医学图像处理中的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度、高速度的医学图像配准及图像分割技术,因其在临床上能辅助医生作出更准确、更快速的诊断而受到广泛的关注。但又因其处理对象的特殊性和实现的难度,一直就是研究界的重点攻克项目。
     本论文的目的是提高现有医学图像处理工作站中的两个重要功能模块:图像配准及图像分割的性能。
     准确的图像配准对综合利用多次成像的信息或者多种成像设备的信息,达到信息互补,进而提高诊断效率和正确性十分重要。但困难是,一般情况下配准操作中使用到的相似性测度函数都是具有局部极值的,而且医学图像,尤其是三维体数据图像往往都数据量非常庞大。
     图像分割是图像处理领域和计算机视觉中的一个基本而关键的问题,目前在工程上应用最广泛的仍是交互式半自动分割技术。交互式分割方法中最常用的有两种:Snake分割算法以及Live-wire分割算法。但在应用中发现,他们各自都存在一些缺陷:无论是经典Snake算法还是后来推广范围最大的GVF Snake算法,在分割带噪声的图像时,都很容易受到噪声点的干扰而无法正确逼近目标物体边界;而传统的Live-wire算法则因为其自身计算最小代价路径的方式,而无法一次性分割物体的大曲率边缘。
     有鉴于此,本论文的主要内容是结合医学图像处理工作站中经常配备的三个具体功能项:数字减影CT颅脑血管造影、CT肺实质分割、DSA心脏轮廓提取,着重在精度更高、速度更快的图像配准方法上,以及交互式图像分割技术上,进行理论及应用的研究。
     首先,本论文在医学图像配准上的研究及成果,主要集中于以下几点。
     设计了一种准确、快速的医学图像配准方法,并且进而开发出以该配准方法为基础的数字减影CT颅脑血管造影技术。该方面的工作围绕以下两点展开:通过提高优化搜索算法的性能来应对因相似性测度函数而造成的局部极值问题,以及采用多分辨率的全局优化算法与局部优化算法相结合的方法在保证精度的前提下加快对三维图像数据的处理速度。具体为:
     在提高优化搜索算法的性能方面,通过分析SPSO算法及QPSO算法各自的特性及存在的缺陷,提出了一种引入混合概率分布和多样性控制策略的改进型QPSO算法(DRQPSO)。经实验手段确定出使DRQPSO算法具有最优性能的三个参数。与其他优化算法的对比实验证明,提出的DRQPSO算法在搜索精度及收敛速度方面皆具有优越的性能,尤其适合多峰函数的优化任务。在将DRQPSO算法引入图像配准过程之后,对于含有噪声的图像配准精度符合亚像素要求的概率上升至91.67%。
     在加快三维图像配准速度方面,本论文采用多分辨率策略对原始大尺寸三维图像进行分层处理,并将全局优化算法DRQPSO与局部优化算法POWELL结合,在不同层级的图像上进行最优化参数搜索,使含有噪声的三维医学图像的配准在保证精度的前提下符合了实时要求。并且基于该种多分辨率混合优化配准算法完成了数字减影CT颅脑血管造影任务。
     其次,本论文在医学图像分割的研究及成果上,主要集中于以下两点。
     提出了一种新的Snake外力场---GCF,该外力场是通过边缘映射图的卷积方式扩展形成的。这是为了克服经典Snake算法以及GVF Snake算法容易受到图像噪声点的干扰而无法正确逼近目标物体边界的问题。实验证明,基于这种GCF外力场的Snake算法在图像包含大量噪声的情况下,也能在保留边缘信息的前提中排除掉噪声带来的不良影响,正确收敛到目标物体的真实边界上,而且在深凹部位的收敛速度远远快于GVF Snake。该算法应用于CT肺实质分割中,能符合临床精确度要求。
     提出了一种基于可控平均代价路径的新型Live-wire算法。这是为了改善传统Live-wire算法无法一次性分割大曲率边缘的缺陷。该算法从代价函数的构造以及最优路径的产生这两点上进行改进,使路径的代价与这条路径的长度脱离关系,从而可以一次性分割曲率较大的目标物体边界,减少了人工设定的节点的个数,进而减少了整个分割过程的耗时。该算法应用到包括DSA心脏轮廓提取在内的多种图像分割中,取得了满意的效果。
     论文最后对所做的工作与主要研究成果进行了总结,并提出了进一步的研究方向。
Accurate and robust medical image registration and segmentation play a crucial role in clinical diagnosis by providing fast and vivid method to observe organs. However, since the particularity and the complexity of the processing object, image registration and segmentation are widely taken change to regarded.
     The aim of our research is to improve the two maily function modules of medial grapics workstation: image registration and image segmentation.
     Precise registration can increase treatment efficiency and minimize neurological damage by providing complementary information which acquired from the same patient but at different times or with different devices. Otherwise, the precise and quick registration has been proved to be a difficult task due the the tendency of trapping into the local optima when using mutual information as the similarity metrics, and the dramatic large size of medical image data.
     Image segmentation is the key problem both in image processing and machine vision fields. And interactive segmentation methods including Snake and Live-wire, are the most widely used segmentation technologies in clinical applications. But they both have drawbacks: traditional Snake and the GVF Snake algorithms are both too sensitive to the noise, and traditional Live-wire can not segment the edge with large curvature disposably.
     Therefore, the contents of this paper mainly involves the research of the accurate and quick image registration and segmentation methods, as well as the application in CT head digital subtraction angiography, CT lung segmentation and the extraction of the DSA heart contour.
     First, the accurate and quick image registration research focuses on the following aspects.
     Improve the performance of the optimization method in registration. Present a multi-distribution-based and diversity-controlled novel QPSO algorithm (DRQPSO). Determine the best suitable parameters which makes the DRQPSO most efficient through experiments. The results of the DRQPSO on several benchmarks show that it may have better performance than QPSO and PSO, especially in solving the multimodal functions. The semi-pixel satisfaction rate of noisy image registration raises to 91.67% when using the DRQPSO as the optimization method.
     Accelerate the registration process by the use of multiresolution strategy and the hybrid optimization algorithm combined DRQPSO and Powell, which makes the 3D image registration meet the real-time acquirement under the precondition of semi-pixel precision. Furthermore, apply this accurate and quick registration method to the CT head digital subtraction angiography successfully.
     Second, the research on the image segmentation involves the following two aspects.
     Propose a new external foce for Snake algorithm, called gradient convolution field (GCF). GCF is calculated by convolving the edge map generated from the image with the user-defined convolution kernel, with the aim to overcome the noise sensitivity of the traditional Snake algorithm. Experiments and comparisons with GCF are presented to show the advantages of this innovation, including superior noise robustness, reduced computational cost, and the flexibility of tailoring the force field. When applied this GCF Snake to CT lung segmentation, the results meet the clinical precision acquirement.
     Develop a improved Live-wire algorithm based on the controllable average cost path, overcome the disadvantage of tradition Live-wire which is unable to segment the the edge with large curvature disposably. The improved Live-wire algorithm change the cost terms function and redefine the optimal path as the minimum average cost path between two seed points, which frees the optimal path from the restriction of the straight line. Experiments conducted on a variety of image types including DSA heart images, have shown that this improved Live-wire algorithm requires less seed points than the traditional algorithm when delineating the same boundary and as a result, reduces the time required to complete the calculation.
     The main contributions in this work are summaried at the end and future research directions are also put forward.
引文
[1]田捷,医学影像处理与分析,电子工业出版社, 2003.
    [2]刘俊敏,黄忠全,王世耕,张颖,“医学图像处理技术的现状及发展方向”,医疗卫生设备, vol. 26, 2005, p. 25-26.
    [3]田娅,饶妮妮,蒲立新,“国内医学图像处理技术的最新动态”,电子科技大学学报, vol. 31, 2002, p. 485-489.
    [4]罗述谦周果宏,医学图像处理与分析,北京:科学出版社, 2003.
    [5] L.G. Brown,“A survey of image registration techniques”, ACM Computing Surveys (CSUR), vol. 24, Dec. 1992, p. 325–376.
    [6] J.B.A. Maintz and M.A. Viergever,“A survey of medical image registration”, Medical Image Analysis, vol. 2, 1998, p. 1-36.
    [7] C. Barillot, D. Lemoine, L. Le Briquer, F. Lachmann, and B. Gibaud,“Data fusion in medical imaging: merging multimodal and multipatient images, identification of structures and 3D display aspects”, European Journal of Radiology, vol. 17, 1993, p. 22-27.
    [8] B. Zitováand J. Flusser,“Image registration methods: a survey”, Image and Vision Computing, vol. 21, 2003, p. 977-1000.
    [9] P.A. van den Elsen, E.-J.D. Pol, and M.A. Viergever,“Medical image matching-a review with classification”, Engineering in Medicine and Biology Magazine, IEEE, vol. 12, Mar. 1993, p. 26-39.
    [10] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever,“Mutual-information-based registration of medical images: a survey”, Medical Imaging, IEEE Transactions on, vol. 22, Aug. 2003, p. 986-1004.
    [11]高智勇,李义兵,“多模态医学图像配准技术的分类与研究进展”,国外医学:生物医学工程分册, vol. 23, 2000, p. 206–211.
    [12]付宜利,于晓龙,王跃华,“基于最大互信息的人脑多模图像快速配准算法”,生物医学工程研究, vol. 25, 2006, p. 71–74.
    [13]李晓光,“基于互信息的多模态医学图像配准”,硕士学位论文,湖南大学, 2008.
    [14]李晖,“多分辨率医学图像配准技术及自适应图像插值技术的研究”,博士学位论文,山东大学, 2009.
    [15]刘庆辉,“多模态医学图像的配准与融合”,硕士学位论文,山东大学, 2009.
    [16]赵建平,“医学图像处理若干关键问题研究”,博士学位论文,长春理工大学, 2008.
    [17] T.M. Lehmann, C. Gonner, and K. Spitzer,“Survey: Interpolation methods in medical image processing”, Medical Imaging, IEEE Transactions on, vol. 18, 1999, p. 1049–1075.
    [18] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,“Multimodality image registration by maximization of mutual information”, Medical Imaging, IEEE Transactions on, vol. 16, Apr. 1997, p. 187-198.
    [19] K.S. Arun, T.S. Huang, and S.D. Blostein,“Least-Squares Fitting of Two 3-D Point Sets”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-9, Sep. 1987, p. 698-700.
    [20] J.B.A. Maintz, P.A. van den Elsen, and M.A. Viergever,“Evaluation of ridge seeking operators for multimodality medical image matching”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 18, 1996, p. 353–365.
    [21]李响,“基于互信息的多模脑图像配准算法研究”,硕士学位论文,首都医科大学, 1999.
    [22] K.F. Man, K.S. Tang, and S. Kwong,“Genetic algorithms: concepts and applications [in engineeringdesign]”, Industrial Electronics, IEEE Transactions on, vol. 43, Oct. 1996, p. 519-534.
    [23] D.W. Marquardt,“An Algorithm for Least-Squares Estimation of Nonlinear Parameters”, Journal of the Society for Industrial and Applied Mathematics, vol. 11, 1963, p. 431-441.
    [24] S.P. Brooks and B.J.T. Morgan,“Optimization using simulated annealing”, Journal of the Royal Statistical Society. Series D (The Statistician), vol. 44, 1995, p. 241–257.
    [25] J. Kennedy and R. Eberhart,“Particle swarm optimization”, vol. 4, Dec. 1995, p. 1942-1948 vol.4.
    [26]郑亚琴,田心,“医学图像配准技术研究进展”,国际生物医学工程杂志, vol. 29, 2006, p. 88–92.
    [27] H. Lester and S.R. Arridge,“A survey of hierarchical non-linear medical image registration”, Pattern recognition, vol. 32, 1999, p. 129–149.
    [28]孙少燕,“基于像素灰度的医学图像刚性配准方法研究”,大连理工大学, 2007.
    [29]彭文,“基于特征的医学图像配准中若干关键技术的研究”,浙江大学, 2007.
    [30] C.R. Maurer Jr, J.M. Fitzpatrick, M.Y. Wang, R.L. Galloway Jr, R.J. Maciunas, and G.S. Allen,“Registration of head volume images using implantable fiducial markers”, Medical Imaging, IEEE Transactions on, vol. 16, 1997, p. 447–462.
    [31] T. Peters, B. Davey, P. Munger, R. Comeau, A. Evans, and A. Olivier,“Three-dimensional multimodal image-guidance for neurosurgery”, Medical Imaging, IEEE Transactions on, vol. 15, 1996, p. 121–128.
    [32] W.D. Leslie, A. Borys, D. McDonald, J.O. Dupont, and A.E. Peterdy,“External reference markers for the correction of head rotation in brain single-photon emission tomography”, European Journal of Nuclear Medicine and Molecular Imaging, vol. 22, 1995, p. 351–355.
    [33] M. Fuchs, H. Wischmann, A. Neumann, J. Weese, W. Zylka, J. Sabczynski,M.H. Kuhn, T.M. Buzug, G. Schmitz, and P.M.C. Gieles,“Accuracy analysis for image-guided neurosurgery using fiducial skin markers, 3D CT imaging, and an optical localizer system”, Computer assisted radiology, 1996, p. 770–775.
    [34] J.P. Thirion,“New feature points based on geometric invariants for 3D image registration”, International journal of computer vision, vol. 18, 1996, p. 121–137.
    [35] P.A. Van den Elsen, J.B.A. Maintz, E.J.D. Pol, and M.A. Viergever,“Automatic registration of CT and MR brain images using correlation of geometrical features”, Medical Imaging, IEEE Transactions on, vol. 14, 1995, p. 384–396.
    [36] C.A. Pelizzari, G.T.Y. Chen, D.R. Spelbring, R.R. Weichselbaum, and C.T. Chen,“Accurate three-dimensional registration of CT, PET, and/or MR images of the brain”, Journal of computer assisted tomography, vol. 13, 1989, p. 20.
    [37] A. Jaklic and F. Solina,“Moments of superellipsoids and their application to range image registration”, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 33, 2003, p. 648–657.
    [38] R.P. Woods, S.R. Cherry, and J.C. Mazziotta,“Rapid automated algorithm for aligning and reslicing PET images”, Journal of computer assisted tomography, vol. 16, 1992, p. 620.
    [39] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal,“Automated multi-modality image registration based on information theory”, Information processing in medical imaging, 1995, p. 263.
    [40] P. Viola and W.M. Wells III,“Alignment by maximization of mutual information”, iccv, 1995, p. 16.
    [41] F. Maes, D. Vandermeulen, and P. Suetens,“Medical image registration using mutual information”, Proceedings of the IEEE, vol. 91, 2003, p. 1699–1722.
    [42] M. Mellor and M. Brady,“Phase mutual information as a similarity measure for registration”, Medical Image Analysis, vol. 9, 2005, p. 330–343.
    [43] B. Likar and F. Pernus,“A hierarchical approach to elastic registration based on mutual information”, Image and Vision Computing, vol. 19, 2001, p. 33–44.
    [44] W.M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis,“Multi-modal volume registration by maximization of mutual information”, Medical image analysis, vol. 1, 1996, p. 35–51.
    [45] C. Studholme, D.L.G. Hill, D.J. Hawkes, and others,“An overlap invariant entropy measure of 3D medical image alignment”, Pattern recognition, vol. 32, 1999, p. 71–86.
    [46] J. Pluim, J.B. Maintz, and M. Viergever,“Image registration by maximization of combined mutual information and gradient information”, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000, 2000, p. 103–129.
    [47] G.P. Penney, J. Weese, J.A. Little, P. Desmedt, and D.L.G. Hill,“A comparison of similarity measures for use in 2-D-3-D medical image registration”, MedicalImaging, IEEE Transactions on, vol. 17, 1998, p. 586–595.
    [48] P. Thevenaz and M. Unser,“Spline pyramids for inter-modal image registration using mutual information”, Proceedings of SPIE: Wavelet Applications in Signal and Image Processing, San Diego, CA, 1997, p. 236–247.
    [49] R.L. Allen, F.A. Kamangar, and E.M. Stokely,“Laplacian and orthogonal wavelet pyramid decompositions in coarse-to-fine registration”, Signal Processing, IEEE Transactions on, vol. 41, 1993, p. 3536–3541.
    [50] M. Unser, A. Aldroubi, and C.R. Gerfen,“A multiresolution image registration procedure using spline pyramids”, Proc. of SPIE, 1993, p. 160–170.
    [51] P. Thévenaz and M. Unser,“Optimization of mutual information for multiresolution image registration”, Image Processing, IEEE Transactions on, vol. 9, 2000, p. 2083–2099.
    [52] M. Unser, A. Aldroubi, and M. Eden,“The L2-polynomial spline pyramid”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 15, 1993, p. 364–379.
    [53] P. Thevenaz, U.E. Ruttimann, and M. Unser,“A pyramid approach to subpixel registration based on intensity”, Image Processing, IEEE Transactions on, vol. 7, 1998, p. 27–41.
    [54] Z. Xie and G.E. Farin,“Image registration using hierarchical B-splines”, IEEE Transactions on Visualization and Computer Graphics, 2004, p. 85–94.
    [55] J. Le Moigne,“Parallel registration of multisensor remotely sensed imagery using wavelet coefficients”, Proceedings of SPIE, 1994, p. 432.
    [56] J. Le Moigne,“Towards a parallel registration of multiple resolution remote sensing data”, Geoscience and Remote Sensing Symposium, 1995. IGARSS’95.’Quantitative Remote Sensing for Science and Applications’, International, 1995, p. 1011–1013.
    [57] J. Le Moigne, W.J. Campbell, and R.F. Cromp,“An automated parallel image registration technique based on the correlation of wavelet features”, Geoscience and Remote Sensing, IEEE Transactions on, vol. 40, 2002, p. 1849–1864.
    [58] E. Kaymaz, B.T. Lerner, W.J. Campbell, J. Le Moigne, and J.F. Pierce,“Registration of satellite imagery utilizing the low-low components of the wavelet transform”, Proceedings of SPIE, 1997, p. 45.
    [59] R. Sharman, J.M. Tyler, and O.S. Pianykh,“Wavelet-based registration and compression of sets of images”, Proceedings of SPIE, 1997, p. 497.
    [60] J.C. Olivo-Marin, J. Deubler, and C. Boulin,“Automatic registration of images by a wavelet-based multiresolution approach”, Proceedings of SPIE, 1995, p. 234.
    [61] Z. Zhang and R.S. Blum,“A hybrid image registration technique for a digital camera image fusion application* 1”, Information Fusion, vol. 2, 2001, p. 135–149.
    [62] J. You and P. Bhattacharya,“A wavelet-based coarse-to-fine image matchingscheme in a parallel virtual machine environment”, Image Processing, IEEE Transactions on, vol. 9, 2000, p. 1547–1559.
    [63] X. Wang and D. Feng,“An efficient wavelet-based biomedical registration for abdominal images”, Journal of Nuclear Medicine, vol. 46, 2005, p. 161.
    [64] S. Gefen, O. Tretiak, L. Bertrand, G.D. Rosen, and J. Nissanov,“Surface alignment of an elastic body using a multiresolution wavelet representation”, Biomedical Engineering, IEEE Transactions on, vol. 51, 2004, p. 1230–1241.
    [65] D. Plattard, M. Soret, J. Troccaz, P. Vassal, J.Y. Giraud, G. Champleboux, X. Artignan, and M. Bolla,“Patient set-up using portal images: 2D/2D image registration using mutual information”, Computer Aided Surgery, vol. 5, 2000, p. 246–262.
    [66] G.C. Kagadis, K.K. Delibasis, G.K. Matsopoulos, N.A. Mouravliansky, P.A. Asvestas, and G.C. Nikiforidis,“A comparative study of surface-and volume-based techniques for the automatic registration between CT and SPECT brain images”, Medical Physics, vol. 29, 2002, p. 201.
    [67]冯林,严亮,黄德根,贺明峰,滕弘飞,“PSO和Powell混合算法在医学图像配准中的应用研究”,北京生物医学工程, vol. 24, 2005, p. 8–12.
    [68] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever,“f-Information measures in medical image registration”, Medical Imaging, IEEE Transactions on, vol. 23, 2004, p. 1508–1516.
    [69] D. Rueckert, M.J. Clarkson, D.L.G. Hill, and D.J. Hawkes,“Non-rigid registration using higher-order mutual information”, Proceedings of SPIE, 2000, p. 438.
    [70] C. Liu, K. Li, and Z. Liu,“Medical image registration by maximization of combined mutual information and edge correlative deviation”, Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, p. 6379–6382.
    [71] A.A. Dawkins, A.L. Evans, J. Wattam, C.A.J. Romanowski, D.J.A. Connolly, T.J. Hodgson, and S.C. Coley,“Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures”, Neuroradiology, vol. 49, 2007, p. 753–759.
    [72]李大成,邢喜玲,李亚军,蔡莉,“CTA与DSA诊断颅内动脉瘤的对比研究”, JOURNAL OF PRACTICAL RADIOLOGY, vol. 21, 2005.
    [73] A. Napoli, D. Fleischmann, F.P. Chan, C. Catalano, J.C. Hellinger, R. Passariello, and G.D. Rubin,“Computed tomography angiography: state-of-the-art imaging using multidetector-row technology”, Journal of computer assisted tomography, vol. 28, 2004, p. S32.
    [74] B.K. Velthuis, M.S. Van Leeuwen, T.D. Witkamp, S. Boomstra, L.M. Ramos, and G.J. Rinkel,“CT angiography: source images and postprocessing techniques in the detection of cerebral aneurysms”, American Journal of Roentgenology, vol.169, 1997, p. 1411.
    [75] S. Napel, M.P. Marks, G.D. Rubin, M.D. Dake, C.H. McDonnell, S.M. Song, D.R. Enzmann, and R.B. Jeffrey,“CT angiography with spiral CT and maximum intensity projection.”, Radiology, vol. 185, 1992, p. 607.
    [76] R.B. Schwartz, H.M. Tice, S.M. Hooten, L. Hsu, and P.E. Stieg,“Evaluation of cerebral aneurysms with helical CT: correlation with conventional angiography and MR angiography.”, Radiology, vol. 192, 1994, p. 717.
    [77] Y. Korogi, M. Takahashi, K. Katada, Y. Ogura, K. Hasuo, M. Ochi, H. Utsunomiya, T. Abe, and S. Imakita,“Intracranial Aneurysms: Detection with Three-dimensional CT Angiography with Volume Rendering—Comparison with Conventional Angiographic and Surgical Findings1”, Radiology, vol. 211, 1999, p. 497.
    [78] B. Skutta, G. F\ürst, J. Eilers, A. Ferbert, and F.P. Kuhn,“Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography”, American journal of neuroradiology, vol. 20, 1999, p. 791–800.
    [79] H.W. Venema, F.J.H. Hulsmans, and G.J. den Heeten,“CT Angiography of the Circle of Willis and Intracranial Internal Carotid Arteries: Maximum Intensity Projection with Matched Mask Bone Elimination—Feasibility Study1”, Radiology, vol. 218, 2001, p. 893.
    [80] S.M. Kwon, Y.S. Kim, T.S. Kim, and J.B. Ra,“Digital subtraction CT angiography based on efficient 3D registration and refinement”, Computerized Medical Imaging and Graphics, vol. 28, 2004, p. 391–400.
    [81] P.-A. Poletti, A. Rosset, D. Didier, P. Bachmann, F.R. Verdun, O. Rutschmann, J.-P. Vallee, F. Terrier, and G. Khatchatourov,“Subtraction CT Angiography of the Lower Limbs: A New Technique for the Evaluation of Acute Arterial Occlusion”, Am. J. Roentgenol., vol. 183, 2004, p. 1445-1448.
    [82] J. Beier, H. Oellinger, C.S. Richter, E. Fleck, and R. Felix,“Registered image subtraction for CT-, MR-and coronary angiography”, European radiology, vol. 7, 1997, p. 82–89.
    [83] M. van Straten, H.W. Venema, G.J. Streekstra, C.B.L.M. Majoie, G.J. den Heeten, and C.A. Grimbergen,“Removal of bone in CT angiography of the cervical arteries by piecewise matched mask bone elimination”, Medical physics, vol. 31, 2004, p. 2924.
    [84] T. Rohlfing, C.R. Maurer, and others,“Reduction of motion artifacts in three-dimensional CT-DSA using constrained adaptive multilevel free-form registration”, International Congress Series, 2001, p. 365–371.
    [85] D. Loeckx, Automated nonrigid intra-patient image registration using B-splines, Buy Via Ask* IEEE, .
    [86]焦春林,“基于光流场的图象分割”,西北工业大学, 2005.
    [87]聂斌,“医学图像分割技术及其进展”,泰山医学院学报, vol. 23, 2002, p. 422–426.
    [88]潘伟,“基于模糊聚类的医学图像分割技术研究”,西北工业大学, 2007.
    [89]吴北海,“基于主动轮廓模型的医学图像分割”,河北工业大学, 2006.
    [90]李培华,“主动轮廓线模型(蛇模型)综述”,软件学报, 2000, p. 751–757.
    [91] D. Jolly, S. Lakshmanan, and A.K. Jain,“Vehicle segmentation and classification using deformable templates”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 18, 1996, p. 293–308.
    [92] Z. Yanbo and Z. Zhiguang,“Deformable Objects’Contour Extraction [J]”, ACTA ELECTRONICA SINICA, vol. 7, 1998.
    [93] J.I.A.C. Guang, T.A.N. Ou, D.H. Long, and L.U.W. Xue,“MEDICAL IMAGE REGISTRATION BASED ON DEFORMABLE CONTOUR [J]”, JOURAAL OF COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, vol. 2, 1999.
    [94]李晓波,“基于Snake模型的脑部MR图像交互式分割方法研究”,硕士学位论文,哈尔滨工业大学, 2007.
    [95]马建林,“基于Snake模型的医学序列图像轮廓提取及应用研究”,硕士学位论文,苏州大学, 2008.
    [96] A.A. Amini, T.E. Weymouth, and R.C. Jain,“Using dynamic programming for solving variational problems in vision”, IEEE Transactions on pattern analysis and machine intelligence, 1990, p. 855–867.
    [97] D.J. Williams and M. Shah,“A Fast algorithm for active contours and curvature estimation* 1”, CVGIP: Image understanding, vol. 55, 1992, p. 14–26.
    [98] L.D. Cohen,“On active contour models and balloons”, CVGIP: Image understanding, vol. 53, 1991, p. 211–218.
    [99] L.D. Cohen and I. Cohen,“Finite-element methods for active contour models and balloons for 2-D and 3-D images”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 15, 1993, p. 1131–1147.
    [100] M. Kass, A. Witkin, and D. Terzopoulos,“Snakes: Active contour models”, International journal of computer vision, vol. 1, 1988, p. 321–331.
    [101] C. Xu and J.L. Prince,“Snakes, shapes, and gradient vector flow”, Image Processing, IEEE Transactions on, vol. 7, 1998, p. 359–369.
    [102] M. Poon, G. Hamarneh, and R. Abugharbieh,“Efficient interactive 3D Livewire segmentation of complex objects with arbitrary topology”, Computerized Medical Imaging and Graphics, vol. 32, 2008, p. 639–650.
    [103] E.N. Mortensen and W.A. Barrett,“Intelligent scissors for image composition”, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, p. 191–198.
    [104] W.A. Barrett and E.N. Mortensen,“Interactive live-wire boundary extraction”, Medical Image Analysis, vol. 1, 1997, p. 331–341.
    [105] A. Chodorowski, U. Mattsson, M. Langille, and G. Hamarneh,“Color lesion boundary detection using live wire”, SPIE Medical Imaging, 2005, p. 1589–96.
    [106] E.W. Dijkstra,“A note on two problems in connexion with graphs”, Numerische mathematik, vol. 1, 1959, p. 269–271.
    [107] S. Ranganath,“Contour extraction from cardiac MRI studies using snakes”, Medical Imaging, IEEE Transactions on, vol. 14, 1995, p. 328–338.
    [108] N. Paragios and R. Deriche,“Geodesic active contours and level sets for the detection and tracking of moving objects”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, 2000, p. 266–280.
    [109] N. Paragios and R. Deriche,“Geodesic active regions and level set methods for motion estimation and tracking”, Computer Vision and Image Understanding, vol. 97, 2005, p. 259–282.
    [110] M. Isard and A. Blake,“Condensation—conditional density propagation for visual tracking”, International journal of computer vision, vol. 29, 1998, p. 5–28.
    [111] S. Jehan-Besson, M. Barlaud, and G. Aubert,“DREAM 2 S: Deformable regions driven by an eulerian accurate minimization method for image and video segmentation”, International Journal of Computer Vision, vol. 53, 2003, p. 45–70.
    [112] G. Székely, A. Kelemen, C. Brechbuehler, and G. Gerig,“Segmentation of 3D objects from MRI volume data using constrained elastic deformations of flexible Fourier surface models”, Computer Vision, Virtual Reality and Robotics in Medicine, 1995, p. 493–505.
    [113] A. Yezzi Jr, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum,“A geometric snake model for segmentation of medical imagery”, Medical Imaging, IEEE Transactions on, vol. 16, 1997, p. 199–209.
    [114] M.S. Atkins and B.T. Mackiewich,“Fully automatic segmentation of the brain in MRI”, Medical Imaging, IEEE Transactions on, vol. 17, 1998, p. 98–107.
    [115] C. Ca\ nero, F. Vilari\ no, J. Mauri, and P. Radeva,“Predictive (un) distortion model and 3-D reconstruction by biplane snakes”, Medical Imaging, IEEE Transactions on, vol. 21, 2002, p. 1188–1201.
    [116] X.M. Pardo, P. Radeva, and D. Cabello,“Discriminant snakes for 3D reconstruction of anatomical organs”, Medical Image Analysis, vol. 7, 2003, p. 293–310.
    [117] G.I. Chiou and J.N. Hwang,“Image sequence classification using a neural network based active contour model and a hidden markov model”, Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, 1994, p. 926–930.
    [118] R. Malladi, J.A. Sethian, and B.C. Vemuri,“Shape modeling with front propagation: A level set approach”, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 17, 1995, p. 158–175.
    [119] J.A. Sethian and S. Osher,“Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations”, Journal of Computational Physics, vol. 79, 1988, p. 12–49.
    [120] J.A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, Cambridge Univ Pr, 1999.
    [121] S. Osher and R.P. Fedkiw, Level set methods and dynamic implicit surfaces, Springer Verlag, 2003.
    [122] T. McInerney and D. Terzopoulos,“T-snakes: Topology adaptive snakes”, Medical Image Analysis, vol. 4, 2000, p. 73–91.
    [123] A. Schenk, G. Prause, and H.O. Peitgen,“Efficient semiautomatic segmentation of 3D objects in medical images”, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000, 2000, p. 71–131.
    [124] A. Schenk, G.P.M. Prause, and H.O. Peitgen,“Local-cost computation for efficient segmentation of 3D objects with live wire”, Proceedings of SPIE, 2001, p. 1357.
    [125] A. Schenk, G. Prause, and H.O. Peitgen,“Optimierte Semi-Automatische Segmentierung von 3D-Objekten mit Live Wire und Shape-Based Interpolation”, Bildverarbeitung F\ür Die Medizin 2001: Algorithmen-Systeme-Anwendungen. Proceedings Des Workshops Vom 4.-6. M\?rz 2001 in L\übeck, 2001, p. 202.
    [126] G.T. Herman, J. Zheng, and C.A. Bucholtz,“Shape-based interpolation”, IEEE Computer Graphics and Applications, 1992, p. 69–79.
    [127]赵吉,“群体智能算法研究及其应用”,博士学位论文,江南大学, 2010.
    [128]孙俊,“量子行为粒子群优化算法研究”,博士学位论文,江南大学, 2009.
    [129] J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, The MIT Press, 1992.
    [130] J.H. Holland,“Adaptation in natural and artificial systems”, 1975.
    [131] D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison-wesley, 1989.
    [132]王凌,智能优化算法及其应用,淸华大学出版社, 2001.
    [133] A. Colorni, M. Dorigo, V. Maniezzo, and others,“Distributed optimization by ant colonies”, Proceedings of the first European conference on artificial life, 1991, p. 134–142.
    [134] A. Colorni, M. Dorigo, and V. Maniezzo,“An investigation of some properties of an ant algorithm”, Proceedings of the Parallel Problem Solving from Nature Conference (PPSN 92), 1992, p. 509–520.
    [135] M. Dorigo and L. Gambardella,“A study of some properties of Ant-Q”, Parallel Problem Solving from Nature—PPSN IV, 1996, p. 656–665.
    [136] L.M. Gambardella, M. Dorigo, and others,“Ant-Q: A reinforcement learning approach to the traveling salesman problem”, MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-, 1995, p. 252–260.
    [137] M. Dorigo, V. Maniezzo, and A. Colorni,“Ant system: optimization by a colony of cooperating agents”, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 26, 1996, p. 29–41.
    [138] J. Kennedy and R. Mendes,“Neighborhood topologies in fully informed and best-of-neighborhood particle swarms”, Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 36, 2006, p. 515–519.
    [139] M. Clerc and J. Kennedy,“The particle swarm-explosion, stability, and convergence in a multidimensional complex space”, Evolutionary Computation, IEEE Transactions on, vol. 6, 2002, p. 58–73.
    [140] J. Sun, W. Xu, and B. Feng,“A global search strategy of quantum-behaved particle swarm optimization”, Cybernetics and Intelligent Systems, 2004 IEEE Conference on, 2004, p. 111–116.
    [141] J. Sun, B. Feng, and W. Xu,“Particle swarm optimization with particles having quantum behavior”, Evolutionary Computation, 2004. CEC2004. Congress on, 2004, p. 325–331.
    [142] R. Ursem,“Diversity-guided evolutionary algorithms”, Parallel Problem Solving from Nature—PPSN VII, 2002, p. 462–471.
    [143]傅祖芸,信息论:基础理论与应用,電子工業出版社, 2007.
    [144]周荫清,信息理论基础,北京航空航天大学出版社, 2002.
    [145] R.C. Gonzalez, R.E. Woods, and S.L. Eddins, Digital image processing using MATLAB, Pearson Education India, 2004.
    [146]章毓晋,图像处理和分析基础,高等教育出版社, 2002.
    [147] R.P. Woods, J.C. Mazziotta, and others,“MRI-PET registration with automated algorithm”, Journal of computer assisted tomography, vol. 17, 1993, p. 536.
    [148] J. Tsao,“Interpolation artifacts in multimodality image registration based on maximization of mutual information”, Medical Imaging, IEEE Transactions on, vol. 22, 2003, p. 854–864.
    [149] J.P.W. Pluim, J.B. Antoine Maintz, and M.A. Viergever,“Interpolation artefacts in mutual information-based image registration”, Computer vision and image understanding, vol. 77, 2000, p. 211–232.
    [150]高峰,文贡坚,“结合模型限制和灰度信息的图像配准算法”,计算机仿真, vol. 24, 2007, p. 198–201.
    [151] C. Studholme,“Measures of 3D medical image alignment”, 1997.
    [152] W.H. Press, Numerical recipes: the art of scientific computing, Cambridge university press, 2001.
    [153] S.A. Teukolsky, W.T. Vetterling, and B.P. Flannnery, C语言数值算法程序大全, w H Press, 1995.
    [154] Z. Liu, Y. Khing Ho, K. Tsukada, K. Hanasaki, Y. Dai, and L. Li,“Using multiple orientational filters of steerable pyramid for image registration”, Information Fusion, vol. 3, 2002, p. 203–214.
    [155] X. Wang and D.D. Feng,“Medical image registration via steerable pyramid”, Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, p. 6395–6398.
    [156] H.M. Chen,“Mutual information-based image registration with applications”, 2002.
    [157]侯志强,韩崇昭,“基于力场分析的主动轮廓模型”,计算机学报, vol. 27, 2004, p. 743–749.
    [158]吕铁英,彭加雄,“图像轮廓特征提取新方法研究”,中国图像图形学报, vol. 4, 1999.
    [159] K.T. Bae, J.S. Kim, Y.H. Na, K.G. Kim, and J.H. Kim,“Pulmonary Nodules: Automated Detection on CT Images with Morphologic Matching Algorithm—Preliminary Results1”, Radiology, vol. 236, 2005, p. 286.
    [160] J.P. Ko and M. Betke,“Chest CT: Automated Nodule Detection and Assessment of Change over Time—Preliminary Experience1”, Radiology, vol. 218, 2001, p. 267.
    [161] X. Zhou, T. Hayashi, T. Hara, H. Fujita, R. Yokoyama, T. Kiryu, and H. Hoshi,“Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images”, Computerized Medical Imaging and Graphics, vol. 30, 2006, p. 299–313.
    [162] J.N. Kaftan, A.P. Kiraly, A. Bakai, M. Das, C.L. Novak, and T. Aach,“Fuzzy pulmonary vessel segmentation in contrast enhanced CT data”, Proc SPIE, 2008.
    [163] R. Shojaii, J. Alirezaie, and P. Babyn,“Automatic lung segmentation in CT images using watershed transform”, Image Processing, 2005. ICIP 2005. IEEE International Conference on, 2005, p. II–1270.
    [164] S. Hu, E.A. Hoffman, and J.M. Reinhardt,“Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images”, Medical Imaging, IEEE Transactions on, vol. 20, 2001, p. 490–498.
    [165] J. Lee, J.B. Seo, N. Kim, S.O. Park, H. Lee, Y.G. Shin, and S.H. Kim,“Novel level-set based segmentation method of the lung at HRCT images of diffuse interstitial lung disease (DILD)”, Proceedings of SPIE, 2009, p. 725941.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700