]S.J.Maybank and O.D.Faugeras.A theory of self-calibration of a moving camera.The International Journal of Computer Vision,8(2):123-152,Aug.1992
    [28]O.Faugeras,T.Luong,and S.Maybank.Camera self-calibration:theory and experiments.In G.Sandini,editor,Proc 2nd ECCV,volume 588 of Lecture Notes in Computer Science,pages 321-334,Santa Margherita Ligure,Italy,May 1992.Springer-Yerlag
    [29]Z.Zhang.A flexible new technique for camera calibration[J].IEEE Transactions on pattern analysis and machine intelligence,2000,22(11):1330-1334
    [30]Z.Zhang.Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the IEEE International Conference on Computer Vision,Kerkyra,1999:666-673
    [31]马颂德,张正友.计算机视觉—计算理论与算法基础.北京:科学出版社,1998.72-93
    [32]孟晓桥,胡占义.摄像机自标定方法的研究与进展.自动化学报,2003,29(1):110-124
    [33]Ma Songde.A self-calibration technique for active vision systems.Robotics and Automation,IEEE Iransactions,1996,12(1):114-120
    [34]E.E.Hemayed.A survey of camera self-calibration.Proceedings.IEEE Conference on Advanced Video and Signal Based Surveillance,2003.21-222003(7):351-357
    [35]吕朝辉,张兆杨,安平.基于神经网络的立体视觉摄像机标定。机械工程学报,2003,39(9):93-96
    [36]赵清杰,孙增圻,兰丽.神经网络摄像机标定法[J].控制与决策,2002-5,7(3):336-338
    [37]Junghee Jun And Choongwon Kim.Robust Camera Calibration Using Neural Network.IEEE TENCON,1999.694-697
    [38]刘宏建,罗毅,刘允才.Variable Precision Camera Calibration Using Neural Network[C].第二届全国视觉监控学术会议,北京:2003-11.3-8
    [39]M.T.Ahmed and E.Hemaved.A Neural Approach for Single-and Multi-Image Camera Calibration[J].IEEE International Conference on Image Processing.1999.3: 925-929
    [40]张可,许斌,唐立新等.基于BP神经网络的双目视觉系统摄像机标定.机械与电子,2005(12):12-14
    [41]F.Angrilli,S.Bastianello,R.Da Forno.Calibration of stereo vision systems by neural networks.Instrumentation and Measurement Technology Conference,1996.IMTC-96.Conference Proceedings.Quality Measurements:The Indispensable Bridge between Theory and Reality.IEEE,1996,2:839-842
    [42]Yongtae Do.Application of neural networks for stereo-camera calibration.Neural Networks,1999.IJCNN'99.International Joint Conference on Volume 4,10-16July 1999,4:2719-2722
    [43]M.D.Levine,O.Handley.Computer Determination of Depth Maps.Computer Graphics and Image Processing,1972,2,131-150
    [44]T.Kanade,M.Okutomi.A stereo matching algorithm with an adaptive window:Theory and Experiments.IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(9):920-932
    [45]J.L.Horner,P.D.Cianino.Phase only matched filtering.Applied Optics,1984,23(6):812-816
    [46]G.Medioni,R.Nevatia.Segment-based stereo matching.Computer Vision,Graphics,and Image Processing,1985,31(1):2-18
    [47]D.Scharstein,R.Szeliski.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.IJCV,2002,47(1/2/3):7-42
    [48]C.Zitnick,T.Kanade.A Cooperative Algorithm for Stereo Matching and occlusion Detection.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(7):675-684
    [49]王宣银,潘锋,向桂山,梁冬泰.基于Snake模型的特定人脸三维重建方法。机械工程学报,2007,43(7):168-173
    [50]D.Marr,T.Poggio.Cooperative Computation of Stereo Disparity.Science,1976,194:209-236
    [51]W.Grimson.Computational experiments with a feature based stereo algorithm.IEEE Transactions on Pattern Analysis and Machine Intelligence,1985,7(1):17-34
    [52] C. D. Kuglin, D. C. Hines. The phase correlation image alignment method. In: Proceedings of IEEE 1nt Conf on Cybernetics and Society, 1975:163-165
    [53] H. Maitre, W. Luo. Using models to improve stereo reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 149(2): 269-277
    [54] D. J. Fleet. Disparity From Local Weighted Phase-Correlation. IEEE Transaction on Systems, Man and cybernetics, San Antonio, 1994: 48-56
    [55] D. J. Fleet, A. D. Jepson, M. R. Jenkin. Phase-based Disparity Measurement. CVGIP: Image understanding, 1991, 53(2): 198-210
    [56] J. Zhou, Y. Xu, W. R. Yu. Phase matching with multiresolution wavelet transform. In: Proceedings of SPIE, 2002, 4661(10): 82-91
    [57] M. W. Maimone, S. A. Shafer. Modeling Foreshortening on Stereo Vision Using Local Spatial Frequency. Technical report CMU-CS-95-104, Carnegie Mellon University, Pittsburgh
    
    [58] Pramod N. Chivate, Andrei G. Jablokow. Solid-model generation from measured point data. Computer -Aided Design. 25(9), 1993: 587-600
    [59] Pramod N. Chivate, Andrei G. Jablokow. Review of surface representations and fitting for reverse engineering. Computer Integrated Manufacturing Systems. 8(3), 1995:193-204
    
    [60] W. B. Thompson, Jonathan C. Owen, H. James de St. Germain et al. Feature-Based Reverse Engineering of Mechanical Parts. IEEE Transactions on tobotics and automation. 15(1), 1999:57-64
    
    [61] H. James de St. Germain. Reverse Engineering Utilizing Domain Specific Knowledge. Ph. D Thesis, University of Utah. 2002
    
    [62] N. Werghi, R. B. Fisher, C. Robertson, A. Ashbrook. Object reconstruction by incorporating geometric constraints in reverse engineering. Computer Aided Design. 31, 1999: 363-399
    
    [63] R. B. Fisher. Applying knowledge to reverse engineering problems. Computer-Aided Design. 2004, 36(6), 501-510
    
    [64] P. Benko, G. Kos, T. Varady, L. Andor, R. R. Martin. Constrained Fitting in Reverse Engineering. Computer Aided Geometric Design. 19, 2002: 173-205
    [65]G.Kos,R.R.Martin,T.Varady.Methods to recover constant radius rolling ball blends in reverse engineering.Computer Aided Geometric Design.17,2000:127-160
    [66]F.C.Langbein,A.D.Marshall,R.R.Martin.Choosing Consistent Constraints for Beautification of Reverse Engineered Geometric Models.Computer Aided Design.36(3),2004:261-278
    [67]柯映林,周儒荣.实现3D离散点优化三角划分的三维算法.计算机辅助设计与图形学学报.6(4),1994:241-248
    [68]柯映林,刘云峰.基于三角Bezier曲面的复杂特征模型重建及特征融合技术研究,机械工程学报.2005,85-90
    [69]金涛.逆向工程中产品三维模型重建技术及应用研究:[博士学位论文].杭州:浙江大学,2000
    [70]孙福辉,逆向工程中重建CAD模型的若干关键技术研究:[博士学位论文].北京:北京航空航天大学,2001
    [71]A.Cavaretta,W.Dahmen,Micchelli C.Stationary subdivision.Memories of the AMS,1991,453,AMS
    [72]G.Chaikin.An algorithm for high-speed curve generation.Computer Graphics and Image Processing,1974(3),346-349
    [73]E.Cohen,T.Lyche and R.Riesenfeld.Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics.Computer Graphics and Image Processing,1980(14),87-111
    [74]E.Cohen,T.Lyche and R.Riesenfeld.Discrete box splines and refinement algorithms.Computer-Aided Geometric Design,1984(1),131-148
    [75]W.Dahmen and C.Michelli.Subdivision algorithms for the generation of box spline surfaces.Computer-Aided Geometric Design,1984(1),115-129
    [76]G.Deslauriers and S.Dubuc.Symmetric iterative interpolation processes.Constructive Approximation,1989,49-68
    [77]D.Doo and M.Sabin.Behavior of recursive subdivision surfaces near extraordinary points.Computer Aided Design,1978(10),356-360
    [78]N.Dyn.Subdivision schemes in computer-aided geometric design.Advances in numerical analysis II, New York, Oxford University Press, 1992, 76-104
    
    [79] N. Dyn, J. Gregory and D. Levin. A four-point interpolatory subdivision scheme for cure design. Computer-Aided Geometric Design, 1987(4), 257-268
    
    [80] H. Hoppe. Surface Reconstruction from Unorganized Points. PhD thesis, the University of Washington, 1994
    
    [81] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface Reconstruction from Unorganized Points. In Proc. SIGGRAPH' 92, pages 71 - 78, 1992
    
    [82] W. Ma and J. P. Kruth. Parameterization of Randomly Measured Points for Least Squares Fitting of B-spline Curves and Surfaces. Computer-Aided Design, 27(9): 663-675, 1995
    
    [83] W. Ma and N. Zhao. Catmull-Clark Surface Fitting for Reverse Engineering Applications. In Proc. GMP 2000, pages 274 - 284, 2000
    
    [84] W. Ma and N. Zhao. Smooth Multiple B-spline Surface Fitting with Catmull-Clark Subdivision Surfaces for Extraordinary Corner Patches. The Visual Computer, 18:415-436, 2002
    
    [85] M. Marinov and L. Kobbelt. Optimization Techniques for Approximation with Subdivision Surfaces. In ACM Symposium on Solid Modeling and Applications, pages 1-10, 2004
    
    [86] T. Speer, M. Kuppe, and J. Hoschek. Global Reparametrization for Curve Approximation. Computer Aided Geometric Design, 15:869-877, 1998
    
    [87] H. Suzuki, S. Takeuchi, and T. Kanai. Subdivision Surface Fitting to a Range of Points. In The Seventh Pacific Conference on Computer Graphics and Applications, pages 158 - 167, 1999
    
    [88] I. Daubechies. Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992
    
    [89] I. Daubechies and J. C. Lagarias. Two-scale difference equations I. Existence and global regularity of solutions, SIAM J. Math. Anal., 22 (1991), 1388-1410
    
    [90] I. Daubechies and J. C. Lagarias. Two-scale difference equations II. Infinite matrix products, local regularity bounds and fractals, SIAM J. Math. Anal., 23 (1992), 1031-1079
    
    [91] G. C. Rota and G. Strang. A note on the joint spectral radius, Indog. Math. 22 (1960), 379-381
    
    [92] I. Daubechies and J. C. Lagarias. Sets of matrices all infinite products of which converge, Linear Algebra Appl. 161 (1992), 227-263
    
    [93] I. Daubechies and J. C. Lagarias. Corrigendum/addendum to: Sets of matrices all infinite products of which converge, Linear Algebra Appl. 327 (2001), 69-83
    
    [94] J. N. Tsitsiklis and V. D. Blondel. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate, Mathematics of Control, Signals and Systems 10 (1997), 31-41
    
    [95] T. Bousch and J. Mairesse. Asymptotic height optimization for topical IFS, tetris heaps and the finiteness conjecture, J. Amer. Math. Soc. 15 (2002), 77-111
    
    [96] J. C. Lagarias and Y. Wang. The finiteness conjecture for the generalized spectral radius of a set of matrices, Linear Algebra Appl. 214 (1995), 17-42
    
    [97] V. D. Blondel and Y. Nesterov. Computationally efficient approximations of the joint spectral radius, SIAM J. Matrix Anal. Appl. 27 (2005) 256-272
    
    [98] G. Gripenberg. Computing the joint spectral radius, Linear Algebra Appl. 234 (1996), 43-60.
    
    [99] M. Maesumi. An efficient lower bound for the generalized spectral radius of a set of matrices, Linear Algebra Appl. 240 (1996), 1-7
    
    [100] M. Broker and X. Zhou. Characterization of continuous, four-coefficient scaling functions via matrix spectral radius, SIAM J. Matrix Anal. Appl. 22 (2000), 242-257
    
    [101] X. Zhou. Estimates for the joint spectral radius, Appl. Math. Comput. 172 (2006), 332-348
    
    [102] P. Min, J. A. Halderman, M. Kazhdan, T. A. Funkhouser. Early experiences with a 3D model search engine. In: Proceeding of the eighth international conference on 3D Web technology. 2003. p. 7-19
    
    [103] R. Singh, N. P. Papanikolopoulos. Planar shape recognition by shape morphing. Pattern Recognition 2000;33(10):1683 - 1699
    
    [104] R. Ohbuchi, T. Otagiri, M. Ibato, T. Takei. Shape-similarity search of three-dimensional models using parameterized statistics. In: Proceedings of the Pacific graphics. 2002. p. 265-274
    
    [105] A. Shokoufandeh, S. J. Dickinson, K. Siddiqi, S. W. Zucker. Indexing using a spectral encoding of topological structure. In: Proc. IEEE conf. computer vision and pattern recognition, vol. 2. 1999. p. 491 - 497
    
    [106] M. Hilaga, Y. Shinagawa, T. Kohmura, T. L. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. 2001. p. 203 - 212
    
    [107] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, K. Ramani. Shape-based searching for product lifecycle applications. Computer-Aided Design 2005:37(13):1435 - 1446
    
    [108] M. Peabody, W. C. Regli. Clustering technique for databases of CAD models. Philadelphia (PA): Department of Mathematics and Computer Science, Drexel University; 2001
    
    [109] J. Wu, T. Zhang, X. Zhang, J. Zhou. A face based mechanism for naming, recording and retrieving topological entities. Computer-Aided Design 2001:33:687-698
    
    [110] S. Mukai, S. Furukawa, M. Kuroda. An algorithm for deciding similarities of 3-D objects. In: Proceedings of the seventh ACM symposium on Solid modeling and applications. 2002. p. 367-375
    
    [111] A. Elinson, D. S. Nau, W. C. Regli. Feature-based similarity assessment of solid models. In: Proceedings of the fourth ACM symposium on solid modeling and applications. 1997. p. 297-310
    
    [112] D. McWherter, M. Peabody, A. Shokoufandeh, W. C. Regli. Database techniques for archival of solid models. In: Proceedings of the sixth ACM symposium on Solid modeling and applications. 2001. p. 78-87
    
    [113] M. Rameshm, D. Yip-Hoi, D. Dutta. Feature based shape similarity measurement for retrieval of mechanical parts. Journal of Computing and Information Science in Engineering 2001; 1:245-256
    
    [114] Taesik Hong, Kunwoo Lee, Sungchan Kim. Similarity comparison of mechanical parts to reuse existing designs, Computer-Aided Design 38 (2006) 973 - 984
    
    [115] http://shape. cs. princeton. edu/search. html
    
    [116] http://3d. csie. ntu. edu. tw/~dynamic/cgi-bin/DatabaseII v1. 8/
    
    [117] http://3d-search. iti. gr/3DSearch
    
    [118] http://merkur01. inf. uni-konstanz. de/CCCC/
    
    [119] A. M. Bronstein, M. M. Bronstein, R. Kimmel. Three-dimensional face recognition. Int. J. Computer Vision, 2005. 5-30
    
    [120] B. Gokberk, A. A. Salah, L. Akarun. Rank-based decision fusion for 3D shape-based face recognition. In: International Conference on Audio- and Video-based Biometric Person Authentication (AVBPA 2005), LNCS 3546, 2005. 1019 - 1028
    
    [121] Y. Lee, H. Song, U. Yang, H. Shin, K. Sohn. Local feature based 3D face recognition. International Conference on Audio- and Video based Biometric Person Authentication (AVBPA 2005), LNCS 3546, 2005. 909-918
    
    [122] X. Lu, A. K. Jain. Deformation analyses for 3D face matching. In: 7th IEEE Workshop on Applications of Computer Vision (WACV _05), 2005. 99-104
    
    [123] T. D. Russ, M. W. Koch, C. Q. Little. A 2D range Hausdorff approach for 3D face recognition. In: IEEE Workshop on Face Recognition Grand Challenge Experiments, 2005
    
    [124] G. Pan, S. Han, Z. Wu, Y. Wang. 3D face recognition using mapped depth images. In: IEEE Workshop on Face Recognition Grand Challenge Experiments, 2005
    
    [125] K. I. Chang, K. W. Bowyer, P. J. Flynn. Adaptive rigid multi-region selection for handling expression variation in 3D face recognition. In: IEEE Workshop on Face Recognition Grand Challenge Experiments, 2005
    
    [126] G. Passalis, I. Kakadiaris, T. Theoharis, G. Toderici, N. Murtuza. Evaluation of 3D face recognition in the presence of facial expressions: an annotated deformable model approach. In: IEEE Workshop on Face Recognition Grand Challenge Experiments, 2005
    
    [127] A. Ansart, M. Abdel. 3D face modeling using two orthogonal views and a generic face model.International Conference on Multimedia and Expo.2003,Baltimore,Maryland.New York:IEEE Press,2003.289-292
    [128]L.Tang,T.Huang.Automatic construction of 3D human face models based on 2D images.International Conference on Image Processing,1996,Lausanne,Switzerland.New York:IEEE Press,1996.467-470
    [129]Y.Zhang,E.Prakash,E.Sung.Hierarchical modeling of a personalized face for realistic expression animation.Proceedings of the IEEE International Conference on Multimedia and Expo,Lausanne,2002.457-460
    [130]周佳立,张树有,武敏.复杂形体自适应立体视觉的重构拟合技术研究.浙江大学学报(工学版)(投寄)
    [131]D.C.Brown.Decentering Distortion of Lenses.Photometric Engineering,pages 444-462,Yol.32,No.3,1966
    [132]O.D.Faugeras and G.Toscani.Camera Calibration for 3D Computer Vision,Proc.of International Workshop on Industrial Application of Machine Vision and Machine Intelligence,pp.240-247,Japan,1987
    [133]Barbara Zitova,Jan Flusser.Image registration methods:a survey,Image and Vision Computing 21(2003) 977-1000
    [134]Y.Yakimovsky,R.Cunningham.A system for extracting three-dimensional measurements from a stereo pair of TV cameras[J].CGIP,1978.7(2):195-210
    [135]Jianchao Yao.Image Registration Based on Both Feature and Intensity Matching[A].Proceedings of 2001 IEEE International Conference on Acoustics,Speech and Signal Processing[C].Kauai Hawaii USA:IEEE,2001,3:1693-1696.
    [136]Ji Zhou and Jiaoying Shi.A Robust Algorithm for Feature Point Matching[J].Computers& Graphics.2002.26(3):429-436
    [137]J.You,P.A.Bhattacharya.Wavelet-based Coarse-to-fine Image Matching Scheme in a Parallel Virtual Machine Environment[J].IEEE Trans on Image Processing,2000,9(9):1547-1559
    [138]A.V.Oppenheim,J.S.Lim.The importance of phase in signals.Proc of the IEEE,1981;69(5):529-541
    [139]B.Srinivasa Reddy,B.N.Chatterji.An FFT-Based Technique for Translation,Rotation,and Scale-Invariant Image Registration.IEEE TRANSACTIONS ON IMAGE PROCESSING,VOL.5.NO.8,August 1996:1266-1271
    [140]S.Rusinkiewiez,M.Levoy.Efficient Variants of the ICP Algorithm[C].In:the Third International Conference on 3D Digital Imaging and Modeling,2001
    [141]刘辉,向世明,成睿,李华,三维扫描网格的合并和优化,计算机工程与应用,2004,40(29):28-39
    [142]刘辉,胡平,李华,基于光点阵列的三维表面数据获取技术及实现,计算机辅助设计与图形学学报,2009,21(1):120-124
    [143]Z.Zhang.Iterative point matching for registration of freeform curves and surfaces[J].International Journal of Computer Vision,1994,13(2):119-152
    [144]A.R.Barron.Universal approximation bounds for super positions of a sigmoidal function.IEEE Transactions on Information Theory,1993,39(3):930-945
    [145]C.Loop,Z.Zhang.Computing rectifying homographies for stereo vision[C].//IEEE.CVPR' 99.Fort Collins,USA,June 1999,125-131
    [146]王伟,吴成柯.估计基础矩阵的六点综合算法[J].中国科学(E辑),1997,27(2):165-170
    [147]闫丽,段发阶.单目立体视觉传感器的优化设计及精度分析.传感技术学报,2006,1999(2):349-352
    [148]Janne Heikkila,Olli Silven.A four-step camera calibration procedure with implicit image correction.In:Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Puerto Rico.1997:1106-1112
    [149]Tingfan xie and Xinlong Zhou.Neural networks for optimal approximation of continuous functions in rd.(to be published)
    [150]G.C.Rota and G.Strange.A note on the joint spectral radius.Indog.Math.,1960(22):379-381
    [151]R.Q.Jia.Subdivision schemes in L_p spaces.Advances in Comp.Math.,1995(3):309-341
    [152]D.Zhou.The p-norm joint spectral radius for even integers.Methods and Applications of Analysis,1998(5(1)):39-54
    [153]C.A.Micchelli and H.Prautzsch.Uniform refinement of curves.Linear Algebra Appl., 1989 (114/115): 841-870
    
    [154] A. Cohen. Ondelettes, analyses multiresolutions et filters miroirs en quadrature. Ann. Inst. H. Poincare, 1990 (7): 57-61
    
    [155] D. Colella and C. Heil. The Characterization of continuous, four-coefficient scaling functions and wavelets. IEEE Trans. Inform. Theory, 1992 (38): 876-881
    
    [156] C. Heil and D. Colella. Dilation Equation and The Smoothness of Compactly Supported Wavelets. In: J. L. Benedetto and M. W. Frazier. Eds., Wavelets: Mathematics and Applications. CRC Press, Boca Raton, p. 163-201
    
    [157] M. A. Berger and Y. Wang. Bounded semi groups of matrices. Linear Algebra Appl., 1992 (166): 21-27
    
    [158] L. Eisner. The generalized spectral-radius theorem: analytic-geometric proof. Linear Algebra Appl., 1995 (220): 151-159
    
    [159] Q. Chen and X. Zhou. Characterization of joint spectral radius via trace. Linear Algebra Appl., 2000 (315): 175-188
    
    [160] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. 1991, Cambridge University Press.
    
    [161] C. A. Micchelli. Mathematical Aspects of Geometric Modeling, Sociey for Industrial and Applied Mathematics(1995)
    
    [162] A. Paz. Definite and quasidefinite sets of stochastic matrices, Proc. Amer. Math. Soc. 16 (1965), 634-641
    
    [163] R.-Q. Jia and D.-X. Zhou. Convergence of subdivision schemes associated with nonnegative masks, SIAM J. Matrix Anal. Appl. 21 (1999), 418-430
    
    [164] B. W. Douglas. Introduction to Graph Theory (Second Edition), Prentice Hall (2000)
    
    [165] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms, MIT Press (1990)
    
    [166] L. K. Hua. Introduction to Number Theory, Springer (1982)
    
    [167] W. Zhao, R. Chellappa, A. Rosenfeld, P. J. Phillips. Face Recognition: A Literature Survey. ACM Computing Surveys, 2003, 35(4): 399-458
    [168]R.Lienhart,J.Maydt.An extended set of Haar-like features for rapid object detection.In:Proceedings of the IEEE International Conference on Image Processing.New York,USA:IEEE,2002.900-903
    [169]R.Lienhart,A.Kuranov,V.Pisarevsky.Empirical analysis of detection cascades of boosted classifiers for rapid object detection.In:Proceedings of the 25th Pattern Recognition Symposium.Berlin,German:Springer-Verlag,2003.297-304
    [170]Mark Everingham and Andrew Zisserman.Regression and Classification Approaches to Eye Localization in Face Images.Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition,2006,441-446
    [171]Rainer Lienhart and Jochen Maydt.An Extended Set of Haar-like Features for Rapid Object Detection.IEEE ICIP 2002,1:900-903
    [172]J.Ahlberg.CANDIDE-3--an updated parameterized face.Report No.LiTH-ISY-R-2326,Dept.of Electrical Engineering,Link(o|¨)ping University,Sweden,2001
    [173]A.M.Bronstein,M.M.Bronstein,R.Kimmel.Expression-invariant representation of faces.IEEE Trans.Image Processing,Vol.16(1):188-197,January 2007
    [174]王跃明.表情不变的三维人脸识别研究:[博士学位论文].杭州:浙江大学,2007
    [175]R.O.Duda,P.E.Hart,D.G.Stork.Pattern Classification.Second Edition.New York:Wiley,2000
    [176]梁荣华,陈纯,张慧.一个三维人脸真实感模型重建算法.模式识别与人工智能,2003,16(1):116-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700