基于GPU的三维医学图像处理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学图像处理与分析技术不仅极大地提高了现代医学临床诊断水平,而且为医学培训、教学与研究、手术导航等提供了数字实现手段,成为推动现代医学发展的重要力量。因此,关于医学图像处理与分析技术的研究一直是国内外广大学者所关注的焦点,这对保证人们身体健康和提高人们身体素质具有重大意义。
     根据当前实际应用的需求,采用直观的包含丰富信息的3D数据代替简单的2D图像已成为医学图像处理领域的发展趋势。但是,在目前的个人电脑中进行三维数据处理仍是一个非常耗时的计算过程,不能满足实际应用中的实时性要求,这主要归因于三维图像包含数据量较大,而且各种医学图像处理算法相对复杂、计算量较大。因此,如何进一步提高三维医学图像处理算法的计算效率,使其满足实时应用的需求,是当前该领域内一个亟待解决的问题。
     近年来,计算机图形处理器(Graphics Processing Unit,GPU)得到了极大地发展,从最初局限于图形渲染的图形卡,发展为如今可编程的并行计算平台。针对GPU的高级编程语言如Cg、HLSL等使得人们更加容易对其进行编程控制,并应用在渲染之外的通用计算方法,如偏微分方程求解、矩阵运算等。与CPU的串行计算模式不同,GPU是一种高度并行的流处理器,具有更强的浮点计算能力,在物理模拟、信号分析等许多领域人们将高强度的计算任务以适当的方式转化为流数据计算模式,通过编程在GPU中进行加速计算,通常能获得一个数量级的速度提高,这也是当今的热点研究问题之一。因此,通过对GPU编程发挥其高强度计算能力来解决三维医学图像处理的速度瓶颈,提高算法的执行效率,将是一个十分有应用价值的研究内容。
     本文首先研究了可编程图形处理器的体系结构及其流式编程模型。GPU的体系结构以图形流水线为基础,提供了顶点处理器和片段处理器的可编程特性,通过OoenGL等编程接口与主程序进行通信。GPU将用户编写的程序作为运算核对数据流中的多个元素同时进行处理,实现高度的并行计算。但根据流计算的特点,GPU程序对存储器的访问将受到一定的限制。在此基础上,本文研究了高效的三维医学图像处理算法,主要包括基于3D纹理的精确体绘制方法、CPU-GPU联合工作模式加速基于互信息的3D图像刚性配准、GPU加速的圆弧轨迹Katsevich锥束CT重建算法,具体内容为:
     (1)基于3D纹理的体绘制方法是一种高效的三维医学体数据可视化手段,但由于受低采样率的影响,在最终绘制图像中往往会出现切片痕迹,造成图像质量较差。分段积分是提高绘制图像质量的有效方法,它首先对每个采样段应用体绘制积分方程,然后沿视线方向将所有采用段进行累加,得到较好质量的绘制图像。采样段内的颜色值通常采用线性表达式代入到体绘制积分方程中,但由于人体各组织之间关联复杂,线性插值不能很好地近似采样段内的颜色变化,本文通过计算每个采样段中点采样位置得到更加精确的抛物线近似表达,并进一步求解体绘制积分方程,将其化简为易于在GPU中实现的形式。通过顶点处理器计算采样段三个控制点位置的纹理坐标,利用片段处理器计算采样段上的积分方程。实验结果表明该方法在保证实时绘制速度的同时取得了更好的绘制图像质量。在此基础上,本文进一步改进了基于剪切几何体的剖切绘制方法,降低内存使用,提高剖切绘制的速度。
     (2)针对基于互信息的3D医学图像刚性配准,提出一种基于CPU-GPU联合工作模式的加速方法。最外层的搜索算法需要复杂的逻辑控制,但计算强度小,适合CPU计算。在搜索过程中调用互信息计算函数,首先将浮动图像进行空间变换和三线性插值,然后统计与参考图像之间的联合直方图,并根据联合直方图计算熵和互信息值。空间变换和三线性插值约消耗互信息计算函数的85%时间,而且适合并行计算,因此将其移植至GPU中执行。采用平面三维纹理、渲染到纹理等技术编写顶点程序和片段程序,在GPU中执行三线性插值,并将结果读入系统内存,继续由CPU完成互信息值计算。实验结果表明,与传统方法相比,该算法在获得相似配准精度的情况下,将配准速度提高了一个数量级。
     (3)改进滤波反投影方法在GPU中的实现技术,并应用于圆弧轨迹Katsevich精确锥束重建算法中。Katsevich算法首先对投影数据进行滤波处理,包括偏导数计算、傅立叶变换、Hilbert变换等,这个过程由CPU完成,并将滤波后的投影数据传递到GPU内存,进行反投影计算。本文利用帧缓冲对象(FBO)的多个绑定点,将上一次的输出作为下一次渲染的输入,在GPU中完成所有射源转角下的反投影数据累加;采用浮点纹理映射保证重建图像的质量;设置RGBA四通道纹理实现数据级的并行计算;采用四叉树编码的矩形网格加速绘制过程。本文GPU加速的重建方法所得图像质量已非常接近于传统CPU重建方法,而重建速度却提高了10倍以上。
     最后,本文总结了三维医学图像处理算法在GPU平台上运行时的编程特点,主要包括GPU的存储器模型、三维数据结构、并行策略和程序优化等。
Medical image processing and analyzing techniques not only greatly improve the clinic diagnosis level but also provide digital methods for medical training,teaching and researching, surgical navigation and so on,which becomes an important factor for promoting development of the modern medicine.Study on the medical image processing techniques is always the attention focus of many researchers at home and abroad,and this is very helpful to improve people's health condition and physical quality.
     In order to meet well the needs of practical application,simple 2D images are replaced by the intuitional 3D data that embodies rich information,which is the developing trend of medical image processing.However,nowadays 3D data processing on the common personal computer is very time consuming due to the large amount of data and the complexity of algorithms,which can not meet the real-time applications.So,how to improve further the performance efficiency of 3D medical data processing is a problem to be resolved urgently.
     In recent years,computer graphics processing unit(GPU) has been developing rapidly from initial graphics card used only for rendering to contemporary programmable parallel computing platform.Moreover,high-level programming languages such as Cg and HLSL make it easy to perform general-purpose computation expect for rendering such as solving partial differential equations and matrix operations by programming for GPU.Different with the serial computation model of CPU,GPU is a kind of parallelism stream processor with highly floating computing power.In many research areas such as physics simulations and signal analysis,researchers transfer the high intensity computation duties to GPU in a suitable style,and there is always an order of magnitude speedup through programming for GPU, which is also one of the hot topics for research.So,solving the problem of speed bottleneck of 3D medical image processing algorithms by programming for GPU and exploiting its highly processing power will be a good research topic with great application values.
     This dissertation firstly studies the architecture of GPU and the streaming programming model.Architecture of GPU is based on the graphics pipeline which provides programmable vertex processors and fragment processors that communicate with the main program through API such as OpenGL.GPU programs written by users are used as operation kernels which process simultaneously many elements of the data stream so as to realize highly parallel computing.However,according to the features of streaming parallel computing,operations of GPU programs on memory buffer are restricted.On this basis,the dissertation researches efficient algorithms of 3D medical image processing which include precise volume rendering method based on 3D texture mapping,mutual information based 3D image rigid registration on a CPU-GPU united platform,and GPU accelerated Katsevich cone-beam CT reconstruction algorithm for single circular arc trajectory.
     (1) 3D texture mapping based volume rendering methods can rapidly render the volume data,but slicing artifacts results are frequently observed in the rendered images because of low sampling rate.Piecewise ray integration is one of the effective methods to improve rendering quality,which applies volume rending integral equation firstly to each sampling segment and then blends all of them along the viewing ray.Color of each segment in the integral equation is always represented as a linear expression.However,the linear expression can not well represent color changes in each sampling segment because of complex correlation among human body tissues.A more precise parabola expression is presented in the dissertation for piecewise integration,and the volume rendering integral equation is further resolved so that it can be easily used in GPU shaders.The vertex shader calculates texture coordinates of three sampling positions of each sampling segment,and the fragment shader evaluates integral function on the sampling segment.Experimental results show that the proposed method can achieve excellent rendering images.On basis of the rendering method volumetric textures based clipping rendering algorithm is improved in order to decrease memory usage and increase clipping rendering speed.
     (2) An accelerating method of CPU-GPU united platform for mutual information based 3D medical image rigid registration is proposed,in which the optimization searching algorithm is performed on CPU because of its complex logical control and less intensity computation.In the process of optimization searching mutual information calculation function is evoked,which is divided into two steps,i.e.spatial transformation of floating image,and calculation of value of mutual information.Spatial transformation and tri-linear interpolation usually consume about 85%of the total mutual information calculation time and are suitable for parallel computation,so it can be performed on GPU.Tri-linear interpolation is performed on GPU by using flat 3D texture and render to texture techniques.The rendered results are transferred to main memory for further computation.Experimental results show that GPU accelerated method can achieve speedup about an order of magnitude with excellent registration results compared to the traditional software implementation on CPU.
     (3) The techniques of filtered backprojction algorithm performed on GPU are improved and used in the Katsevich cone-beam CT reconstruction algorithm for single circular arc trajectory.Katsevich method firstly filters the projection data,including partial derivative computation,Fourier transform,and Hilbert transform,which are performed on CPU.The filtered projection data are transferred to GPU memory for backprojection computation.The output of a given rendering pass is used as input in the next one by using multiple attachment points of frame buffer object(FBO),and then all the backprojection data gotten from different rotation angle are added on GPU.Floating texture mapping is used to guarantee excellent quality of reconstructed images.RGBA four channel textures are set to realize data-parallel computation.Quadtree structure is used to code the rectangular grid for accelerating rendering process.Compared with the traditional CPU applications,the proposed GPU accelerated method can achieve not only almost the same quality reconstruction images but also a speedup of more than ten times.
     Lastly,the dissertation summarize features of GPU programming method for the 3D medical image processing algorithms,which mainly include GPU memory mode,3D data structures,parallel strategies,and program optimization.
引文
[1]田捷,包尚联,周明全.医学影像处理与分析.北京:电子工业出版社,2003.
    [2]Atam Dhawan.Medical Image Analysis.Hoboken,New Jersey.Wiley-IEEE Press,2003.
    [3]包尚联,谢耀钦,周晓东等.基于医学影像计算机辅助诊断的分割方法.中国医学物理学杂志.2003,20(2):83-86.
    [4]Pluim J.P.W.,Maintz J.B.A.,Viergever M.A.Mutual-information-based registration of medical images:A survey.IEEE transactions on medical imaging.2003,22(8):986-1004.
    [5]Constantions.S.P.,Pattichis M.S.,Micheli T.E.Medical imaging fusion application:An overview.Conference on Signals,Systems and Computers.2001,Vol.2:1263-1267.
    [6]宋涛.虚拟人三维重建及可视化关键技术研究:(博士学位论文).大连:大连理工大学,2005.
    [7]杨金柱,胡英,徐心和.虚拟内窥镜自动漫游加速方法研究.系统仿真学报.2007,19(4):790-793.
    [8]Flohr T.G.,Schaller S.,Stierstorfer K.et al.Multi-detector row CT systems and image reconstruction techniques.Radiology.2005,235(3):756-773.
    [9]庄天戈.生物医学放射成像与IT的互动发展.计算机应用与软件,2006,23(10):7-10
    [10]Osman M.M.,Cohade C.,Nakamoto Y.et al.Clinically significant inaccurate localization of lesions with PET/CT:frequency in 300 patients.Journal of Nuclear Medicine,2003,44(2):240-243
    [11]陈明.三维医学图像刚性配准新算法研究:(博士学位论文).广州:第一军医大学,2003.
    [12]张加万.交互体绘制关键技术及其应用研究.(博士学位论文).天津:天津大学,2004.
    [13]http://www.medical.philips.com/main/products/ct/products/brilliance/
    [14]宋余庆.医学图像数据挖掘若干技术研究.(博士学位论文).南京:东南大学,2004.
    [15]Duncan J.C.,Ayache N.Medical Image Analysis:Progress over Two Decades and the Challenges Ahead.IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22(1);85-106
    [16]Owens J.D.,Luebke D.,Govindaraju,et al.A survey of general-purpose comutation on graphics hardware.Computer Graphics Forum,2007,26(1):80-113.
    [173 NYIDIA CUDA Compute Unified Device Architecture Programming Guide.Version 1.06/23/2007.
    [18]吴恩华.图形处理器用于通用计算的技术现状及其挑战.软件学报,2004,15(10):206-214
    [19]Michael M.The GPU enters computing's mainstream.IEEE Computer Society,2003.36(10):106-108.
    [20]Mark W.R.,Glanville R.S.,Akeley K.Cg:a system for programming graphics hardware in a C-like language.ACM Transactions on Graphics(Proceedings of SIGGRAPH),2003,22(3):896-907.
    [21]Randima F.GPU Gems:Programming techniques,Tips & Tricks for Real-Time Graphics.Addison-Wesley Professional.2004.
    [22]Matt P.,Randima F.GPU Gems 2:Programming Techniques for High-Performance Graphics and General-Purpose Comutation.Addison Wesley Professional.2005.
    [23]Hubert N.GPU Gems 3.Addison Wesley Professional.2007.
    [24]Erik L.,Mark J.K.,Henry M.A User-Programmable Vertex Engine.In Proceedings of SIGGRAPH,Los Angeles,2001,149-158.
    [25]Mark J.H.,Greg C.,Thorsten4S.,et al.Physically-Based Visual Simulation on Graphics Hardware.In Proceedings of Graphics Hardware,Saarbrucken,2002,109-118
    [26]Jens K.,Westermann.Linear Algebra Operators for GPU Implementation of Numerical Algorithms.ACM Transactions on Graphics,2003,22(3):908-916.
    [27]Bolz J.,Farmer I.,Grinspun E.,et al.Saprse Matrix Solves on the GPU:Conjugate Gradients and Multigrid.ACM Transactions on Graphics,2003,22(3):917-924.
    [28]Goodnight N.,Woollery C.,Luebke D.,et al.A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware.In Proceedings of.Graphics Hardware,San Diego,2003,102-111.
    [29]Karl E.H.,Sergey M.,Radek G.Nonlinear Optimization Framework for Image-Based Modeling on Programmable Graphics Hardware.ACM Transactions on Graphics.2003,22(3):925-934.
    [30]http://www.gpgpu.org.
    [31]John M.,Manish V.GPU Acceleration of Numerical Weather Prediction.2008 Workshop on Larg-Scale Parallel Processing (LSPP),April 2008.
    [32]Li W.,Wei XM,Kaufman A.Implementing Lattice Boltzmann Computatin on Graphcis Hardware.The Visual Computer,2003,19:444-456.
    [33]Wei XM,Zhao Y.,Fan Z.et al.Blowing in the wind.In proceedings of SIGGRAPH Symposium on Computer Animation.San Diego,2003:75-85.
    [34]Mark J.H.,Greg C.Thorsten S.et al.Siulation of cloud dynamics on graphcis hardware.In proceedings of graphics hardware,Saarbrucken,2003:92-101
    [35]Mark J.H.Real-Time Cloud Simulation and Rendering.The University of North Carolina at Chapel Hill,2003.
    [36]Kim T.,Ming C.L.Visual Simulation of Ice Crystal Growth.In Proceedings of SIGGRAPH Symposium on Computer Animation.San Diego.2003,86-97.
    [37]Zeller C.Cloth simulation on the GPU.In ACM SIGGRAPH 2005 Conference Abstracts and Applications,August 2005.
    [38]Joshua AA.,Chris DL.,Travesset A.General purpose molecular dynamics simulations fully implemented on graphics processing units.Journal of Computational Physics.2008.
    [39]Moreland K.,Angel E.The FFT on a GPU.In proceedings of Graphics Hardware,San Diego,2003:112-119.
    [40]Sumanaweera T.,Liu D.Medical image reconstruction with the FFT.In GPU Gems 2,M.Pharr,editor.Addison Wesley,2005,chapter 48,765-784.
    [41]Hopf M.,Ertl T.Accelerating 3D convolution using graphics hardware.In Proceedings of IEEE Visualization,San Francisco.1999:471-474.
    [42]Hopf M.,Ertl T.Hardware accelerated wavelet transformations.In Proceedings of IEEE TCVG Symposium on Visualization VisSym,Netherlands,2000:93-103.
    [43]Rumpf M.,Strzodk R.Using graphics cards for quantized FEM computation.In Proceedings of VHP,Marbella,2001,98-107.
    [44]Lefohn AE.,Whitaker RT.A GPU-Based Three-Dimensional Level Set Solver with Curvature Flow.Tech.Rep.UUCS-02-017,University of Utah,2002.
    [45]Lefohn AE.,Kniss JM.,Hansen CD.Interactive deformation and visualization of level set surfaces using graphics hardware.In IEEE Visual.,2003:75-82.
    [46]Lefohn AE.,Kniss JM.,Hansen CD.A streaming narrow-band algorithm:Interactive computation and visualization of levelset surfaces.IEEE Transactions on Visualization and Computer Graphics.2004:10(4),422-433.
    [47]Nathan A.Carr,Jesse D.Hall,John C.Hart.The Ray Engine.In Proceedings of Graphics Hardware,Saarbrucken,2002,37-46.
    [48]Purcell T.J.,Buck I.,William R.M.,et al.Ray Tracing on Programmable Graphics Hardware.ACM Transactions on Graphics,2002,21(3):703-712.
    [49]Carr N.A.,Jesse D.H.,Hart J.C.GPU Algorithms for Radiosity and Subsurface Scattering.In Proceedings of Graphics Hardware,Dan Diego.2003,51-59.
    [50]Coombe G.,Harris M.J.,Lastra A.Radiosity on Graphics Hardware.In Graphics Interface 2004.http://www.cs.unc.edu/~coombe/reseach/radiosity/.
    [51]Purcell T.J.,Donner C.,Cammarano M.et al.Photon Mapping on Programmable Graphics Hardware.In Proceedings of Graphics Hardware,San Diego.,2003,41-50.
    [52]Larsen E.S.,MCAllister D.Fast Matrix Multiplies using Graphics Hardware.In Proceedings of Supercomputing,Denver,2001,55-60.
    [53]Hall J.D.,Carr N.A.,Hart J.C.Cache and Bandwidth Aware Matrix Multiplication on the GPU.UIUCDCS-R-2003-2328,April 2003.University of Illinois at Urbana-Champaign.
    [54]Thompson C.J.,Hahn S.,Oskin M.Using Modern Graphics Architectures for General Purpose Computing:A Framework and Analysis.In Proceedings of International Symposium on Microarchitecture.Istanbul,2002.306-317.
    [55]Bolz J.,Farmer I.,Grinspum E.et al.Sparse Matrix Solvers on the GPU:Conjugate Gradients and Multigrid.ACM Transactions on Graphcis.2003,22(3):917-924.
    [56]Moravanszky A..Dense Matrix Algebra on the GPU.Websit:www.shaderx2.xom,2003.
    [57]Kruger J.,Westermann R.Acceleration Techniques for GPU-based Volume Rendering.IEEE Visualization,2003.
    [58]Gregory S.J.,Juhyun L.Christopher A.B.,et al.The Irregular Z-Buffer:Hardware Acceleration for Irregular Data Structures.ACM Transactions on Graphics,2005,24(4):1462-1482
    [59]Telea A.,van Wijk,J.J.3D IBFV:Hardware-Accelerated 39 Flow Visualization.IEEE Visualization,2003.VIS 2003.
    [60]Botchen R.P.,Weiskopf D.,Ertl T.Texture-Based Visualization of Uncertainty in Flow Fields.IEEE Visualization 2005 Proceedings,2005:647-654
    [61]Govindaraju N.K.,Lin M.C.,Manocha D.Quick-CULLIDE:Efficient inter- and intra-object collision culling using graphics hardware.In Proceedings of IEEE Virtual Reality.2005:59-66.
    [62]Kruger J.,Kipfer P.,Kondratieva P.et al.A particle system for interactive visualization of 39 flows.IEEE Transaction on Visualization and Computer Graphics.2005,11(6):744-756.
    [63]Govindaraju N.K.,Lloyd B.,Wang W.et al.Fast computation of database operations using graphics processors.In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data.2004,215-226.
    [64]Govindaraju N.K.,Raghuvanshi N.,Manocha D.Fast and approximate stream mining of quantiles and frequencies using graphics processors.In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data.2005:611-622.
    [65]柳有权.基于物理的计算机动画及其加速技术的研究:(博士学位论文).北京:中国科学院软件研究所.2005.
    [66]张怡,张加万,孙济洲等.基于可编程图形加速硬件的实时光线投射算法.系统仿真学报.2007,19(18):4204-4208.
    [67]刘保权,刘学慧,吴恩华.基于GPU的实时深度图像向前映射绘制算法.软件学报,2007,18(6):1531-1542.
    [68]汤颖,张宏鑫,张美玉.基于图形硬件的纹理图像编码与实时绘制算法.计算机学报,2007,30(2):272-280.
    [69]储璨骏,杨新,高艳.使用GPU编程的光线投射体绘制算法.计算机辅助设计与图形学学报,2007,19(2):257-262.
    [70]罗军,王玲.基于GPU的粒子系统的实现技术.微计算机信息.2008,24(2-1):273-275.
    [71]李建明,刘志轩,迟忠先,等.基于生物模型和6PU加速的实时鱼类运动仿真.系统仿真学报.2007,19(16):3838-3842.
    [72]杨柏林,潘志庚.面向移动设备的各向异性纹理映射方法.计算机辅助设计与图形学学报.2007,19(5):569-574.
    [73]曹峰,周傲英.基于图形处理器的数据流快速聚类.软件学报.2007,18(2):291-301.
    [74]http://www.nvidia.com/object/gpu.html
    [75]Joao Luiz Dihl Comba,Carlos A.D.,Christian A.P.,et al.Computation on GPUs:From A Programmable Pipeline to an Efficient Stream Processor.Revista de Informatica Teorica Aplicada,Volume X,2,2003,41-70.
    [76]Kruger Jens,Westermann R.Linear Algebra Operators for GPU Implementation of Numerical Algorithms.ACM Transactions on Graphics(Proceeding of SIGGRAPH),2003,22(3):908-916.
    [77]Rost RJ.OpengGL Shading Language.Addison-Wesley,2004.
    [78]Proudfoot K,Mark WR,Hanrahan P.A real time procedural system for programmable graphics hardware.Computer Graphics,2001,159-170.
    [79]Peeper C,Mitchell JL.Introduction to the DirectX 9 High-Level Shading Language.2003.http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnhlsl/html/shade r_introductionto.asp.
    [80]Levoy M.Display of Surfaces from Volume Data.IEEE Computer Graphics and Applications.1988,8(3):29-37.
    [81]Westover L.Footprint evaluation for volume rendering.In Proceedings of SIGGRAPH' 90,1990:367-376.
    [82]Lacroute P.,Levoy M.Fast volume rendering using a shear-warp factorization of the viewing transformation.In Proceedings of the 21~(st) annual conference on computer graphics and interactive techniques.1994:451-458.
    [83]宋涛,欧宗瑛,王瑜等.八叉树编码体数据的快速体绘制算法.计算机辅助设计与图形学学报,2005,17(9):1990-1996.
    [84]王文成,孙汉秋,吴恩华.加速体绘制技术.计算机辅助设计与图形学学报,2002,14(9):880-886.
    [85]Philippe G.L.Fast volume rendering using a shear-warp factorization of the viewing transformation.PH.D dissertation,Stanford University,1995.
    [86]Michael M.,Jian H.,Dirk B.,et al.A practical evaluation of popular volume rendering.algorithms.In Proceedings of the 2000 IEEE Symposium on Volume Visualization.2000:81-90.
    [87]Krueger J.,Westermann R.Acceleration techniques for GPU-based volume rendering.In Proceedings of IEEE Visualization.2003,38-45.
    [88]陈为,彭群生,鲍虎军.视点相关的层次采样:一种新的硬件加速体光线投射算法.软件学报.2005,16(6):1-15.
    [89]LaMar E.,Hamaan B.,Kenneth I.J.Multiresolution Techniques for Interactive Texture-Based Volume Visualization.In Proceedings of the 10~(th) IEEE Visualization,1999,355-361.
    [90]Westermann R.,Ertl T.Efficiently Using Graphics Hardware in Volume Rendering Applications.In Proceedings of the 25~(th) annual conference on Computer graphics and interactive techniques.1998:169-177.
    [91]吴仲乐,王遵亮,罗立民.基于可编程图形硬件的直接体绘制方法.生物医学工程研究.2003,22(3):29-32.
    [92]Alan W.,Mark W.Advanced animation and rendering techniques,ACM Press,1991.
    [93]Manfred W.,Martin K.,Markus M.et al.Hardware-Based View-Independent Cell Projection.IEEE Transactions on Visualization and Computer Graphics.2003,9(2):163-175.
    [94]Joe K.,Gordon K.,Charles H.Multidimensional Transfer Functions for Interactive Volume Rendering.IEEE Transactions on Visualization and Computer Graphics.2002,8(3):270-285.
    [95]Eric B.L.,Kwan-Liu M.Lighting transfer functions using gradient aligned sampling.IEEE Visualization,2004:289-296.
    [96]唐泽圣.用图像空间为序的体绘制技术显示三维数据场.计算机学报,1994,17(11):801-808.
    [97]Klaus M.,Torsten M.,Roger C.Splatting without the blur.In Proceedings of the Visualization.1999.363-371.
    [98]Klaus E.,Kraus M.,Ertl T.High-quality pre-integrated volume rendering using hardware accelerated pixel shading.In SIGGRAPH Workshop on Graphics Hardware.2001:9-16.
    [99]Phong B.T.Illumination for Computer Generated Pictures.Communications of the ACM,1975,18(6):311-317.
    [100]Max N.Optical Models for Direct Volume Rendering.IEEE Transactions on Visualization and Computer Graphics.1995,1(2):99-108.
    [101]Moreland K.D.Fast High Accuracy Volume Rendering.(Ph.D.Dissertation) Albuquerque,New Mexico.Department of Computer Science,University of New Mexico,2004.
    [102]Wilhelms J.,Gelder A.V.A coherent projection approach for direct volume rendering.Computer Graphics(ACM SIGGRAPH91),1991,Vol.25,275-284.
    [103]王卫红,秦绪佳,郑红波.医学图像三维重建模型的虚拟剖切算法.中国图像图形学报.2006,11(2):217-223.
    [104]Weiskopf D.,Engel K.,Ertl T.Interactive clipping techniques for texture-based volume visualization and volume shading.IEEE transaction on visualization and computer graphics.2003,9(3):298-312.
    [105]孙刚,杨杰.基于硬件纹理体重建的剖切算法.上海交通大学学报,2006,40(5):783-786.
    [106]http://www9.informatik.uni-erlangen.de/External/vollib/
    [107]Van den Elsen P.A.,Pol E.J.D Medical Image Matching - A Review with Classification.IEEE Engineering in Medicine and Bology Magazine,1993,12(4):26-39
    [108]Antoine Maintz J.B.,Viergever Max A.A Survey of Medical Image Registration.Medical Image Analysis,1998,2(1):1-36.
    [109]Penney G.P.,Weese J.,Little J.A.,et al.A Comparison of Similarity Measures for Use in 2D-3D Medical Image Registration.IEEE Transactions on Medical Imaging.1998,17(4),586-595.
    [110]Zuk T.D.,Atkins M.S.A comparison of manual and automatic methods for registering scans of the head.IEEE Transactions on Medical Imaging.1996,15(5):732-744
    [111]Guimond A.,Roche A.,Ayache N.et al.Three-dimensional multimodal brain warping using the demons algorithm and adaptive intensity corrections.IEEE Transactions on Medical Imaging.2001,20(1):58-69.
    [112]Maurer C.R.,Aboutanos G.B.,Fitzpatrick J.M.et al.Estimation of accuracy in localizing externally attached markers in multimodal volume head images.Medical Imaging:Image Processing.1993,vol.1898:358-367,SPIE Press.
    [113]Meyer C.R.,Leichtman G.S.Simultaneous Usage of Homologous Point,Lines,and Planes for Optimal,3-D Linear Registration of Multimodality Imaging Data.IEEE Transactions on Medical Imaging.1995,14(1):1-11.
    [114]Pelizzari C.A.,Chen G.T.Y.,Spelbring D.R.et al.Accurate three-dimensional registration of CT,PET,and/or MR images of the brain.Journal of Computer Assisted Tomography.1989,13(1):20-26.
    [115]Hajnal J.B.,Saeed N,Soar E.J.et al.A registration and interpolation procedure for subvoxel matching of serially acquired MR images.Journal of Computer Assisted Tomography.1995,19(2):289-296.
    [116]Lemieux L.,Barker G.J.Measurement of small inter-scan fluctuations in voxel dimensions in magnetic resonance images using registration.Medical Physics.1998,25(6):1049-1054.
    [117]Viola P.,Wells W.M.Alignment by maximization of mutual information.International Journal of Computer Vision,1997,24(2):137-154.
    [118]Collignon A.,Vandermeulen D.,Suetens P.et al.3D multi-modality medical image registration using feature space clustering.Lecture Notes in Computer Science.1995,Vol.905:195-204.
    [119]Studholme C.,Hill D.L.G.,Hawkes D.J.Multiresolution voxel similarity measures for MR-PET registration.In:Proceedings of the International Conference on Information Processing in Medical Imaging,Dordrecht,1995:287-298.
    [120]Studholme C.,Hill D.L.G.,Hawkes D.J.An overlap invariant entropy measure of 3D medical image alignment.Pattern Recognition.1999,32(1):71-86.
    [121]唐焕文,秦学志.实用最优化方法(第二版).大连:大连理工大学出版社,2001.
    [122]Pluim J.P.W.,Maintz J.B.A.,Viergever M.A.Mutual information matching in multiresolution contexts.Image and Vision Computing,2001,19(1-2):45-52.
    [123]Zhu Y.M.,Cochoff S.M.Influence of implementation parameters on registration of MR and SPECT brain images by maximization of mutual information.Journal of Nuclear Medicine,2002,43(2):160-166.
    [124]Sarrut D.,Miguet S.Fast 3D image transformations for registration procedures.In International Conference on Image Analysis and Processing.Venice,1999:446-452.
    [125]Rohlf ing T.,Maurer C.R.Nonrigid image registration in shared-memory multiprocessor Environments with application to brains,breasts,and bees.IEEE Transactions on Information Technology in Biomedicine.2003,7(1):16-25.
    [126]Castro-Pareja C.R.,Jagadeesh J.M.,Shekhar R.FAIR:a hardware architecture for real-time 3-D image registration.IEEE Transformation on Information Technology in Biomedicine.2003,7(4):426-434.
    [127]Ohara M.,Yeo H.,Savino F.et al.Accelerating mutual-information-based linear registration on the cell broadband engine processor.In IEEE International Conference on Multimedia and Expo.Beijing,2007,272-275.
    [128]Strzodka R.,Droske M.,Rumpf M.Fast image registration in DX9 graphics hardware,Journal of Medical Informatics and Technologies.2003,6:43-49.
    [129]Strzodka R.,Droske M.,Rumpf M.Image registration by a regularized gradient flow:A streaming implementation in DX9 graphics hardware.Computing,2004,73(4):373-389.
    [130]Khamene A.,Chisu R.,Wein W.et al.A novel projection based approach for medical image registration.Lecture Notes in Computer Science.2006,vol.4057:247-256.
    [131]Harris M.J.,Baxter W.V.,Scheuermann T.et al.Simulation of cloud dynamics on graphics hardware.In Proceeding of the SIGGRAPH/Eurographics Workshop on graphics hardware.San Diego,California.2003:92-101.
    [132]Maes F.,Collignon A.Vandermeulen D.Multi-modality image registration by maximization of mutual information.IEEE Transactions on Medical Imaging.1997,16(2):187-198.
    [133]Herman G.Image reconstruction from projection:The fundamentals computed tomography.New York:Academic Press,1980.
    [134]Kalender A.X-ray computed tomography.Physics in Medicine and Biology,2006,51(13):29-423.
    [135]Radon J.On the determination of function from their integrals along certain manifolds.Mathematisch-Physicshe Klasse,1917,69:262-277.
    [136]Feldkamp L A,Davis L C,Kress J W.Practical cone beam algorithm.Journal of the Optical Society of America,1984,1(6):612-619.
    [137]Turbell H,Danielsson P E.Fast Feldkamp reconstruction.In International Meeting on Fully three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine,Egmond aan Zee,The Netherlands,1999.
    [138]Grass M,Kohler T,ProksaR.3D cone-beam CT reconstruction for circular trajectories.Physics in Medicine and Biology,2000,45(2):329-347.
    [139]Turbell H.Cone-beam reconstruction using filtered backprojection.PhD.Thesis,Link(o|¨)ping University,2001.
    [140]Katsevich A.A general scheme for constructing inversion algorithms for cone beam CT.International Journal of Mathematics and Mathematical Sciences.2003,2003(21):1305-1321.
    [141]Xu F.,Mueller K.Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware.IEEE Transactions on Nuclear Science,2005,52(3):654-663.
    [142]Grangeat P.Mathematical framework of cone-beam 3D reconstruction via the first derivative of the Radon Transform.Mathematical Methods in Tomography,Lecture Notes in Mathematics.Heidelberg:Srpinger,1991,1497:66-97.
    [143]王瑜,欧宗瑛,王峰.基于Radon逆变换分解的超短扫描锥束重建.光电子·激光.2007,18(5):612-616.
    [144]Cabral B.,Cam N.,Foran J.Accelerated volume rendering and tomographic reconstruction using texture mapping hardware.Symposium on volume visualization.Tysons Corner,Virginia.1994:91-98.
    [145]Mueller K.,Yagel R.Rapid 3D cone-beam reconstruction with SART by using texture mapping hardware.IEEE Transactions on Medical Imaging.2000,19(12):1227-1237.
    [146]Xu F.,Mueller K.Ultr-fast 3D filtered backprojection on commodity graphics hardware.Proceedings of IEEE International Symposium on Biomedical Imaging.Virginia,2004:571-574.
    [147]戴智晟,陈志强,邢宇翔等.用通用显卡加速三维锥束T-FDK重建算法.清华大学学报(自然科学版).2006,46(9):1589-1592.
    [148]Segal M.,Korobkin C.,Widenfelt R.et al.Fast shadows and lighting effects using texture mapping.Computer Graphics.1992,26(2):249-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700