长江下游地区梅雨锋边界层中尺度扰动涡旋研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国位于世界著名的季风区,暴雨对我国的影响非常大,每年初夏,梅雨暴雨发生过程中,在低空切变线上往往会有中尺度对流系统、中尺度涡旋等生成。
     为了深入了解严重影响长江下游地区梅雨锋暴雨过程中边界层内中尺度扰动涡旋的影响因子,揭示涡旋的发生发展机制,为精细化预报提供科学依据,本文利用高精度实况数据和模式模拟的手段进行分析,研究结果发现,在低涡切变暴雨发生前,长江流域的上空会出现一个低涡或一条低空切变线,雨区基本位于切变线的南侧,并且大部分的低涡切变降水过程中都会在切变线南面出现一支低空急流;在500hPa高空,西风带大槽和短波槽会将北方冷空气顺势南下,影响梅雨锋降水;在200hPa高空,均伴有40m/s以上的高空急流。
     边界层过程和边界层内辐合线对边界层及大气是至关重要的,雷暴的新生与边界层内的辐合线密切相关,在合适的地形作用下,边界层内会出现局地辐合线,当雷暴出流形成的阵风锋与之相遇,会爆发新的雷暴过程,表明了边界层内物理过程和辐合线对于中尺度系统的发生发展具有重要影响和作用。
     研究还发现,梅雨锋暴雨中经常会有中尺度涡旋出现,这些涡旋大都出现在低层,有些甚至起源于边界层内,边界层中尺度扰动涡旋主要是由于切变或槽,或者气流汇合,又或者在地形影响下发展而来的,这些涡旋的尺度不大,基本都在100km左右,有些甚至更小;它们的生命史较短,只有几个小时;这类涡旋的暴雨基本位于涡旋的东南及南侧区域。为了区别广义上的涡旋,我们把这一类起源于边界层,尺度约为100km,并与暴雨密切相关的涡旋称之为边界层中尺度扰动涡旋(PMDV)。
     通过数值模拟可知中尺度数值模式WRF能够较好地模拟出梅雨锋暴雨过程和中尺度涡旋发生发展情况,为进一步的诊断分析提供了可靠的依据。同时,运用WRF-Var三维变分同化系统,同化高精度的再分析实况资料,是提高模拟效果,改进模拟质量的一种有效方法。
     边界层中尺度扰动涡旋出现的形式比较多样,有些是单个涡旋,通过发展壮大成熟;有些则是出现了相邻的两个涡旋,相互影响,相互发展,并且最终发生了合并;有些则是在切变线上出现一串涡旋,形成涡旋簇。但是这几个中尺度涡旋过程都有一些共同特征,虽然涡旋最早出现的高度不一致,但都是在边界层内某一层高度的切变线上通过小扰动形成了涡旋,然后向上发展;扰动涡旋在形成时的尺度都比较小,涡旋直径基本在50-100km左右。边界层中尺度扰动涡旋过程在发生前均有来自南面的暖湿气流,水汽被输送到切变线附近。边界层中尺度扰动涡旋在发生前在切变线的南侧(东南侧)均有充足的不稳定能量储藏和积聚。锋生在涡旋形成之前,就有表现出来,主要出现在风速辐合和风向切变处,随后在切变线上生成的边界层中尺度涡旋基本都与锋生中心相重合,在涡旋生成之后,锋生和涡旋都进一步加强,两者相伴发展。边界层风场的切变和汇合是导致涡旋生成的主要动力条件,尤其是切变线北侧(左侧)的北风加大并南压,这样不仅将北方的干冷空气带入梅雨锋,造成降水,而且北风的锲入和挤压,使得切变线上风速梯度增强,切变更加显著,从而使得涡旋得以形成和发展。
     边界层中尺度扰动涡旋在形成时与MCS系统有密切关系,MCS在边界层涡旋形成之前就会发生,MCS的对流运动促进了涡旋的发生;当中尺度涡旋形成时,边界层内有气流的汇合,特别是偏北风气流的加大南压,由此造成了边界层内的中尺度强辐合中心,因此可以认为,中尺度涡旋是由其南侧暖区边界层内偏南气流与梅雨锋切变线北面带有冷空气的偏北气流相遇发展起来,并伴有一个强风速梯度的存在.涡旋在生成发展时,边界层内有一个相当位温高值中心,沿着涡旋伸展方向向上凸起,从而形成了一个伸向空间的高能舌;而在对流层中层,往往会出现一个冷中心,由此造成了在空间结构上的“上冷下暖”现象,涡旋生成处的空间上往往出现静力不稳定,不稳定中心一般都出现在边界层内,随着辐合和气流加强,涡旋生成过程中,边界层内强不稳定逐步释放,激发对流,在上升气流作用下,对流更加旺盛,造成涡旋区域降水和暴雨的发生,形成短时暴雨。
Rainstorm has great impact to China for its locating in the world's famous monsoon region. Every early summer, it comes into mei-yu season and will bring plenty of rainfalls. There are several mesoscale convective systems (MCS) or mesoscale vortexes generated on the shear line during the mei-yu rainstorm.
     In order to further understand the origin and development of the mesoscale disturbance vortex in planetary boundary layer (PBL) in lower reaches of Yangtze River, discover the trigger mechanism of the rainstorm and provide some scientific references for the refined short-range forecast, the advanced research WRF model is employed to simulate this kind of rainstorm processes in recent years. Results reveal that there's a low level vortex or shear line over the reaches of Yangtze River before rainstorm happens. Generally, the rainfall, which always accompanies with low level jet, will fall to south of shear line. While there are short wave troughs and westerly zone at500hPa, there exists up-level jet with the wind value more than40/s at200hPa.
     Physics and mesoscale convergence line/zone in PBL are very important for atmosphere. There will produce a local convergence line under suitable terrain. It will generate a new gust front when the existing gust front and the local convergence line meet, which can intensify the upward movement and break out of strong convection.
     The analysis also indicates that there're generally mesoscale vortexes that produced in low level during mei-yu rainstorm. However, some vortexes with the horizontal scale of about100km or smaller initial from PBL and most of them develop by shear or confluence. In order to distinguish from generalized vortexes, these vortexes, that the horizontal scale is about100km, generates in PBL initially and is responsible for the heavy rainfall, are called PBL mesoscale disturbance vortex (PMDV).
     The mesoscale numerical model WRF with WRF-Var3D assimilation and high resolution observation data can simulate the formation and development of mei-yu rainstorm and mesoscale vortexes well.
     There are kinds of types for formation of PMDV. Some are single, while some are pairs with interaction each other, and some even are cluster. Whatever, there are some common features for all of them. These vortexes are not at the same level, but they initial all in PBL and then develop upwards. The diameters of the vortexes are about50-100km, with warm wet flow from south and plenty of unstable energy to south of shear line before vortexes happen. There will turn up frontogenesis at the region of confluence or shear. What's more, the vortex center will be superposition with the center of frontogenesis and they will develop with each other. The main dynamic conditions of vortex formation is that the confluence and shear of wind in PBL, especially the enhancement and aggression of north wind.
     There's close relationship between PMDV and MCS when the PMDV happens. MCS existed before PMDV generates, will promote the formation of PMDV for its surface outflow will bring cold wind into PMDV. Of course, the PMDV will enhance the convective, convergence and rain in back. So it can be considered that the PMDV forms when the north jet to north of the shear line in the PBL encounters with the southwest flow in the PBL of the warm section south of the shear line. The mesoscale vortex is accompanied with a strong wind velocity gradient. At the stage of development of the vortex, there's high equivalent potential temperature center in PBL, which extends upwards and form a high energy tongue. However, there will appear a cold center in middle of troposphere and it will cause static instability. The convective instability energy can be released with the strengthenment of the convergence and lower-level flow. So it can bring short-term storm and increase the precipitation of the region near vortex.
引文
贝耐芳,赵思雄,2002:1998年“二度梅”期间突发强暴雨系统的中尺度分析[J].大气科学,26(4):526-540.
    贝耐芳,赵思雄,高守亭,2003:1998年“二度梅”期间武汉-黄石突发性暴雨的模拟研究[J].大气科学,27(3):400-418.
    丁华君,翟国庆,2002:高空偏北大风与有无暴雨的对比分析[J].浙江大学学报(理学版),29(3):341-345.
    丁金才,郭英华,郭永润,等,2011:利用COSMIC资料对17个台风的热力结构的合成分析[J].热带气象学报,27(1):。3143.
    丁一汇,1993:1991年长江淮河流域持续性特大暴雨研究[M].北京:气象出版社,1-255.
    蔡乡宁,2004:边界层参数化及其在中尺度数值模式中的应用[D],南京气象学院硕士论文,88pp.
    蔡芗宁,寿绍文,钟青,2006:边界层参数化方案对暴雨数值模拟的影响[J].南京气象学院学报,29(3):364-370.
    蔡芗宁,周庆亮,钟青,等,2007:边界层参数化对“雅安天漏”降水数值模拟的影响[J].气象,33(5):12-19.
    陈炯,王建捷,2006:北京地区夏季边界层结构日变化的高分辨率模拟对比[J].应用气象学报,17(4):403-411.
    陈丽芳,高坤,徐亚梅,2004:梅雨锋演变与低涡发展的联系[J].浙江大学学报(理学版),31(1):103-109
    陈启智,黄奕武,王其伟,等,2007:1990-2004年西南涡旋活动的统计研究[J].南京大学学报(自然科学),43(6):633-642.
    陈忠明,闵文彬,崔春光,2004:西南涡旋研究的一些新进展[J],高原气象,23(Suppl.):1-5.
    程麟生,1994:中尺度大气数值模式和模拟[M].北京:气象出版社,530pp.
    程麟生,1997:“91.7”暴雨低涡发展结构和暴雨机制的中尺度数值模拟[J].暴雨灾害,1:63-78.
    程麟生,冯伍虎,2003:“98.7”暴雨β中尺度低涡生成发展结构演变:双向四重嵌套网格模拟[J].气象学报,61(4):385-395.
    程艳红,潘晓滨,何宏让,等,2002:一次江淮大暴雨过程中尺度系统结构分析.气象科学[J].22(3):313-32 0.
    董佩明,赵思雄,2004a:引发梅雨锋暴雨的频发型中尺度低压(扰动)的诊断研究[J].大气科学,28(6):876-891.
    董佩明,赵思雄,2004b:梅雨锋两类中尺度低压(扰动)及其暴雨的数值研究[J].气候与环境研究,9(4):641-657.冯业荣,1999:云迹风资料在热带气旋移向预报中的应用[J].气象,25(12):11-16.
    方翔,许健民,张其松,2000:高密度云导风资料所揭示的发展和不发展热带气旋的对流层上部环流特征[J].热带气象学报,1(3):218-224.
    高坤,徐亚梅,2001:1999年6月下旬长江中下游梅雨锋低涡扰动的结构研究[J].大气科学,25(6):740-755.
    高守亭,1983:行星边界层内涡旋的环流结构[J].气象学报,41(3):285-295.
    高守亭,孙淑清,1984:次天气尺度低空急流的形成[J].大气科学,8(2):179-187.
    高守亭,孙淑清,1986:应用里查森判别中尺度波动的不稳定[J].大气科学,1 0: 171-182.
    高守亭,赵思雄,周晓平,等,2003:次天气尺度及中尺度暴雨系统研究进展[J].大气科学,27(4):618-625.
    高守亭,周玉淑,2001:水平切变线上涡层不稳定理论[J].气象学报,59(4):393-404.
    公颖,周军,胡伯威,等,2004:一次强梅雨暴雨过程的数值模拟和伴随的中尺度系统分析[J].南京气象学院学报,27(6):760-767.
    谷文龙,2008:长江下游梅雨锋中尺度涡旋统计分析与模拟研究[D].南京信息工程大学硕士论文.
    国家气候中心,1998:1998中国大洪水与气候异常[M].北京:气象出版杜,44pp.
    侯青,许健民,2006:卫星导风资料所揭示的对流层上部环流形势与我国夏季主要雨带之间的关系[J].应用气象学报,17(2):138-144.
    胡伯威,潘鄂芬,1996:梅雨期长江流域两类气旋性扰动和暴雨[J].应用气象 学报,7(2):138-144.
    胡非,2003:大气边界层和大气环境研究进展[J].大气科学,27(4):712-728.
    胡名思,骆承政,马游,等,1989:中国历史大洪水(下卷)[M].北京:中国书店,147-347.
    蒋建莹,江吉喜,布亚林,等,2007:华南季风低压暴雨及其结构分析[J].气象学报,65(4):537-549.
    江晓燕,倪允琪,2005:一次梅雨锋暴雨过程的β中尺度对流系统发展机理的数值研究[J].气象学报,63(1):77-92.
    雷雨顺,1986:能量天气学[M].北京:气象出版社,159pp.
    雷雨顺,吴宝俊,吴正华,1978:冰雹概论[M].北京:科学出版社,174pp.
    雷雨顺,吴宝俊,吴正华,1979:用不稳定能量理论分析和预报夏季强风暴的一种方法[J].大气科学,3(3):297-306.
    黎清才,高守亭,1991:强对流发生机制的一种研究[J].应用气象学报,12:385-391.
    李博,赵思雄.2009:2007年入梅期由横槽与低涡切变引发淮河流域强降水的诊断研究[J].大气科学,33(6):1148-1164。
    李鲲,徐幼平,宇如聪,等,2005:梅雨锋上三类暴雨特征的数值模拟比较研究[J].大气科学,29(2):236-248.
    李小莉,惠小英,程麟生,1995:黄河中游一次中层低涡暴雨的中尺度数值模拟[J].高原气象,14(3):305-313.
    李毓芳,黄安丽,高坤,等,1986:对流加热在梅雨暴雨系统预报中的作用[J].中国科学(B辑),7:765-775.
    李跃清,1996:长江上游暴雨的边界层动力诊断研究[J].大气科学,20(1):73-78.
    廖捷,谭哲敏,2005:一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用[J].气象学报,63(5):771789.
    廖移山,李武阶,闵爱荣,等,2006:“6.29”淮河暴雨过程β-中尺度系统结构特征的数值模拟分析,应用气象学报,17(4):421430
    刘燕,程正泉,2007:适用于热带气旋分析的动态合成方法[J].广东气象,29(1): 16-19.
    隆霄,程麟生,2004:“99.6”梅雨锋暴雨低涡切变线的数值模拟和分析[J].大气科学,28(3):342-356.
    闵锦忠,沈桐立,陈海山,等,2 0 0 0:卫星云图的质量控制及其变分同化数值模拟研究[J].应用气象学报,11(4):410-418.
    倪允琪,周秀骥,2004:中国长江中下游梅雨锋暴雨形成机理以及监测与预测理论和方法研究[J].气象学报,62(5):647-662.
    倪允琪,周秀骥,陶诗言,等,2004:长江流域梅雨锋暴雨机理的分析研究[M].北京;气象出版社.
    覃丹宇,2010;用滤波方法进行MaCS云团形态差异的个例分析[J].大气利学,34(1):154-162.
    覃丹宇,方宗义,江吉喜,2006:典型梅雨暴雨系统的云系及其相互作用[J].大气科学,30(4):578-586.
    斯公望,1988:暴雨和强对流环流系统[M].北京:气象出版社,35 0pp.
    孙建华,张小玲,齐琳琳,等,2004:2002年6月20-24日梅雨锋MCS发生发展分析[J].气象学报,62(4):423-438.
    孙淑清,1982:低空急流与其暴雨的关系,暴雨文言集[M].长春:吉林人民出版社.
    孙淑清,1990:梅雨锋中大振幅重力波的活动及其与环境场的关系[J].大气科学,14(2):163-172.
    孙淑清,杜长萱,1996:梅雨锋的维持与其上扰动的发展特征[J].应用气象学报,7(2):153-159。
    沈杭锋,翟国庆,朱补全,等,201 0:浙江沿海中尺度辐合线对飑线发展影响的数值试验[J].大气科学,34(6):1127-1140.
    沈杭锋,翟国庆,章元直,等,201 0:应用云迹风资料同化的江南飑线模拟试验[J],浙江大学学报(理学版),37(6):705-712.
    沈桐立,闵锦忠,吴诚鸥,1996:有限区域卫星云图资料变分分析的实验研究[J].高原气象,15(1):58-67.
    寿绍文,励申申,姚秀萍,2003:中尺度气象学[M].北京:气象出版社,370pp.
    谈哲敏,方娟,伍荣生,2005:Ekman边界层动力学的理论研究[J].气象学报,63(5):543-555.
    陶诗言,1980:中国之暴雨[M].北京:气象出版社科学出版社,255pp.
    陶诗言,丁一汇,周晓平,1979:暴雨和强对流天气的研究[J].大气科学,3(3):227-237.
    陶诗言,倪允琪,赵思雄,等,2001:1998年夏季中国暴雨的形成机理与预报研究[M].北京:气象出版社,184pp.
    王东法,沈杭锋,高领花,等,2009:浙江“6.10”飑线过程中尺度分析[J].浙江大学学报(理学版),36(2):216-223.
    王建捷,李泽椿,2002:1998年一次梅雨锋暴雨中尺度对流系统的模拟与诊断分析[J].气象学报,60(2):146-155.
    王智,翟国庆,高坤,2003:长江中游一次β中尺度低涡的数值模拟[J].气象学报,61(1):66-77.
    谢义炳,1956:中国夏半年几种降水天气系统的分析研究[J].气象学报,27(1):1-24.
    徐亚梅,高坤,2002:1998年7月22日长江中游中β低涡的数值模拟及分析[J].气象学报,60(1):85-95.
    叶笃正,1979:近年来我国大气科学的研究进展[J].大气科学,3(3):195-202.
    宇如聪,1996:REM对1994年中国汛期降水的实时预报试验.//台风、暴雨数值预报新技术的研究[M].北京:气象出版社,87-93.
    于玉斌,姚秀萍,2003:干侵入的研究及其应用进展[J].气象学报,61(6):669-778.
    曾庆存,1979:我国大气动力学和数值预报研究工作的进展[J].大气科学,3(3):256-269.
    翟国庆,1998:对流层高层偏北气流在梅雨暴雨中的作用[J].气象学报,56(1):68-76.
    翟国庆,丁华君,孙淑清,等,1999:与低空急流相伴的暴雨天气诊断研究[J].大气科学,23(1):112-118.
    翟国庆,高坤,2001:青藏高压东侧偏北大风对梅雨暴雨影响的合成分析[J].浙 江大学学报(理学版),28(3):337-343.
    翟国庆,王智,何斌,2003:长江中下游梅雨期中小尺度涡旋族发生演变分析[J].气象学报,61(6):661671
    翟国庆,俞樟孝.1992.强对流天气发生发展前地面风场特征[J].大气科学,16(5):522-529.
    张丙辰,199 0:长江中下游梅雨锋暴雨的研究[M].北京:气象出版社.269pp.
    张凤,赵思雄,2003:梅雨锋上引发暴雨的低压动力学研究[J].气候与环境研究,8(2):143-156.
    张菊芳,沈树勤,韩桂荣,等,1999:TOVS卫星反演资料变分分析的试验研究与应用[J].气象科学,19(2):206-212.
    张立生,2008:淮河流域致洪暴雨及其中尺度涡旋的发生发展研究[D].中科院大气物理研究所,148pp.
    张强,2003:大气边界层气象学研究综述[J].干旱气象,21(3):74-78.
    张琴,姚秀萍,寿绍文,2010:梅雨期西太平洋副热带高压异常东退与东风带扰动关系的合成诊断分析[J].大气科学,35(1):29-4 0.
    张群,张维恒,姜勇强.2001.边界层辐合线发展成飑线的数值实验[J].气象科学,21(3):308-315.
    张守峰,王诗文.1999:应用卫星云导风进行台风路径预报试验[J].热带气象学报,15(4):347-355.
    张小玲,陶诗言,张顺利,2004:梅雨锋上的三类暴雨[J].大气科学,28(2):181-207.
    章国材,矫梅燕,李延香,等,2007:现代天气预报技术和方法[M].气象出版社,140-143.
    章志英,2004:梅雨锋低涡系统三维流场结构的分析[J].浙江大学学报(理学版),31(5):580-588.
    赵思雄,贝耐芳,孙健华,等,2002:亚澳中低纬度区域暴雨天气系统研究[J].气候与环境研究,7(4):377-385.
    赵思雄,陶祖珏,孙建华,等,2005:长江流域梅雨锋暴雨机理的分析研究[M].北京:气象出版社,281 pp
    中国科学院大气物理研究所模拟组,1976:西南涡旋的初步研究[J].大气科学,(2):28-38.
    周兵,徐海明,吴国雄,等,2002:云迹风资料同化对暴雨预报影响的数值模拟[J].气象学报,6 0:309-317.
    周海光,王玉彬,2005:2003年6月30日梅雨锋大暴雨13和Y中尺度结构的双多普勒雷达反演[J].气象学报,63(3):301-312.
    周晓平,赵思雄,张宝严,1984:梅雨锋上中尺度低压发生的数值模拟实验[J].大气科学,8(4):353-361.
    周晓平,赵思雄,张可苏,1988:一个东亚季风区的暴雨数值预报模式[J].大气科学,特刊:60-78.
    朱禾,邓北胜,2002:湿位涡守恒条件下西南涡旋的发展[J].气象学报,60(3):343-351.
    朱民,陆汉城,余志豪,1988:梅雨锋α尺度气旋发展中的正反馈机制研究[J].大气科学,22(5):763-770.
    朱乾根,1975:低空急流与暴雨[J].气象科技资料,21(8):12-180.
    朱乾根,林锦瑞,寿绍文,等,2000:天气原理与方法(第三版)[M].北京:气象出版社,1-649.
    Adang, T. C., and R. L. Gall,1989:Structure of the Arizona monsoon boundary [J]. Mon. Wea. Rev.,117,1423-1438.
    Akiyama T.,1984:A medium scale cloud cluster in a Baiu Front, Part I: Evolution process and fine structure [J]. J. Meteor. Soc. Japan, 62(3):485-504.
    Akiyama T.,1989:Large, synoptic and mesoscale variations of the Baiu front during July 1982. Part I:Cloud features [J]. J. Meteor. Soc. Japan,67:57-81.
    Barker D.,2007:WRF Variational Data Assimilation system (WRF-Var) overview[R], WRF Tutorial Presentation, NCAR, Boulder, Colorado, July 26th
    Barker, D. M., W. Huang, Y. R. Guo, and Q. N. Xiao.,2004: A Three-Dimensional (3DVAR) Data Assimilation System For Use With MM5: Implementation and Initial Results. Mon. Wea. Rev.,132,897-914.
    Bartels, D. L., J. M. Brown, E. I. Tollerud,1997:Structure of a midtropospheric vortex induced by a mesoscale convective system [J]. Mon. Wea. Rev.,125,193-211.
    Bartels, D. L., and R. A. Maddox,1991:Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Wea. Rev.,119, 104-118.
    Blanchard D.0.1988:Assessing the vertical distribution of convective available potential energy [J]. Wea. Forecasting.13,870-877.
    Brandes, E. A.,1990:Evolution and structure of the 6-7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev.,118, 109-127.
    Bosart, L. F., and F. Sanders,1981:The Johnstown flood of July 1977: A long-lived convective storm [J].J. Atmos. Sci.,38,1616-1642.
    Bougeault P., Lacarr e re. P,1989:Parameterization of orography-induced turbulence in a mesosbeta-scale model [J]. Mon. Wea. Rev.,117: 1872-1890.
    Braun S. A., Tao W. K.,2000:Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations [J]. Mon. Wea. Rev.,128:3941-3961.
    Bright D. R., Mullen S. L.,2002:The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5 [J]. Wea. Forecasting.,17: 99-114.
    Burk S. D., Thompson W. T.,1989:A vertically nested regional numerical weather prediction model with second-order closure physics [J]. Mon. Wea. Rev.,117:2305-2324.
    Carbone R G, Conway J W, Crook N A, et al.1990. The generation and propagation of a nocturnal squall line. Part I:Observations and implications for mesoscale predictability [J]. Mon. Wea. Rev.,118: 26-49.
    Chen G. T. J.,1983:Observational aspects of Mei-yu phenomena in subtropical China [J]. J. Meteor. Soc. Japan,61:306-312.
    Chen Qiushi,1982:The instability of the gravity-inertia wave and its relation to low level jet and heavy rainfall [J]. J. Meteor. Soc. Japan,60:1047-1057.
    Chen Shoujun, Kuo Yinghwa, Wang Wei, et al.,1997:A modeling case study of heavy rainstorms along the MeiYu Front [J]. Mon. Wea. Rev.,126: 2330-2351.
    Chen, S. S., and W. M. Frank,1993:A numerical study of the genesis of extratropical convective mesovortices. Part I:Evolution and dynamics.J. Atmos. Sci.,50,2401-2426.
    Cho H. R., and S. T. Douglas,1991:Meso-β-scale potential vorticity anomalies and rainbands. Part II:Moist model simulation [J]. J. Atmos. Sci.,48(2):331-341. M. T. Montgomery, and R. F. A. Hertenstein,2002:Early evolution of vertical vorticity in a numerical ly simulated idealized convective line.J. Atmos. Sci.,59, 2113-2127.
    Cram, T. A., M. T. Montgomery, R. F. A. Hertenstein,2002:Early evolution of vertical vorticity in a numerically simulated idealized convective line [J]. J. Atmos. Sci.,59:2113-2127.
    David, M. B., C. B. J. Robert, and S. C. Randall,2003, Local and Regional Discriminators of Mesoscale Convective Vortex Development in Arizona [J]. Mon. Wea. Rev.,131,1939-1943.
    Davis, C. A., and T. J. Galarneau Jr.,2009:The vertical structure of mesoscale convective vortices [J]. J. Atmos. Sci.,686-704.
    Davis, C. A., and S. B. Trier,2002:Cloud-resolving simulations of mesoscale vortex intensification and its effect on a serial mesoscale convective system [J]. Mon. Wea. Rev.,130,2839-2858.
    Davis, C. A., and S. B. Trier,2007:Mesoscale convective vortices observed during BAMEX. Part I:Kinematic and thermodynamic structure [J]. Mon. Wea. Rev.,135,2029-2049.
    Davis, C. A., and M. L. Weisman,1994:Balanced dynamics of mesoscale vortices produced in simulated convective systems.J. Atmos. Sci. 51,2005-2030.
    Ding Y H,1992; Summer monsoon rainfalls in China [J]. J. Meteor. Soc. Japan,70:373-396.
    Deardorff J. W.,1966:The counter-gradient heat fluxes in convective boundary layer [J]. J. Atmos. Sci.,23:503-506.
    Deardorff J. W.,1972:Theoretical Expression for the Countergradient Vertical Heat Flux [J]. J. Geophys. Res.,77:5900-5904.
    Dudhia, J.,1989:Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model.J. Atmos. Sci.,46,3077-3107.
    Dyer A. J., Bradley E. F.,1982:An alternative analysis of flux-gradient relationships at the 1976 ITCE [J]. Bound Layer Meteor,22:3-19.
    Ekman V. W.,1905:On the influence of the Earth, rotation on ocean current [J]. Arkiv. Mat. Astron. Fysik.,2(11):1-53.
    Frank H.,2000: Assimilation of satellite imager data and surface observations to improve analysis of circulations forced by cloud shading contrasts. Mon Wea Rev,128(2):434-448.
    Fritsch, J. M., J. D. Murphy, and J. S. Kain,1994:Warm-core vortex amplification over land [J].J. Atmos. Sci.,51,1780-1807.
    Fritsch, J. M., and G. S. Forbes,2001:Mesoscale convective systems [J]. Severe Convective Storms, Meteor. Monogr., No.50, Amer. Meteor. Soc. 323-357.
    Galarneau, T. J., Jr., L. F. Bosart, C. A. Davis, et al.,2009:Baroclinic transition of a long-lived mesoscale convective vortex [J]. Mon. Wea. Rev.,137,562-584.
    Grell, G. A., and D. Devenyi,2002:A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett.,29(14),1693-1697.
    Holtslag A. A. M., Moeng C. H.,1991:Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer [J]. J. Atmos. Sci.,48:1690-1698.
    Holtslag A. A. M., Boville B. A.,1993:Local versus nonlocal boundary layer diffusion in a global climate model [J]. J. Climate.,6: 1825-1842.
    Hong S. Y., Pan H. L.,1996:Nonlocal Boundary Layer Vertical Diffusion in a Medium-range Forecast Model [J]. Mon. Wea Rev.,124:2322-2339.
    Hong S. Y., Noh Y., Dudhia J.,2006:A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134:2318-2341.
    Hong S. Y.,2007:Stable Boundary Layer Mixing in a Vertical Diffusion Scheme [C]. The Korea Meteor. Soc., Fall conference, Seoul, Korea, Oct,25-26.
    Hong, S. Y., J. Dudhia, and S. H. Chen,2004:A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Wea. Rev.,132,103-120.
    Hong, S. Y., and J.0. J. Lim,2006:The WRF Single-Moment 6-Class Microphysics Scheme (WSM6).J. Korean Meteor. Soc,42,129-151.
    Hoskins, B. J.,1974:The role of potential vorticity in symmetric stability and instability [J]. Quart J. R. Met. Soc,100:180-182.
    Huang, X. Y., Q. Xiao, D. M. Barker, et al.,2009:Four-Dimensional Variational Data Assimilation for WRF:Formulation and Preliminary Results. Mon. Wea. Rev.,137,299-314.
    James, E. P., and R. H. Johnson,2010: Patterns of Precipitation and Mesolow Evolution in Midlatitude Mesoscale Convective Vortices. Mon. Wea. Rev.,138,909-931.
    Janjic, Z. I.,1990:The step-mountain coordinate:physical package, Mon. Wea. Rev.,118,1429-1443.
    Janjic, Z. I.,1996:The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc.,354-355.
    Janjic, Z. I.,2002:Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model, NCEP Office Note, No.437, 61 pp.
    Johnston, E. C.,1981:Mesoscale vorticity centers induced by mesoscale convective complexes. Preprints, Ninth Conf. on Weather Forecasting and Analysis, Seattle, WA, Amer. Meteor. Soc,196-200.
    Johnson, R. H., and B. E. Mapes,2001:Mesoscale processes and severe convective weather [J]. Severe Convective Storms, Meteor. Monogr. No.50, Amer. Meteor. Soc,71-122.
    Kane, R. J., C. R. Chelius, and J. M. Fritsch,1987:Precipitation characteristics of mesoscale convective weather systems [J]. J. Climate Appl. Meteor.,20,1345-1357.
    Knievel, J. C., and R. H. Johnson,2002:The Kinematics of a Midlatitude, Continental Mesoscale Convective System and Its Mesoscale Vortex. Mon. Wea. Rev.,130,1749-1770.
    Knievel, J. C., and R. H. Johnson,2003: A scale-discriminating vorticity budget for a mesoscale vortex in a midlatitude, continental mesoscale convective system.J. Atmos. Sci.,60,781-794.
    Le, M. J. F., LESLIE L., and MSPINOSO C.,1997:The Generation and assimilation of cloud-drift winds in numerical weather prediction[J]. Journal of Meteorological Society of Japan 75:383-393.
    Leary C. A., Houze J. R. A.,1979:The structure and evolution of convection in a tropical cloud cluster [J]. J. Atmos. Sci.,36:437-457.
    Lewis J M, Ogura Y, Gidel L.1974. Large-scale influences upon the generation of a mesoscale disturbance [J]. Mon. Wea. Rev.,102:545-560.
    Lorenc, A. C.,1986:Analysis methods for numerical weather prediction[J]. Quart. J. Roy. Meteor. Soc.,112,1177-1194.
    Maddox, R. A.,1980: Mesoscale convective complexes [J]. Bull. Amer.Meteor. Soc.,61,1374-1387.
    —,1983:Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes [J]. Mon. Wea. Rev.,111, 1475-1495.
    Mailhot J., Benoit R.,1982:A Finite-Element Model of the Atmospheric Boundary Layer Suitable for Use with Numerical Weather Prediction Models [J]. J. Atmos. Sci.,39:2249-2266.
    Mass C. F., Ovens D., Westrick K., et al.,2002:Does increasing horizontal resolution produce more skilful forecasts? [J]. Bull. Amer. Meteor. Soc.,83:407-430.
    Mellor G. L., Yamada T.,1974:A hierarchy of turbulence closure models for planetary boundary layers [J]. J. Atmos. Sci.,31:1792-1806.
    Mellor G. L., Yamada T.,1982:Development of a turbulence closure model for geophysical fluid problems [J]. Rev. Geophys. Space Phys.,20: 851-875.
    Menard, R. D., and J. M. Fritsch,1989:A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev. 117,1237-1261.
    Miller, D., and J. M. Fritsch,1991:Mesoscale convective complexes in the western Pacific region[J].Mon.Wea.Ren,119,2978-2992.
    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A.Clough, 1997:Radiative transfer for inhomogeneous atmosphere:RRTM,a validated cotrelated-k model for the longwave.J.Geophys.Res., 102(D14),16663-16682.
    Monin A. S.,Obukhov A. M.,1954:Bas ic laws of turbulent mixing in the atmosphere near the ground[J].Tr.Akad.Nauk.SSSR.Geofiz.Inst. 24(51):63-187.
    Moteki Q.,Uyeda H.,Ma sesaka T.,et al.,2004:Structure and developmeat of two merged ra inbands observed over the Last China Sea during X-BAIU-99,Parts II:Meso-a-scale structure and buildup proces s of convergence in the Baiu frontal region[J].J.Meteor..Soc.Japan, 82(1):45-65.
    Nakani shi M.,Niino H.,2004:An improved Mellor-Yamada Level-3 Model with condensation physics:its design and verification[J].Boundary-Layer Meteorol,112:1-31.
    Nakanishi M.,Niino H.,2006:An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog[J].Boundary-Layer Meteorol.,119:397-407.
    Ninomiya K.1984:Characteristics of Baiu front as a predominant subtropioal front in the summer Northern Hemisphere[J].Journal of the Meteorological Society of Japan.,64:880-894.
    Ninomiya K.,Akiyama T.,Ikawa M.,1988:Evolution and fine st rueture of a long-lived meso-a-scale connective system in abaiu front zone, Part I:Evolution and meso-β-scale characteri stics[J].J.Meteor. Soc.Japan,66(2):331-350.
    Noh Y.,Cheon W.G.,Hong S.Y.,et al.,2003:Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data [J].Bound.Layer.Meteor.,107:401-427.
    Ogura Y, Chen Y L.1977. A life history of an intense mesoscale convective storm in Oklahoma [J]. J. Atmos. Sci.,34:1458-1476.
    01sson, P. Q., and W. R. Cotton,1997:Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part I:Numerical simulation.J. Atmos. Sci.,54,457-478.
    Parrish, D. F., Derber J. C.,1992: The national meteorology center's spectral statistical interpolation analysis system[J]. Mon. Wea. Rev.,120,1747-1763.
    Persson P., Walter B., Bao J. W., et, al.,2001:Validation of boundary-layer parameterizations in maritime storm using aircraft data [C]. Preprints, Ninth Conf. on Mesoscale Processes, Ft. Lauderdale, FL, Amer. Meteor. Soc.,117-121.
    Pleim J. E., Chang J. S.,1992:A Non-local Closure Model for Vertical Mixing in the Convective Boundary Layer [J]. Atmospheric Environment, 26A(6):965-981.
    Pleim J. E.,2007:A combined local and non-local closure model for the atmospheric boundary layer. Part 1:Model description and testing [J]. J. Appl. Meteor. and Clim.,46:1383-1395.
    Priestley C. H. B.,1959:Turbulent Transfer in the Lower Atmosphere [M]. Chicago:University of Chicago Press.
    Purdom J F W.1973. Satellite imagery and the mesoscale convective forecast problem [C]. Preprints,8th Conf on Severe Local Storms, Denver, Amer. Meteor. Soc.,244-251.
    Purdom J F W.1982. Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting [M]. K. Browning. Ed. Academic Press, 149-166.
    Purdom J F W, Marcus K.1982. Thunderstorm trigger mechanisms over the southeast U. S [C]. Preprints,12th Conf on Severe Local Storms, San Antonio, Amer. Meteor.,487-488.
    Raymond, D. J., and H. Jiang,1990: A theory for long-lived mesoscale convective systems.J. Atmos. Sci.,47,3067-3077.
    Rogers, R. F., and J. M. Fritsch,2001:Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices [J]. Mon. Wea. Rev.,129,605-637.
    Rotunno, R., and K. A. Emanuel,1987:An air-sea interaction theory for tropical cyclones. Part II:Evolutionary study using a nonhydrostatic axisymmetric numerical model [J]. J. Atmos. Sci.,44,542-561.
    Schreiber W E.1986. Case studies of thunderstorms initiated by radar-observed convergence lines [J]. Mon. Wea. Rev.,114:2256-2266.
    Schumacher, R. S., and R. H. Johnson,2008:Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev.,136,3964-3986.
    Schumacher, R. S., and R. H. Johnson,2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting,24,555-574.
    Segal M, Schreiber W E, Kallos G, et al.1989. The impact of crop areas in Northeast Colorado on midsummer mesoscale thermal circulations [J]. Mon. Wea. Rev.,117:809-824.
    Skamarock, W. C., and Coauthors,2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR,125pp.
    Skamarock, W. C., M. L. Weisman, and J. B. Klemp,1994:Threedimensional evolution of simulated long-lived squall lines [J]. J. Atmos. Sci. 51,2563-2584.
    Stull R. B.,1984:Transilient Turbulence Theory, Part I:The Concept of Eddy Mixing Across Finite Distances [J]. J. Atmos. Sci.,41:3351-3367.
    Stull R. B.,1984:Transilient Turbulence Theory, Part II:Turbulent Adjustment [J]. J. Atmos. Sci.,41:3368-3379.
    Stull R. B.,1988:An introduction to boundary layer meteorology [M]. America:Kluwer Academic Publishers,
    Sukoriansky S., GalperinB., Perov V.,2005:Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice [J]. Boundary-Layer Meteorol.,117:231-257.
    Szoke E J, Weisman M L, Brown J M, et al.1984. A subsynoptic analysis of the Denver tornadoes of 3 June 1981 [J]. Mon. Wea. Rev.,112: 790-808.
    Taylor C.,1915:Eddy motion in the atmosphere [J]. Phil Trans.
    Tollerud, E. L, D. L. Bartels,1988:A comparative study of the environment of severe weather producing mesoscale convective systems:MCCs, meso-β systems and large convective lines [C]. Preprints,15th Conf. Severe Local Storms, Baltimore, Amer. Meteor. Soc.,544-547.
    Trier, S. B., and C. A. Davis,2002:Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex [J]. Mon. Wea. Rev.,130,877-899.
    Trier, S. B., and C. A. Davis,2007:Mesoscale convective vortices observed during BAMEX. Part II:Influences on secondary deep convection [J]. Mon. Wea. Rev.,135,2051-2075.
    —,—, and J. D. Tuttle,2000: Long-lived mesoconvective vortices and their environment. Part I:Observations from the central United States during the 1998 warm season [J]. Mon. Wea. Rev.,128,3376-3395.
    Troen I., Mahrt G.,1986:A Simple Model of the Atmospheric Boundary Layer, Sensitivity to Surface Evaporation [J]. Bonnd. Layer. Meteor.,37: 129-148.
    Velasco, I., and J. M. Fritsch,1987:Mesoscale convective complexesin the Americas [J].J. Geophys. Res.,92,9591-9613.
    Verlinde, J., and W. R. Cotton,1990:A mesovortex couplet in the trailing anvil region of a multi-cellular convective complex. Mon. Wea. Rev. 118,993-1010.
    Watson A I, HolleRL.1982. The relationship between low level convergence and convective precipitation in Illinois and south Florida [R]. NOAA TMERL OWRM-7,67 pp.
    Wei Wang, Dale Barker, Cindy Bruy e re, et al.,2010:WRF Use's Guide, Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research.
    Wetzel, P. J., W. R. Cotton, R. L. McAnelly,1983:A long-lived mesoscale convective complex. Part II:Morphology of the mature complex [J]. Mon. Wea. Rev., 111:1919-1937.
    Wolcott, S. W. and Warner, T.,1981:A moisture analysis procedure utilizing surface and satellite data. Mon Wea Rev,1981,109(9): 1989-1998.
    Wyngaard J. C., Cote 0. R., Izumi Y.,1971:Local free convection, simi larity, and the budgets of shear stress and heat flux [J]. J. Atmos. Sci.,28:11171-11182.
    Yamada, H., B. Gang, and K. H. Reddy,2003:Three-dimensional structure of a mesoscale convective system in baiu-frontal depression generated in the downstream region of the Yangtze River.J. Meteor. Soc., 81 (5):1243-1271.
    Yoshizaki M., Kato T., Muroi C., et al.,2002:Recent activities of field observations on mesoscale convective systems (MCSs) over East China Sea and Kyushu in the Baiu Season and over Japan Sea in winter [C]. Int. Conf. Mesoscale Convective Systems and Heavy Rainfall/Snowfall in East Asia, Tokyo, Japan,80-85.
    Zhai, G. Q., L. L. Zhou, and Z. Wang,2007:Analysis of a group of weak small-scale vortexes in the Planetary Boundary layer in the mei-yu front. Adv. Atmos. Sci.,24(3),399-408.
    Zhang, D. L.,1992:The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev.,120,2763-2785.
    Zhang, D. L., and J. M. Fritsch,1987:Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part II:Inertially stable warm-core vortex and the mesoscale convective complex.J. Atmos. Sci.,44,2593-2612.
    Zhang, D. L., and J. M. Fritsch,1988:A numerical investigation of a convectively generated, inertially stable, extratropical warm-core mesovortex over land. Part I:Structure and evolution. Mon. Wea. Rev. 116,2660-2687.
    Zhao S X, and Li Z J,1990:A case study on the frontogenesis and conditional symmertrical instability in China [C]. The second US-PRC Joint Mesoscale Meteorology Workshop, NCAR, Boulder, Colorado, U. S. A, 38-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700