起沙与沙尘天气规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙尘天气对对气候、大气动力场和热力场、辐射、云微物理学与碳循环产生影响外,还对生物生长、海洋温盐环流、环境、人体健康、工农牧业以及交通运输业等产生一定影响,它涉及到风沙物理学、气象学、电学、病理学以及海洋科学等多个学科,因而研究起沙与沙尘天气的特征规律具有重要意义。
     通过对包括气温与沙尘天气以及沙尘PM1o浓度的关系、沙尘天气中气温、压强与浓度的规律、沙尘大气状态方程、沙粒起动的顺序问题、沙粒垂直上升的规律问题、沙丘运动形态问题、冲击起沙问题、气动力起沙问题、沙尘数值模式的发展与改进、沙尘浓度同化对沙尘预报的影响、沙尘暴的起沙机制、两相流下沙尘大气物理约束方程组的推导、两相流下沙尘大气具有的特征与规律、两相流数值模式的建立以及该模式的理想试验等方面的研究,得到了以下结论:
     (1)气温和沙尘天气的关系大致有降温型(沙尘天气与降温相伴)、升温型(沙尘天气与升温相伴)和混合型(沙尘天气发生过程中,既有降温又有升温)三种。其中,以降温型和升温型比较常见,而混合型少见。
     (2)气温与沙尘PM1o浓度、两者5分钟间隔差以及两者24hr间隔差等均存在非常显著的相关关系。沙尘天气倾向于出现在温度较高的条件下。较强的沙尘天气(浓度>2000μg/m3)下的气温和浓度各自相邻两日日平均差的统计关系表明,较强的沙尘天气往往伴随降温天气。
     (3)气温、气压和浓度各自在沙尘天气开始、最强和结束三个时刻呈现出非常显著的相关关系,暗示了沙尘云与其演化中存在一定的结构。
     (4)有沙尘和无沙尘时温压密度的统计关系不同,可能会使得在等压面与等温面上夹卷加强,并且可能会使得不同等温面与等压面上沙尘云形态不同。
     (5)利用温压浓度的统计关系,得到了统计意义上的沙尘大气状态方程。
     (6)在拖曳力与沙平面坡度一定的情形下,最容易起动的是小粒径沙粒。在拖曳力和粒径一定的情况下,最容易起沙的地方依次是:上凸脊的拐点、斜面上的凸点、沙面上的极大点和斜面上的点、水平面、沙谷中的点。
     (7)提出了沙丘的滑化运动、缩移运动与持相运动。
     (8)沙粒起动与垂直上升的有力条件是:上升运动、大风、沙粒与水平风同符号的转动和与水平风反符号的涡度场、不稳定大气以及强切变。
     (9)借助于电子的跃迁模型,提出了冲击起沙的跃迁模型。该模型的基本思想是,沙粒冲击沙床时,能量会沿冲击点向床面上周围粒子扩散,当某一粒子获得能量大于跃迁所需要的能量时,粒子即发生跃出;多余的能量将转化为该粒子的跃出初动能。基于该模型,采用了吸收系数法和输送方程的方法,推导出了两维和三维情况下冲击起沙的粒子数、跃出初动能和冲击坑的形状。
     (10)提出了沙源地表和大气中存在的气体交流是气动起沙的内在机制。
     (11)对沙尘模式GRAPES_SDM进行了landuse反演和土壤湿度反演,增加了雪盖,采用Barnes方法和沙尘同化系统为模式产生沙尘浓度的初值。
     (12)个例显示,采用沙尘浓度同化可以对沙尘落区和沙尘浓度的演化有一定的改善作用,而且连续同化结果要优于一次同化。
     (13)通过利用GRAPES_SDM模式对一次夏季沙尘暴过程进行数值模拟研究了沙尘暴的起沙机制,认为此次沙尘暴是水平低涡和其次级环流耦合而成的类似于Benard对流泡系统扫略沙源产生的。
     (14)提出了完整的沙尘暴起沙的概念模型:涡泡经过沙源时,在其底部风速大于临界风速的地方,通过地气之间的气体交换,沙粒在气动与冲击两种方式作用下起动,然后通过湍流的相干结构(比如阵风或卷流)从近地面层进入到Ekman层中,接着通过Ekman层中的摩擦作用下产生的次级环流与热泡进入到垂直上升运动支中,再通过Ekman抽吸作用进入到自由大气,并随着涡泡的移动而移动,从而形成了沙尘暴天气。
     (15)基于风沙两相流的相互作用和气块质量变化的观点,推导出了闭合的沙尘大气物理约束方程组。理想状况下分析发现:a.沙尘大气密度比同体积洁净大气大,一定程度上会减缓气块的运动速度;b.沙尘和空气间的速度差异会使得细粒子处于高流速区,而粗粒子位于低流速区;c.温度差异会使得沙尘在上升运动中充当热源,下沉运动中充当冷源,从而加强对流;d.沙尘大气质量定容热容会在等压面上诱发新的温度梯度,促进沙尘云边界处的夹卷;e.沙尘大气气体常数会在等温面上诱发新的气压梯度,促进沙尘云边界处的夹卷;f.质量变化会对气块密度、速度和温度造成较大影响.总之,沙尘云要比基于被动标量的方程组模拟出的更高大,内部对流更强,边界处夹卷更活跃,其水平运动更迟缓。
     (16)建立了风沙两相流的数值模式,并基于此模式进行了理想试验。理想试验结果指出:相比于被动标量的模式结果,水平速度在低涡中心增速,在低涡中心外侧减速;2km高度以下位温增加、垂直运动增强,2-6kmm之间位温减少、垂直运动减弱,6km以上又促进垂直运动。
Sand-dust weather has important influence on biological growth, ocean thermohaline circulation, the environment, human health, agriculture, industry, transportation, fire and political and economic to some extent as well as climate, atmospheric dynamical field and thermal field, radiation, cloud microphysics and carbon circle. It relates to blown sand physics, meteorology, electricity, pathology, marine science, biology, agriculture and animal husbandry forestry, transportation, science and political economics and other disciplines. So the study on dust emissions and characteristics and patterns of sand-dust weather has important values.
     After a serial of study related to air temperature and sand-dust weather and dust PM10concentrations, relations of air temperature, atmospheric pressure and the concentrations in dust weathers, state equation of dust atmosphere, the sequence of entrainment of blown sand particles, the pattern of the upward motions of sand-dust particles, patterns of dune, dust emissions by saltation bombardment and force associated with air, sand-dust model's development and its advancement, sand-dust forecast imposed by sand-dust concentration assimilation, the mechanism of sand-dust storm, the deduce of closed physical constraint equations of sand-dust atmosphere based on both interaction of wind-blown-sand two-phase flows and mass change, the theoretical analysis of the equations and the numerical model for the two-phase flow and its associated ideal experiment, the following results are obtained:
     The relationship between temperature and dust weather indicates that there are generally three types between them, namely, cold type (sand-dust weather occurring with cold air), warm type (sand-dust weather occurring with warm air) and mixed type (with cold air and warm air, together). Among them, the cold and warm types are more common, and the mixed rare.
     Some empirical relationships between temperature and dust aerosols are obtained by using automated observational records of dust PM10concentrations and temperatures, which are taken every five minutes at the Minqin observational station during the time period, January2004through June2006. Results of the study disclose that:(1) empirical relationships are obtained by finding statistical regressions of temperature and dust PM10concentrations, taken at either 5-minute intervals,24-hour intervals and daily intervals of daily-average temperatures and dust PM10concentrations;(2) higher temperatures and larger fluctuations of temperatures are likely to correspond to higher dust PM10concentrations, which agrees well with the knowledge that high temperatures are helpful to the appearance of dust events;(3)5-minute intervals of temperatures and dust PM10concentrations are also linearly and positively correlated as well as their24-hour intervals;(4) the characteristic24-hour intervals for floating dust, blowing dust and dust storm are-2.1~4.4℃,-2.4~4.6℃and-2.7~5.0℃, respectively;(5) the relationship between daily-average temperature and dust PM10concentrations is not significant for low dust PM10concentrations, but for high dust PM10concentrations corresponding to dust storms.
     Air temperature, air pressure and concentration in the start, the strongest and the end of sand-dust weather show a very significant correlation in their own, suggesting that there is a certain structure in the dust cloud or its evolution.
     Different statistical relationships are found in density, temperature and pressure for dust weather and nondust weather, which maybe advance the entrainment on the isothermal surface and isobaric surface, and make the dust cloud has different actions on different isothermal surfaces such as rising with contraction or sinking with expansion, divergence or convergence along vertical direction, and also has different actions on different isobaric surface such as vertical development of dust cloud, or sink, divergence or convergence in the middle of the cloud.
     The state equation of dust atmosphere is found in statistical view based on air temperature, pressure and dust PM10concentration.
     Initial entrainment of sand depends on its size, the slope of the sands plane, the magnitude and the direction of the drag force, loose degree between sands and rough degree of sands plane. Given a fixed drag force and a fixed particle size, the sequence of locations of most likely entrainment at the outset is:point of inflection on a sands ridge, bump on the slope of sands plane and peak on the sands plane, points on the slope, points on horizontal sands plane and trough points.
     Bring forward smoothening movement, phase-retreating movement and phase-holding movement of the sand dune.
     The favorable conditions for sand-dust particles'emissions and uplifted motions are:updraft of air, big wind, particles'swirling with same direction's sign to horizontal wind, vortical field with direction's sign opposite to the horizontal wind, atmosphere static instability and strong shear of horizontal wind.
     Bring forward a transition model to predict dust emission by saltation bombardment. The transition model of dust emission is an analogy of the electron transition, which results from a detailed analysis of the stress transferring process in sand bed. In this transition model, a particle in the bed will be released if its energy, transferred to it from the impacting particle, is bigger than the transition energy which is the least energy to make a particle have a "transition", and the remained energy of the particle with a transition is treated as its initial kinetic energy. Thus the expressions of the number of ejected particles, their velocity distributions and the shapes of bombardment crater in two-dimension and three-dimension situations are then easily obtained based on the transition model. And the dust emission by saltation bombardment then becomes a problem to research into the transition energy and the energy distribution around the point where collision happens.
     Proposed sand source in the presence of surface and atmospheric gas exchange is the internal mechanism of pneumatic sand.
     A dust assimilation system named GRAPES_3DVAR_DUST was developed through adding a new control variable (namely, dust concentration) in the three-dimensional variational data assimilation system of GRAPES model in order to improve its forecast accuracy.
     Through the use of the dust model, namely, GRAPES_SDM, a dust-storm weather happening in summer, Jun17,2005, was modeled in order to study the structure of dust storm and its associated mechanism. The results show that there is a coupled system similar to Benard cell existing in the dust storm and the system caused this dust storm. So a theory of votex cell is proposed to explain the formation of the dust storm, which is the dust storm is a result from the the system's sweeping sand-dust source.
     A whole mechanism of dust emissions for dust storm is proposed after the above studies. The mechanism is:when the vortex cell passes by the sand-dust source, the sand-dust particles will be emitted through the gas exchange between the land and atmosphere on the area where the wind speed is bigger than the threshold wind speed; the sand-dust particles then are litf up by the corherent structure of turbulence such as gust and plump within atmospheric surface layer; once they step into Ekman boundary layer, because the air current turns to the the lower-pressuer center due to the turbulent friction and then the secondary circulation will be produced, the particles will still be lifted up through the lower-pressure system and its associated secondary circulation (both are coupled into a vortex-cell system), and even be drived into the free atmosphere through Ekman pumping; at last the particles will move with the vortex-cell system and the sand-dust storm weather is formed.
     The closed physical constraint equations of sand-dust atmosphere were established based on both interaction of wind-blown-sand two-phase flows and mass change. Ideal analysis of the equations shows that:(1) the density of the sand-dust atmosphere is bigger than that of the pure atmosphere, which will reduce the velocities of air parcels of the former to some extent;(2) velocity difference between sand-dust particles and air can make the fine particles be located in high-speed region and the coarse particles be located in low-speed region;(3) temperature difference between sand-dust particles and air can make the particles tend to enhance convection through acting as heat source in updraft and cold source in downdraft;(4) the constant-volume mass-specific heat capacity of the sand-dust atmosphere can give rise to a generation of new temperature gradient on an isobaric surface and then enhance entrainment at the boundary of a sand-dust cloud;(5) the gas constant of the sand-dust atmosphere can lead to a generation of new pressure gradient on a isothermal surface and also enhance entrainment at the boundary of a sand-dust cloud;(6) mass change can affect largely density, velocity and temperature of the sand-dust atmosphere. In brief, compared with the sand-dust cloud given by equations based on passive scalar, the real sand-dust cloud is higher and greater. Besides this, its inner convection and its entrainment at the boundary are more active, and its horizontal motion is slower.
     Establish the numerical model for wind-sand two-phase flow based on the above physical constraint equations, and the ideal experiment is performed. The results of Ideal experiment show that compared with the results from passive-scalar model, the horizontal velocity of two-phase-flow model is bigger within the vortex center and smaller outer the center; the potential temperature and vertical velocity increase under the height2km above the surface, decrease within the heights2-6km above the surface and then increase again above6km.
引文
Ahn H T, Park S U, Chang L S. Effect of direct radiative forcing of asian dust on the meteorological fields in east Asia during an asian dust event period. Journal of Applied Meteorology and Climatology,2007,46:1655-1681.
    Alfaro, S. C., A. Gaudichet, L. Gomes, and M. Maille', Modeling the size distribution of a soil aerosol produced by sandblasting, J. Geophys. Res.,102,11,239-11,249,1997.
    Alpert P, Krichak S O, Tsidulko M, et al. A dust prediction system with toms initialization. Monthly Weather Review,2002,130:2335-2340.
    Barenblatt G I and Golitsyn G S. Local structure of mature dust storms. Journal of the atmospheric sciences,1974,31,1918-1933.
    Bisal F.Nielsen K C. Movement of soil particles in saltation. Canadian Journal of Soil Science, 1962,42:81-86.
    Bluestein H B and Weiss C C. Doppler radar observations of dust devils in Texas. Monthly Weather Review,2004,132(1):209-224.
    Chepil W S. Dynamics of wind erosion:I. Nature of movement by wind. Soil Science,1945,60: 305-320.
    Chin M, Ginoux P, Kinne S et al. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Journal of the Atmospheric Sciences,2002,59:461-483.
    D'almeida G A. A model for Saharan dust transport. Journal of Climate and Applied Meteorology,1986,25:903-916.
    Doty K, Semonin R G. Two case studies of the transport of dust storm aerosol and the potential for incorporation into precipitation. Journal of Climate and Applied Meteorology,1987,763-773.
    Gierasch P J and Goody R M. A model of a Martin great dust storm. Journal of Atmospheric Science,1973,30(2):169-179.
    Fe'can, F., B. Marticorena, and G. Bergametti. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas, Ann. Geophys,1999,17:149-157.
    Gong S L, Zhang X Y, Zhao T L. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia,1. Network Observations. J. Geophys. Res.,2003a, 108 (D9), doi:10.1029/1004 2002JD002632.
    Gong S L, Zhang X Y, Zhao T L. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia,2. Model simulation and validation. J. Geophys. Res., 2003b,108(9):doi:10.1029/2002JD002633
    Gu Z L, Zhao Y Z, Li Y et al. Numerical simulation of dust lifting within dust devils—simulation of an intense vortex. Journal of Atmospheric Science.2006,63:2630-2641.
    Mohalfi S, Bedi H S, Krishnamurti T N et al. Impact of Shortwave Radiative Effects of Dust Aerosols on the Summer Season Heat Low over Saudi Arabia. Monthly Weather Review, 1998,126:3153-3168.
    Hacker J P, Mckendry I G, Stull R B. Modeled downward transport of a passive tracer over western north America during an Asian dust event in April 1998. Journal of Climate and Applied Meteorology,2001,.1617-
    Hess G D and Spillane K T. Characteristics of dust evils in Australia. Journal of Applied Meteorology,1990,29,498-507.
    Heever S C, Carrio G G, Cotton W R et al. Impacts of nucleating aerosol on Florida storms. Part Ⅰ: mesoscale simulations. Journal of the Atmospheric Sciences,63:1752-1775.
    Hiest G R, Nichola P W. On the erosion of fine particles by wind. Bulletin of American Meteorological Society,1959,40 (2):232-243.
    Huang J, Lin B, Minnis P, etc. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett.,2006,33, doi: 10.1029/2006GL026561.
    Huang J, Minnis P, Yan H, etc. Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements, Atmos. Chem. Phys.,2010,10,6863-6872.
    Hudson N. Soil Coservation[M]. London:Batsford,1971,320.
    Gieette D A. Production of dust that may be carried great distances. Geol. Soc. Am.,1981, 186:11-26.
    Jickells T D, An Z F and Andersen K K. Global iron connections between desert dust, ocean biogeochemistry, and climate, Sci,2005,308(5718):67-71
    Kaufman Y J, Koren L, Remer LA, et al. The effect of smoke, dust and pollution aerosol on shallow cloud development over the Atlantic ocean.PNAS,2005,102(32):11207-1121.
    Lee H N, Igarashi Y, Chiba M. et al. Global model simulations of the transport of asian and sahara dust:total deposition of dust mass in japan. Water, Air, and Soil Pollution,2006,169:137-166.
    Leovy C B and Zurex R W. Mechanism for Mars dust storms. Journal of Atmospheric Science, 1973,30(5):749-762.
    Levin Z, Ganor E, GLadstein V. The effect of desert particles coated with sulfate on rain formation in the eastern Mediterranean. Journal of Applied Meteorology,1996,35:1511-1523.
    Lu H, Shao Y P. A new model for dust emission by saltation bombardment. Journal of Geophysical Research,1999,104:16827-16842.
    Lyles L, Krauss R K. Threshold velocities and initial particle motion as influenced by air turbulence. Trans Am Soc Agr Eng,1971,20:880-884
    Loosmore G, Hunt J R, Below-threshold, nonabraded dust resuspension. J. Geophys. Res., 2000,105,20663-20671.
    Marticorena, B., and G. Bergametti, Modeling the atmospheric dust cycle. Part 1:Design of a
    soil-derived dust emission scheme, J. Geophys. Res.,100,16415-16430,1995.
    Marticorena, B., G. Bergametti, and B. Aumont, Modeling the atmospheric dust cycle. Part 2:Simulation of Saharan dust sources, J. Geophys. Res.,1997,102 (D4),4387-4404.
    Miller R L and Gegen I.Climate response to soil dust aerosols,Journal of Climate,1998, 3247-3267.
    Nickovic S and Dobricic S. A model for long-range transport of desert dust. Monthly Weather Review.1996,124:2537-2544.
    Nickling W G. The initiation of particle movement by wind.Sedimentology,1998,35:499-511.
    Niu T, Gong S L, Zhu G F et al. Data assimilation of dust aerosol observations for CUACE/Dust forecasting system. Atmos Chem Phys Discuss,2007,7:8309-8332.
    Patricia M P, Nancy L B and Edward H B. An observational study of the "interstate 5" dust storm case. Bulletin of the American Meteorological Society,1996,77(4):693-720.
    Rice M A, Willetts B B, McEwan I K. Observations of collisions of saltating grains with a granular bed from high-speed cine-film. Sedimentology,1996,43:21-31.
    Rosenfeld D, Nirel R. Seedind effectiveness-The interaction of desert and the southern margins of rain cloud systems in Israel. Journal of Applied Meteorology,1996,35:1502-1510.
    Rosenfeld D, Rudich Y and Lahav R. Desert dust suppressing precipitation:A possible desertification precipitation:A possible desertification feedback loop. Proc.Natl. Acad. Sci. USA,2001,98,5975-5980.
    Shao Y. A model for mineral dust emission. Journal of Geophysical Research,2001, 106(20)239-254.
    Shao Y, Raupach M R. The overshot and equilibration of saltation. Journal of Geophysical Research,1993,97:20559-20564.
    Swap R, Garstang M, Greco S, et al. Saharan dust in the Amazon Basin. Tellus,1992,44B,2: 133-149.
    Shao Y. A model for mineral dust emission. J. Geophy. Res,2001,106,20239-20254.
    Sinclair P C. General characteristics of dust devils. Journal of Applied Meteorology,1979,8,32-45.
    Todd M C, Washington R, Raghavan S, et al. Regional Model Simulations of the Bodele Low-Level Jet of Northern Chad during the Bodele Dust Experiment (BoDEx 2005). Journal of Climate,2008,21,995-1012.
    Shao Y, Jung E J, and Leslie L M. Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. J. Geophys. Res.,2002,107:4814-4836.
    Sinclair P C. The lower structure of dust devils. Journal of Atmospheric Science,1973,30, 1599-1619.
    Uno I, Carmichael G R and Wang Z F. Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. J Geophys Res,2003,108(d23),8668, doi:10.1029/2002JD002845.
    Vuolo M R, Menut L, Chepfer H. Impact of transport schemes on modeled dust concentrations. Journal of Atmospheric and Oceanic Technology,2009,26:1135-1143.
    Wang S G, Wang J Y, Zhou Z J et al. Regional characteristics of three kinds of dust storm events in Brazel A J. The relationship of weather types to dust storm generation in Arizona (1965-1980). Journal of Climate,1986,6:255-275.
    Wang S G, Wang J Y, Zhou Z J et al. Regional characteristics of three kinds of dust storm events in China. Atmospheric Environment,2005,39,509-520.
    Yang Y Q, Hou Q, Zhou C H, et al. Sand/dust storm process in Northeast Asia and associated large-scale circulations. Atmos Chem Phys,2008,8:25-33
    Zhang Y, Sunwoo Y, Kotamarthi V et al. Photochemical oxidant processes in the presence of dust: An evaluation of the impact of dust on particulate nitrate and ozone formation. Journal of Applied Meteorology,1994,23:813-824.
    Zhao T L, Gong S L, Zhang X Y, et al. Asian dust storm influence on North American ambient PM levels:observational evidence and controlling factors. Atmos. Chem. Phys.,2008,8: 2717-2728.
    陈勇.沙尘气溶胶输送及其辐射反馈效应的数值模拟研究.中国气象科学学院硕士学位论 文,2006,16-65.
    董怡.2008年4月25日河北省大风扬沙天气过程分析..安徽农学通报,2010,16(17):199-200.
    董治宝.风沙启动形式与起动假说.干旱气象,2005,23(2):64-69.
    段海霞,李耀辉.2006年北京一次持续浮尘天气过程的分析.干旱气象,2007,25(3):28-53.
    方小敏,韩永翔,马金辉,等.青藏高原沙尘特征与高原黄土堆积:以2003-03-04拉萨沙尘天气过程为例.科学通报,2004,49(11):1084-1091.
    费杜秋,杨阳,刘峰贵等.高空浮尘对高海拔山地冰川物质平衡的影响——以西昆仑山崇测冰帽为例.石河子大学学报(自然科学版),2009,27(2):179-183.
    冯军,尚学军,樊明.“4.28”青藏高原气旋产生沙尘暴、冰雹、天气系统结构分析.高原气象,2009,28(5):1051-1057.
    高会旺,祁建华,石金辉等.亚洲沙尘的远距离输送及对海洋生态系统的影响.地球科学进展,2009,24(1):1-10.
    郭铌,张杰,韩涛,郭慧.西北特殊地形与沙尘暴发生的关系探讨.中国沙漠,2004,24(5):576-581.
    龚山陵,张小曳CUACE/Dust亚洲沙尘暴计算机业务预报系统.计算机与应用化学,2008,25(9):1061-1067.
    顾兆林.风扬粉尘—近地层湍流与气固两相流[M].北京:科学出版社,2010:19-69.
    顾兆林,邱剑,鲁录义等.尘卷风的研究进展.中国沙漠,2007,27(5):843-850.
    何清.浮尘天气及其评价.新疆气象,1997,20(3):23-25.
    何晓红,次仁德吉,林志强.拉萨一次浮尘天气过程分析.气象,2007,9:
    贺大梁,刘大有.跃移沙粒起跳的受力机制.中国沙漠,1989,9(2):14-21.
    胡隐樵,光田宇.强沙尘暴发展与干飑线—黑风暴形成的一个机理分析.高原气象,1996,15(2):178-185.
    胡隐樵,光田宁.强沙尘暴微气象特征和局地触发机制.大气科学,1997,21(5):581-589.
    黄海波.和田机场浮尘天气的特点及其对飞行的影响.航空气象,2005,3,53-54.
    黄美元,王自发.东亚地区黄沙长距离输送模式设计.大气科学,1998,22(4):625-637.
    黄宁,郑晓静.风沙跃移运动发展过程及静电力影响的数值模拟.力学学报,2006,38(2):145-152.
    黄宁,郑晓静.风沙流中沙粒带电现象的实验测试.科学通报,2000,45(20):2232-2235.
    黄兆华.我国西北地区历史时期的风沙尘暴,方宗义等编.《中国沙尘暴研究》,北京:气象出版社,1997,31-36
    纪飞,秦瑜.东亚沙尘暴的数值模拟(1)模式建立.北京大学学报(自然科学版),1996,32(3):384-392.
    江远安,黄秉广,张晓琴.喀什地区近43年沙尘暴、扬沙天气.新疆气象,2004,27(4):7-9.
    李安春.青岛地区一次浮尘过程的来源及向海输送强度.科学通报,1997,42(18):
    李兴良,陈德辉.非静力中尺度高分辨率模式模拟中的垂直坐标影响研究.气象学报,2005,63(2):161-172.
    李彰俊,郝璐,李兴华.积雪覆盖度对沙尘暴的影响分析.中国沙漠,2008,28(2):338-343.
    刘春涛,程麟生.黑风暴的沙尘形成与输送参数化及中尺度数值试验.气象学报,1997,
    刘树华,刘新民,高尚玉.沙尘暴天气成因的初步分析.1994,30(5),589-596
    刘贤万.实验风沙物理与风沙工程学[M].北京:科学出版社,1995,210.
    鲁录义,顾兆林,罗昔联等.一种风沙运动的颗粒动力学静电起电模型.物理学报,2008,57(11):6939-6945.
    马金福,陈峰云.扬沙和浮尘成因的探讨及其观测.浙江气象科技.2001,22(1):44-46.
    孟雪峰,孙永刚,娜林,张桂莲,张立春.一次强沙尘暴天气成因分析.内蒙古气象,2003,2,7-9.
    慕建利,梁生俊,侯明全等.近40年陕西省扬沙和沙尘暴天气.西北大学学报(自然科学版),2005,35(1):109-112
    倪晋仁,李振山.风沙两相流理论及其应用.北京:科学出版社,2006,8-40
    牛生杰,章澄昌.贺兰山地区沙尘暴沙尘起动和垂直输送物理因子的综合研究.气象学报,2002,60(2):194-204.
    钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社.2003,114
    钱正安,贺慧霞,瞿章,等.我国西北地区沙尘暴的分级标准和个例谱及其统计特征.中国沙尘暴研究[M].北京:气象出版社,1997,1-10.
    钱正安,蔡英,刘景涛等.中蒙地区沙尘暴研究的若干进展.地球物理学报,2006,49(1):83-92.
    屈建军,言穆弘,张鸿发,等.沙尘起电的风洞模拟实验研究.中国科学(D辑),2003,33(6):593-601.
    苏松,李巧云,关欣.浮尘对土壤及小麦矿质元素含量的影响.湖南农业科学,2009,5:68-70.
    孙玉莲,成秀,马新荣等.甘肃临夏地区一次扬沙与强寒潮天气诊断分析.干旱区研究,2009,26(6):923-927.
    沈元芳,胡江林GRAPES模式中的坡地辐射方案及其对短期天气过程模拟的影响.大气科学,2006,30(6):1129-1137.
    王长松.中国历史时期沙尘暴研究进展.中国沙漠,2010,30(5):1182-1185.
    王伏村,付有智,李红.一次秋季沙尘暴的诊断和天气雷达观测分析.中国沙漠,2008,28(1):170-177.
    王宏,石广玉,AokiT等.2001年春季东亚-北太平洋地区沙尘气溶胶的辐射强迫.科学通报,2004,49(19):1993-2000.
    王宏,龚山陵,张红亮等.新一代沙尘天气预报系统GRAPES_CUACE/Dust模式建立、检验和数值模拟.科学通报,2009,54(24):3878-3891.
    王劲松,任余龙,魏锋,等.中国西北及青藏高原沙尘天气演变特征.中国环境科学,2008,28(8):714-719.
    王敏仲,魏文寿,杨莲梅,等.塔里木盆地一次东灌型沙尘暴环流动力结构分析.中国沙漠,
    吴绍洪,杨勤业,曹军.中国北方沙尘天气原因探讨.干旱区资源与环境(增刊),2004,18(1),21-25.
    武元录,李世红,闫芳.浮尘和扬沙天气现象辨析.现代农业科技,2010,6,291.
    夏训诚,杨根生.中国西北地区沙尘暴灾害及防治[M].北京:中国环境科学出版社,1996.1-50.
    叶成志,欧阳里程,李象玉,等GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析.热带气象学报,2006,22(4):393-399.
    伊万诺夫AⅡ.胡孟春沙地风蚀的物理学原理2001
    岳平,牛生杰,张强,等.夏季强沙尘暴内部热力动力特征的个例研究.中国沙漠,2008,28(3):509-514.2008,28(2):370-376.
    岳平,牛生杰,刘晓云.浑善达克沙地春季沙尘暴期间沙尘启动及传输特性研究.中国沙漠,2008,28(2):227-230.
    曾庆存,程雪玲,胡非等.大气边界层非定常下沉急流和阵风的起沙机理.气候与环境研究,2007,12(3):244-250.
    曾庆存,胡非,程雪玲等.大气边界层阵风扬尘机理.气候与环境研究,2007,12(3):251-255.
    张德二.我国历史时期以来降尘的天气气候学初步分析.中国科学(B辑),1984(2):278-288张桂华,王立娟,袁美英等.3.20浮尘、扬沙天气成因及多普勒雷达速度强度图分析.黑龙江气象,2002,3:20-23.
    张小玲,刘建忠,徐晓峰.北京春季一次持续浮尘和污染天气过程分析.气象科 技,2004,32(6):420-424.
    郑晓静,黄宁,周又和.风沙运动的沙粒带电机理及其影响的研究进展.力学进展,2004,34(1):77-86.
    郑晓静,岳高伟.地表温度对颗粒跃移轨迹的影响.应用力学学报,2005,22(2):207-211.
    周光垌,严宗毅,许世雄等.流体力学(第二版)[M].北京:高等教育出版社,2004.259-261.
    Song, Z. X., J.Y. Wang, and S. G. Wang (2007), Quantitative classification of northeast Asian dust events, J Geophys Res.,112, doi:10.1029/2006JD007048.
    Xu, X.K., K.L. Jason, and Z. Lin et al. (2006), An investigation of sand-dust storm events and land surface characteristics in China using NOAA NDVI data, Global and Planetary Change,52, 182-196.
    Wang, X. M., Z. J. Zhou, and Z. B. Dong (2006), Control of dust emissions by geomorphic conditions, wind environments and landuse in northern China:An examination based on dust storm frequency from 1960 to 2003, Geomorphologt,81,292-308.
    范一大,史培军,王秀山等.中国北方典型沙尘暴的遥感分析.地球科学进展,2002,17(2):289-294.
    何清,向鸣,唐淑娟.塔克拉玛干沙漠腹地两次强沙尘暴天气分析,中国沙漠,1998,18(4):320-327.
    康凤琴,李耀辉,吕世华.2001年4月8日强沙尘暴天气的数值模拟研究,中国沙漠,2003,23(6):681-685.
    孔珑.两相流体力学[M].北京:高等教育出版社,2004,86-140.
    李宁,顾卫等.土壤水份对沙尘暴的阈值反映一以内蒙古中西部地区为例.自然灾害学报,2004,13(1),44-49.
    李岩瑛,杨晓玲,王式功.河西走廊东部近50a沙尘暴成因、危害及防御对策.中国沙漠,2002,22(3):283-287.
    吕新苗,刘惠清,王文杰等.北京周边地区沙尘暴时空分布特征及其环境背景.地理研究,2004,01:38-44.
    潘耀忠,范一大,史培军等.近50年来中国沙尘暴空间分异格局及季相分布—初步研究.自然灾害学报,2003,12(1):1-8.
    钱正安,宋敏红,李万元.近50年来中国北方沙尘暴的分布及变化趋势分析,中国沙漠,2002,22(2):106-111.
    钱正安,蔡英,刘景涛等.中蒙地区沙尘暴研究的若干进展.地球物理学报,2006,49(1):83-92
    孙建华,赵琳娜,赵思雄.一个适用于我国北方的沙尘暴天气数值预测系统及其应用试验.气候与环境研究,2003,8(2):125-142.
    孙建华,赵琳娜,赵思雄.华北强沙尘暴的数值模拟及沙源分析.气候与环境研究,2004,9(1):140-154.
    王劲松,任余龙,魏锋,等.中国西北及青藏高原沙尘天气演变特征.中国环境科学2008,28(8):714-719
    王旭,马禹,陈洪武.新疆沙尘暴天气的气候特征,中国沙漠,2003,23(5):539-544.
    杨根生,拓万全.关于宁蒙陕农牧交错带重点地区沙尘暴灾害及防治对策.中国沙漠,2002,22(05):452-465.
    张克存,屈建军,马中华.近50 a来民勤沙尘暴的环境特征.中国沙漠,2004,24(3):257-260.
    周自江,章国材,艾婉秀等.中国北方春季起沙活动时间序列及其与气候要素的关系.中国沙漠,2006,26(6):935-941.
    Atman A P F, Brunet P, Geng J, et al. Sensitivity of the stress response function to packing preparation. Journal of physics:condensed matter,2005,17:2391-2403
    Bisal F, Nielsen K C. Movement of soil particles in saltation. Canadian Journal of Soil Science, 1962,42:81-86.
    Fe'can, F,Marticorena B,Bergametti G. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas, Ann. Geophys.,1999,17:149-157.
    Goldenberg C, Goldhirsch I. Friction enhances elasticity in granular solids. Nature, 2005,435(7039):188-191
    Lu H, Shao Y P. A new model for dust emission by saltation bombardment. Journal of Geophysical Research,1999,104:16827-16842.
    Lyles L, Krauss R K. Threshold velocities and initial particle motion as influenced by air turbulence. Trans Am Soc Agr Eng,1971,20:880-884
    Qu J J, Yan M H, Dong G R, et al. Wind tunnel simulation experiment and investigation on the electrification of sandstorms. Science in China Series D Earth Sciences,2004,47(6):529-539.
    Rice M A, Willetts B B, McEwan I K. Observations of collisions of saltating grains with a granular bed from high-speed cine-film. Sedimentology,1996,43:21-31.
    Shao Y, Raupach M R. The overshot and equilibration of saltation. Journal of Geophysical Research,1993,97:20559-20564.
    Shao Y. A model for mineral dust emission. Journal of Geophysical Research,2001, 106(20)239-254.
    褚圣麟.原子物理学[M].北京:高等教育出版社,2002:22-35
    丁瑞强,王式功,尚可政等.近45 a我国沙尘暴和扬沙天气变化趋势和突变分析.中国沙漠,2003,23(3),306-310.
    董治宝.拜格诺的风沙物理学研究思想.中国沙漠,2002,22(2):101-105.
    董治宝.风沙起动形式与起动假说.干旱气象,2005,23(2):64-69.
    冯晖,居沈贵等.化工原理http://hgy.njut.edu.cn/kj/cai/index.htm
    贺大梁,刘大有.跃移沙粒起跳的受力机制.中国沙漠,1989,9(2):14-21.
    何丽红,武建军,郑晓静.影响拜格诺结的若干因素分析.中国沙漠,2003,23(4):347-354.
    李岩瑛,杨晓玲,王式功等.河西走廊东部近50 a沙尘暴成因、危害及防御对策.中国沙漠,2002,22(3),283-287.
    粱昆淼.数学物理方法[M].北京:高等教育出版社,2000:409
    陆坤权,刘奇星.颗粒物质(上).物理,2004,33(9):629-635
    倪晋仁,李振山.风沙两相流理论及其应用.北京:科学出版社,2006,8-40
    钱正安,宋敏红,李万元.近50年来中国北方沙尘暴的分布及变化趋势分析.中国沙漠,2002,22(2):106-111.
    沈养中,孟胜国.结构力学[M].北京:科学出版社.2009,1-62
    史培军,严平,袁艺.中国北方风沙活动的驱动力分析.第四纪研究,2001,21(1):41-47.
    孙其诚,王光谦.静态堆积颗粒中的力链分布.物理学报,2008,57(8):4666-4674.
    孙其诚,金峰,王光谦,等.二维颗粒体系单轴压缩形成的力链结构.物理学报,2010,59(1):30-37
    孙显科,张凯,张大治等.沙纹弹道成因理论评析.中国沙漠,2003,23(4):471—475.
    王金燕.沙尘模式优化与东亚沙尘天气量化分级研究.兰州大学博士学位论文,2006.
    杨保.气流中颗粒阻力系数与升力系数讨论.中国沙漠,1998,18(1):70-76.
    杨具瑞,方铎,毕慈芬等.沟谷坡面风沙启动规律研究.力学与实践,2003,25(5):14—17.
    张德二.我国历史时期以来降尘的天气气候学初步分析.中国科学(B辑),1984,14(3):278-288.
    张胜业,潘玉玲.应用地球物理学原理[M].武汉:中国地质大学出版社,2004:315.
    周秀骥,徐祥德,颜鹏等.2000年春季沙尘暴动力学特征.中国科学(D辑),2002,32(4):327-334.
    周自江.近45年中国扬沙和沙尘暴天气.第四纪研究,2001,21(1):9-17.
    周自江,王锡稳,牛若芸.近47年中国沙尘暴气候特征研究.应用气象学报,2002,13(2):193-200.
    朱朝云,丁国栋.风沙物理学.北京:中国林业出版社.1992.
    Alfaro, S. C., A. Gaudichet, L. Gomes, and M. Maille, Modeling the size distribution of a soil aerosol produced by sandblasting, J. Geophys. Res.,1997,102:11239-11249.
    Alfaro, S. C., A. Gaudichet, L. Gomes, and M. Maille, Mineral aerosol production by wind erosion:aerosol particle sizes and binding energies, Geophys. Res. Letters,1998,25: 991-994.
    Alfaro, S. C., and L. Gomes, Modeling mineral aerosol production by wind erosion:Emission intensities and aerosol size distributions in source areas, J. Geophys. Res.,2001,106: 18075-18,084.
    Courtier P, Thepaut J N, Hollingsworth,A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc.,1994,120,1367-1388.
    Fe'can, F., B. Marticorena, and G. Bergametti. Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas, Ann. Geophys.,1999,17:149-157.
    Gong S L, Zhang X Y, Zhao T L. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia,1. Network Observations. J. Geophys. Res.,2003a, 108 (D9), doi:10.1029/1004 2002JD002632.
    Gong S L, Zhang X Y, Zhao T L. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia,2. Model simulation and validation, J. Geophys. Res.,2003b,108(9):doi:10.1029/2002JD002633
    Iversen,J.D.,and B.R,White. Saltation threshold on Earth, Mars and Venus, Sedimentology,1982, 29:111-119.
    Liu Z, Liu D, Huang J, et al. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmospheric Chemistry and Physics,2008,8:5045-5060.
    Lu, H., and Y. Shao, A new model for dust emission by saltation bombardment, J. Geophys. Res., 1999,104:16827-16842.
    Marticorena, B., and G. Bergametti, Modeling of the atmospheric dust cycle:1. design of a soil derived dust emission scheme, J. Geophys. Res.,1995,100:16415-16429.
    Marticorena B, Bergametti G, Aumont B et al. Modeling the Saharan dust cycle:2. Simulation of Saharan dust sources, J. Geophys. Res.,1997,102:4387-4404.
    Nickovic S and Dobricic S. A model for long-range transport of desert dust. Monthly Weather Review.1996,124:2537-2544.
    Niu T, Gong S L, Zhu G F et al. Data assimilation of dust aerosol observations for CUACE/Dust forecasting system. Atmos Chem Phys Discuss,2007,7,8309-8332
    Shao, Y. A model for mineral dust emission. J. Geophys. Res.,2001,106:20239-20254.
    Shao, Y., and I. Lu, A simple expression for wind erosion threshold friction velocity, J. Geophys.Res.,2000,105:22437-22443.
    Shao, Y., and M. Raupach, Effect of saltation bombardment by wind, J. Geophys. Res, 1993,98:12719-12,726.
    Shao, Y., M. R. Raupach, and J. F. Leys, A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region, Aust. J. Soil Res.,1996,34:309-342.
    Song Z, Wang J, Wang S. Quantitative classification of northeast Asian dust events. J. Geophys. (?) Res.,2007,112, D04211, doi:10.1029/2006JD007048.
    White B.R. Soil transport by winds on Mars. J. Geophys. Res.1979,84:4643-4651.
    Yumimoto K., Uno I, Sugimoto N, et al. Adjoint inverse modeling of dust emission and transport over East Asia. Geophys. Res. Lett,2007,34, L08806, doi:10.1029/2006GL028551.
    曹文洪,张启舜,潮流和波浪作用下悬移质挟沙能力的研究.泥沙研究,2000,5:16-21.
    曹志先.基于湍流猝发的床面泥沙上扬通量.水利学报,1996,(5):18-21.
    曹志先,张效先,习和忠.基于湍流猝发的明渠流悬沙浓度分布.水利学报,1997,(2):52-57.
    程雪玲,曾庆存,胡非等.大气边界层强风的阵性和相干结构.气候与环境研究,2007,12(3):227-243.
    董治宝.风沙启动形式与起动假说.干旱气象,2005,23(2):64-69.
    方小敏,韩永翔,马金辉等.青藏高原沙尘特征与高原黄土堆积:以2003-03-04拉萨沙尘天气过程为例.科学通报,2004,49(11):1084-1090.
    龚山陵,张小曳CUACE/Dust亚洲沙尘暴计算机业务预报系统.计算机与应用化学,2008,25(9):1061-1067.
    谷德军.对流边界层中粒子随机扩散模式和高斯模式的比较.热带气象学报,2000,16(2):164-172.
    顾兆林.风扬粉尘—近地层湍流与气固两相流[M].北京:科学出版社,2010:19-69.
    郭铌,张杰,韩涛,郭慧.西北特殊地形与沙尘暴发生的关系探讨.中国沙漠,2004,24(5):576-581.
    韩永翔,奚晓霞,方小敏等.亚洲大陆沙尘过程与北太平洋地区生物环境效应:以2001年4月中旬中亚特大沙尘暴为例.科学通报,2005,50(23):2649-2655.
    黄丽萍,伍湘君,金之雁GRAPES模式标准初始化方案设计与实现.应用气象学报,2005,16(3):374-384.
    纪飞,秦瑜.东亚沙尘暴的数值模拟(1)模式建立.北京大学学报(自然科学版),1996,32(3):384-392.
    李玲萍,罗小玲,王润元.盛夏一次区域性强沙尘暴天气个例分析.灾害学,2007,22(4):81-85.
    李耀辉,赵建华,薛纪善等.基于GRAPES的西北地区沙尘暴数值预报模式及其应用研究.地球科学进展,2005,20(9):999-1011.
    刘春涛,程麟生.黑风暴的沙尘形成与输送参数化及中尺度数值试验.气象学报,1997,55(6):726-738.
    刘青泉,曹文洪.泥沙颗粒的扬动机理分析.水利学报,1998,5:1-6.
    李兴良,陈德辉.非静力中尺度高分辨率模式模拟中的垂直坐标影响研究.气象学报,2005,63(2):161-172.
    Kalney E((著),蒲朝霞,杨福全,邓北胜等(译).大气模式、资料同化和可预报性[M].气象出版社,2008,115-171.
    钱正安,蔡英,刘景涛等.中蒙地区沙尘暴研究的若干进展.地球物理学报,2006,49(1):83-92
    王宏,龚山陵,张红亮,等.新一代沙尘天气预报系统GRAPES_CUACE/Dust模式建立、检验和数值模拟.科学通报,2009,54(24):3878-3891.
    伍湘君,金之雁,黄丽萍等GRAPES模式软件框架与实现.应用气象学报,2005,16(4),539-546
    薛纪善,庄世宇,朱国富等GRAPES新一代全球/区域变分同化系统研究.科学通报,2008,53(20):2408-2417
    延昊,张佳华,赵一平等.青藏高原沙尘天气的遥感研究.中国沙漠,2006,26(6):932-934.
    叶成志,欧阳里程,李象玉等GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析.热带气象学报,2006,22(4):393-399
    曾庆存,程雪玲,胡非等.大气边界层非定常下沉急流和阵风的起沙机理.气候与环境研究,2007,12(3):244-250.
    曾庆存,胡非,程雪玲等.大气边界层阵风扬尘机理.气候与环境研究,2007,12(3):251-255.
    张华,薛纪善,庄世宇等GRAPES三维变分同化系统的理想试验.气象学报,2004,62(1):31-41.
    张利红,蒋丽娟,陈朝平等.探空观测资料在西南暴雨中的同化试验.高原山地气象研究.200929(3):31-38.
    张万诚,肖子牛,郑建萌.三维变分同化在—η坐标中尺度模式预报中的应用.高原气象,2005,24(1):70-76.
    钟德钰,王士强,王光谦.水流冲泻质挟沙机理探讨,泥沙研究,1998,3:41-27
    周光垌,严宗毅,许世雄,等.流体力学(第二版)[M].北京:高等教育出版社,2004.259-261.
    庄世宇,薛纪善,朱国富等GRAPES全球三维变分同化系统—基本设计方案与理想试验.大气科学,2005,29(6):872-884.
    庄照荣,薛纪善,朱宗申等.非线性平衡方案在三维变分同化系统中的应用.气象学报,2006,64(2):137-148.
    Cui J C, Zhang Y Y, Yang X F et al. Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system. Chin. Phys. B,2010,19,doi: 10.1088/1674-1056/19/3/030304.
    Dalmeida G A. A model for Saharan dust transport. J Climate Appl Met,1986,25:903-915.
    Gong S L, Zhang X Y Zhao T L, et al. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia:2. Model simulation and validation. J Geophy Res,2003,108(D9),4262, doi:10.1029/2002JD002633.
    Luo C, Mahowald N M and Corral J. Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport and distribution. J Geophy Res,2003,108(D15),4447, doi: 10.1029/2003JD003483.
    Nickovic S and Dobricic S. A model for long-range transport of desert dust. Mon Wea Rev,1996, 124:2537-2544.
    Niu T, Gong S L, Zhu G F et al. Data assimilation of dust aerosol observations for CUACE/Dust forecasting system. Atmos Chem Phys Discuss,2007,7,8309-8332
    Song Z. A numerical simulation of dust storms in China. Environmental Modeling & Software. 2004,19:141-151.
    Xia L L, Cai J L. Conformal invariance and conserved quantities of a general holonomic system with variable mass.2010 Chin. Phys. B 19 040302 doi:10.1088/1674-1056/19/4/040302.
    Yang Y Q, Hou Q, Zhou C H, et al. Sand/dust storm process in Northeast Asia and associated large-scale circulations. Atmos Chem Phys,2008,8:25-33.
    Zakey A S, Solmon F, Giorgi F. Development and testing of a desert dust module in a regional climate model. Atmos Chem Phys Discuss,2006,6:1749-1792.
    Zhang D F, Zakey A S, Gao X J et al. Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos Chem Phys Discuss,2008,8:4625-4667.
    Zhang X Y, Lu H Y, Arimito R, et al. Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate:two 250-kyr loess records. Ear Plan Sci Let, 2002,202:737-643.
    Zhao T L, Gong S L Zhang X Y, et al. A simulated climatology of Asian dust aerosol and its trans-pacific transport. Part Ⅰ:Mean climate and validation. J Climate,2006,19:88-103.
    巢纪平,刘飞.沙尘暴垂直输运的两相流理论Ⅰ:气块模式.气象学报.2009,67(1):1-10.
    董芳,金宁德,宗艳波等.两相流流型动力学特征多尺度递归定量分析.物理学报.2008,57(10):6145-6144.
    傅旭东,王光谦.传统泥沙扩散方程的误差分析.泥沙研究,2004,4:33-38
    高忠科,金宁德.两相流流型复杂网络社团结构及其统计特性.物理学报,2008,57(11):6909-6920.
    郭学良,黄美元,徐华英.层状云的雨滴谱分档数值模拟研究.大气科学,1999,23(4):411-421.
    郭学良,黄美元,徐华英等.层状云降水微物理过程的雨滴分档数值模拟.大气科学,1999,23(6):745-752.
    郭学良,黄美元,洪延超等.三维冰雹分档强对流云数值模式研究Ⅰ.模式建立及冰雹的循环增长 机制.大气科学,2001,25(5):707-720.
    郭学良,黄美元,洪延超等.三维冰雹分档强对流云数值模式研究Ⅱ.冰雹粒子的分布特征.大气科学,2001,25(6):856-864.
    龚山陵,张小曳CUACE/Dust亚洲沙尘暴计算机业务预报系统.计算机与应用化学,2008,25(9):1061-1067
    辜旭赞,张兵.大气凝结水汽汇、凝结潜热作用与积云对流参数化.气象学报.2006,64(6):790-795.
    辜旭赞.引入考虑凝结作用的连续方程与积云对流参数化方案修正.气象科技.2004,32(1):19-24.
    黄美元,王自发.东亚地区黄沙长距离输送模式设计.大气科学,1998,22(4):625-637.
    纪飞,秦瑜.东亚沙尘暴的数值模拟:(Ⅰ)模式建立.北京大学学报(自然科学版).1996,32(3):384-392.
    孔珑.两相流体力学[M].北京:高等教育出版社,2004,132-133.
    刘飞,巢纪平.沙尘暴垂直输运的两相流理论Ⅱ:气柱挟卷模式.气象学报,2009,67(1):11-19.
    2006,64(6):790-795.
    刘汉涛,仝志辉,安康,等.溶解与热对流对固体颗粒运动影响的直接数值模拟.物理学报,2009,58(9):6369-6376.
    刘汉涛,常建忠,安康,等.热对流条件下双颗粒沉降的直接数值模拟.物理学报,2010,59(3):1877-1883.
    倪晋仁,李振山.风沙两相流理论及其应用[M].北京:科学出版社,2006,8-40
    钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,2003,114.
    仝志辉.热对流条件下固液密度比对颗粒沉降运动影响的直接数值模拟.物理学报,2010,59(3):1884-1889.
    王宏,龚山陵,张红亮,等.新一代沙尘天气预报系统GRAPES CUACE/Dust:模式建立、检验和数值模拟.科学通报,2009,54(24):3878-3891.
    王洪涛,董治宝,钱广强等.关于风沙流中风速廓线的进一步实验研究.中国沙漠2003,23(6):721-724.
    宣捷.大气扩散的物理模拟(北京:气象出版社).2000,139.
    游来光,马培民,陈君寒,等.沙暴天气下大气中沙尘粒子空间分布特征及其微结构.应用气象学报,1991,2(1):13-21.
    余志豪,苗曼倩,蒋全荣等.流体力学[M]北京:气象出版社,2004,53-63.
    郑桂波,金宁德.两相流流型多尺度熵及动力学特性分析.物理学报,2009,58(7):4485-4492.
    张智,梁培,范彦芳.宁夏盐池春季局地沙尘暴特征及其与下垫面的关系.干旱区资源与环境,2009,23(7):39-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700