基于强对流数值模拟的贵州冰雹识别及临近预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文使用贵州区域雷达网的多雷达拼图资料,以及504个防雹炮点的冰雹观测资料和其它资料(NCEP资料及DEM资料),通过分析研究贵州冰雹的雷达统计特征,对各种技术进行综合集成,建立有效的冰雹天气识别方法;并在此基础上,通过区域雷达资料同化技术的应用,建立基于强风暴数值预报的冰雹等强对流天气的临近预报方法,提供未来3小时内贵州区域冰雹的移动和发展的预报。论文的主要研究内容和研究成果如下:
     采用气候统计分析和基于GIS的数字地形分析、分区统计和图像分类方法,研究了贵州降雹的气候统计特征,并在此基础上研究冰雹分布与地形高程、坡向、坡度及地形切割深度的关系。研究表明,贵州降雹的空间分布与海拔高度、地形和下垫面性质等关系密切,具有明显的局地性特征。地形高程是影响贵州降雹分布的最主要地形影响因子。年平均降雹日数随地形高程增加呈增加趋势,在高程1000-1500m增加明显;微观地形因子如坡向和坡度对降雹日数的变异并没有显著性影响,但大范围的地势抬升及暖湿空气的迎风坡有利于降雹;地形切割深度并不是年平均降雹日数差异的显著性影响因子;纬度位置的不同,由于受暖湿空气影响程度不同及热力条件的差异,也是影响平均降雹日数差异的因子之一;根据3个影响因子建模获得的方程及贵州冰雹风险分区图,经统计检验和与历史乡镇降雹资料比较,具有较好的一致性。
     通过订立一定的规则,使用贵州504个防雹炮点的冰雹观测资料及贵州2005、2006年8次贵阳雷达站冰雹个例观测资料,使用“时间窗”方法间接地将风暴单体与降雹记录相联系,从而建立了冰雹算法校验数据库,然后通过对降雹校验数据库的统计分析,使用探测概率(POD)、虚警率(FAR)、临界成功指数(CSI)来检验冰雹探测算法。POSH的强冰雹探测算法的总体评估结果表明,30%的POSH强冰雹冰雹预警阈值在贵州地区获得最高的CSI评分,但这个阈值在每一次强冰雹的预警时也并未都获得最佳的结果。预警阈值选择模式(WTSM,即根据冻结层高度动态选择每一天的SHI的预警阈值)在不同地区气候状况下的差异,是导致缺省的POSH算法在贵州地区应用不佳的最主要的原因,这也说明对冰雹探测算法的局地性适用评估是非常必要的。通过对WTSM的调整,我们改进了原来的POSH算法,对它的重新评估结果表明,改进的POSH算法降低了识别的虚警率,对贵州地区的强冰雹识别效果还是相当好的。
     采用局部空间插值方法将雷达资料插值到规则的直角坐标网格点上,然后通过最大值法进行多雷达拼图;使用多雷达三维插值拼图产品,实现基于格点的垂直累计含水量、垂直累计含水量密度、强冰雹指数及强冰雹概率等强冰雹诊断因子,并加入冰雹地形影响因子,改进强冰雹概率算法。通过对一次发生在贵州西北部到中部一线的冰雹过程的成功诊断识别,说明了我们所开发的基于多雷达拼图的新的强冰雹诊断产品对识别贵州地区的强降雹是有比较好的效果的。
     以ARPS模式及其资料三维同化系统ARPS3DVAR和复杂云分析模块为研究平台,使用贵阳多普勒雷达的体扫观测资料,对一次强雷暴天气过程进行研究,分析了雷达反射率因子资料对云微物理量场的同化问题,并分析了雷达资料质量控制对同化的影响。在数值试验中使用了双层单向嵌套网格,在3km网格上设计了三个数值试验,分别使用不同的雷达反射率同化方案反演水凝物场。研究表明,数值试验中两个不同的云分析方案都能同化出合理的云水场和水凝物场,同时因为水凝物场的调整,位温场和垂直速度场也得到了很好的响应;与没有使用云分析方案的试验比较,使用了云分析方案同化雷达资料的试验,因为在初始时刻能够调整出一个合理的云微物理量场,抓住了对流风暴的主要特征,因此能够减少模式的热启动时间,更准确地模拟出初始时刻和短时的风暴的主要结构和演变特征,而没有使用云分析方案的试验在2到3小时后才调整出一个位置有较大偏差的水凝物场,因此,雷达反射率资料的同化在强对流风暴的模拟中起到了一个非常关键的作用。
     利用基于格点冰雹识别的研究成果,结合ARPS风暴数值模式的输出结果,提出基于风暴数值模式的冰雹临近预报方法,即用风暴数值预报的水物质场反演的反射率因子场作为冰雹的预报因子,并通过建立基于格点的强冰雹识别算法作为冰雹预报模型,从而对冰雹的落区及大小做出预报。与一般的冰雹预报模型相比,新的方法有以下特点:选取的冰雹预报因子物理意义更加明确,更加全面;建立的冰雹预报模型比较稳定;建立冰雹预报模型的过程相对简单。新的方法在一次强冰雹过程中得到了成功应用,在3h的临近预报中基本准确预报了强冰雹的落区位置。
An effective hail detection algorithm suitable for Guizhou region has been established based on the analysis of the radar statistical characters of hail storms and the application of other comprehensive techniques by using 3D merged reflectivity of multiple radars over Guizhou ,hail events observation data of 504 hail prevention spots in Guizhou , and NCEP reanalysis data. A nowcasting technique for hail storm based on storm numerical model and radar data assimilation also has been established, which is used to forecast the moving and evolution of hail storm during 3 hours in Guizhou region. The main contents and conclusions are as follows:
     1. The climatic statistical characters of hail in Guizhou and the relationship between distribution of hail and some topographical factors, such as elevation, slope grade, slope aspect and terrain incision depth, has been studied by using climatic statistical analysis and some GIS techniques, such as digital terrain analysis, zonal statistics and image classification with historical hail records of 84 meteorological stations over 44 years in Guizhou province and the 1:1000000 resolution DEM data of china. It is shown, natural logarithm of mean annual hail days conforms to normality distribution .The elevation is the major topographical factor which influence the distribution of hail primarily, the annual mean hail days increase with the increase of elevation and it increase remarkably as the elevation increase to about 1000 -1500 meters. Micro topographical factors, such as slope grade and slope aspect are not remarkable factors to the difference of annual mean hail days, but topography rising over large area and windward slope of warm moist air is favorable to hail. Terrain incision depth is not remarkable factors to the difference of annual mean hail days also. Difference of latitude is also one of the factors which influence the difference of annual mean hail days. The model for annual mean hail days from the three remarkable factors and the map of hail hazard evaluation are credible via statistical test and comparison to historical hail reports over countryside spots.
     2. The evaluation databases for the WSR-88D hail detection algorithm have been built via the methodology defining specific conditions a storm cell must meet to be included in the evaluation by using hail observation data of 504 hail prevention spots in Guizhou and Doppler radar data of Guiyang during 8 of severe hail events from 2005 to 2006,after that, The algorithms were evaluated using the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) statistics. It has shown that, (Probability of severe hail)POSH=30% got the highest CSI score in Guizhou region, but this threshold did not always get the best performance in these 8 of severe hail events. The difference of WTSM (Warning Threshold Selection Model) in different climatic region is the main reason why the default POSH algorithm got a bad performance. An improved WTSM would more accurately predict the optimum SHI threshold for each day. It would help ensure that the POSH threshold of 50% always corresponds to the largest possible CSI on each day. The re-evaluation of the improved POSH algorithm has shown that it has decreased the hail detection FAR, and get a higher performance of severe hail detection in Guizhou.
     3. Approach of Local space interpolation has been used to remap raw radar reflectivity fields onto a 3D Cartesian grid with high resolution, and maximum scheme has been used to combine multiple-radar reflectivity fields. Based on 3D merged reflectivity product, some severe hail diagnose factors, such as grid-based VIL, grid-based density of VIL, grid-based SHI (severe hail index) and grid-based POSH, have been calculated .The grid-based severe hail detection algorithm has been improved with the statistics of these severe hail diagnose factors and hail topographical factors. It is shown that the grid-based severe hail diagnose product would more accurately detect severe hail storm in a severe hail weather case which occurred in West-Northern and central Guizhou .
     4. For the purpose of researching the impact of assimilation of microphysical adjustments using reflectivity of Doppl er radar, ARPS model, ARPS3DVAR and a complex cloud analysis procedure are used to assimilate CINRAD/CD Doppler radar data of a severe storm weather case which occurred in Northern Guizhou province. The assimilation and predictions use a 3km grid nested inside a 15km one. There are three numerical experiments with different settings for retrieving cloud hydrometeors using reflectivity of Doppler radar in our studying. Results show that these two experiments with complex cloud analysis procedure can analyze a suitable distribution of cloud water and hydrometeors, and the distribution of potential temperature and vertical velocity response to the adjustment of hydrometeors perfectly. When compare to the EXPR_NOREF experiment without complex cloud analysis, because the CNTL-SMITH-REFONLY experiment which used the complex cloud analysis has analyzed a suitable field of cloud water and hydrometeors in model's initial time, capture the major features of convective storm, so duration of spin up time has be decreased remarkably and the major structure and features of the storm in initial time and over 1h forecasting time can be simulated suitably, but the experiment without cloud analysis must cost 2 or 3 hours to analyze a field of hydrometeors which has error position. The assimilation of reflectivity of Doppler radar has acted as key role in the simulation of severe convective storm.
     5. Based on grid-based hail detection algorithm ,storm numerical model and radar data assimilation, A nowcasting technique for hail storm ,which using model radar reflectivity retrieving from hydrometeors as the hail forecasting factors and grid-based hail detection algorithm as the hail forecasting model, has been established, It can be used to forecasting the hail location and size. Comparing with other hail forecasting approaches, this new approach get more meaningful and more comprehensive forecasting factors, a more stable forecasting model and easy way to build the hail forecasting model. The new approach was successfully applied in a severe hail weather case, which forecasted accurately the position of severe hail storms during 3 hours from initial time.
引文
[1] Rinehart.R.E. A Pattern-recognition technique for use with convention weather radar to determine internal storm motion,recent progress in radar meteorology. Atomospheric tech. 1981:m13,119-134
    [2] Austin G.L. Apllication of pattern-recognition and extrapolation techniques to forecasting. Eur space Agency J.A. 1985:147-155
    [3] Austin G.L and Bellon. Very short-range forecast of precipitation by the objective extrapolation of radar and satellite data. Nowcasting A.K. Broning, Ed. Academic Press.1982:177-190
    [4] Rosefeld.D. Object method for analysis and tracking of convective cell as seen by radar. J. Atmos Technic.1987:Vol14,422-434
    [5] Michael Dixon and Gerry wiener. TITAN: Thunder storm identification, tracking, analysis and nowcasting A radar base methodology, J.Atmos Oceanic Technic,1993:Vol10,785-797
    [6] Rinehent.R.E. and E.T.Garvery. Three-dimensional storm motion detection by conventional weather radar. Nature,1987:287-297
    [7] J.T.Johnson, Pamela L.Mackeen,etc. The Storm Cell Identification and Tracking Algorithm: An Enhanced WSR-88D Algorithm. Weather and Forecasting. 1998: Vol13,263-276
    [8]刘黎平,徐宝祥等.利用矩心跟踪法跟踪、警戒强对流天气方法初探,高原气象. 1991:10(3),317-324.
    [9]李力,汤达章一种新的跟踪雷达回波特征量——矩不变量.南京气象学院学报. 1989:Vol12,No3:sep.
    [10] Yuan Zaohong etc. A new technique for radar echo tracking,26th International conference on radar meteorology. 1993:226-227.
    [11]杨引明.风暴的多普勒雷达自动识别、跟踪、预报及冰雹探测.南京气象学院硕士学位论文. 1998.5.
    [12] Lemon L R. New severe t hunderstorm radar identification techniques and warning criteria : A preliminary report [ R ] .NOAA Tech. Memo. NWS - NSSFC 1 , 60. [NTIS No. PB -273049 ] , 1977
    [13] Fujita T T. Mesoanalysis of t he Illinois tornadoes of 9 April 1953[J ] . J Meteor , 1958 15 : 288 - 296
    [14] Brooks E M. The tornado cyclone[J ] . Weat herwise , 1949 , 2 : 32 - 33
    [15]俞小鼎,熊廷南,姚秀萍等.新一代天气雷达原理与应用讲义[Z] .中国气象局培训中心印制. 2001
    [16] Weisman M L , J B Klemp. The st ructure and classification of numerical simulated convective storms in directionally varying wind shears[J ] . Mon Wea Rev , 1984 , 112 : 2479 - 2498
    [17]廖玉芳,俞小鼎,郭庆.一次强对流系列风暴个例的多普勒天气雷达资料分析[J] .应用气象学报, 2003 , 14 (6) : 656 - 662
    [18]郑媛媛,俞小鼎,方翀等.一次典型超级单体风暴的多普勒天气雷达观测分析,气象学报, 2004 , 62 (3) : 317 - 328
    [19]郑媛媛,俞小鼎,方翀等. 2003年7月8日安徽系列龙卷的多普勒天气雷达识别[J] .气象, 2004 , 30 : 38 - 42
    [20]胡玲.超级单体雹暴的多普勒雷达特征分析[ C] .中美强对流天气临近预报技术国际研讨会文集.北京:气象出版社,2004. 173 - 176
    [21]王彦,吴彬贵.多普勒雷达产品在强对流天气中的分析应用[ C] .中美强对流天气临近预报技术国际研讨会文集.北京:气象出版社, 2004. 202 - 207
    [22] Fujita T T. Proposed mechanism of tornado formation f rom rotating t hunderstorms [ C] . Preprint s ,Eight h Conf . on Severe Local Storms , Denver , CO , Amer Meteor Soc , 1973. 191 - 196
    [23] Markowski P M , J M St raka , E N Rasmussen et al . Direct surface t hermodynamic observations wit hin t he rear flank downdraft s of nontornadic and tornadic supercells [ J ] . Mon Wea Rev , 2002 , 130 : 1692 - 1721
    [24] Mead C M. The discrimination between t he tornadic and nontornadic supercell environment s : A forecasting challenge in the southern united states[J ] . Wea Forecasting , 1997 , 12 : 379 -387
    [25] Wilson J W. Tornadogenesis by nonprecipitation induced wind shear lines[J ] . Mon Wea Rev , 1986 , 114 : 270 - 284
    [26] Fujita T T. Manual of downburst identification for Project NIMROD[ C] . SMRP Research Paper 156 , University of Chicago , 104. [NTIS PB - 286048 ] , 1978
    [27] Robert s R D , J W Wilson. A proposed microburst nowcasting procedure using single - Doppler radar [ J ] . J Appl Meteor , 1989 , 28 : 285 - 303
    [28] Eilt s M D , GJ Stumpf , A Witt et al . Severe weat her warning decision support system[ C] . Preprint s , 18th Conf . on Severe Local Storms , San Francisco , CA , Amer Meteor Soc , 1996. 536 - 540
    [29] Brandes E A , G F Zhang , J Vivekanandan. Experiment s in rainfall estimation wit h a Polarimet ric radar in a subt ropical environment [J ] . J Appl Meteor , 2002 , 41 : 674 - 685
    [30] Zrnic D S , A V Ryzhkov. Polarimet ry for weat her surveillance radars[J ] . Bull Amer Meteor Soc , 1999 , 80 : 389 - 405
    [31] Vivekanandan J , E A Brandes , G F Zhang. Cloud microphysics ret rieval using s2band dual2polarization radar measurement s[J ] . Bull Amer Meteor Soc , 1999 , 80 : 381 - 388
    [32]徐家骝.冰雹微物理与成雹机制.北京:农业出版社, 1979. 179~207
    [33] List R , Charlton R B , Buttuls P I. A numerical experiment on t he growt h and feedback mechanisms of hailstones in a one dimensional steady state model cloud. J . A tmos. Sci. ,1968 , 25 : 1061~1074
    [34] Srivastava R C. A study of t he effect of precipitation on cumulus dynamics. J . A tmos. Sci. , 1967 , 24 : 36~45
    [35] Wisner C , Orville H D , Myers C. A numerical model of a hail2bearing cloud. J . A tmos. Sci. , 1972 , 29 : 1160~1181
    [36] Danielsen E F , Bleck R , Morris D A. Hail growt h by stochastic collection in a cumulus model . J . A tmos. Sci. , 1972 ,29 : 135~155
    [37] Browning K A , Ludlam F H , Macklin W C. The density and st ructure of hailstone. Quart. J . Roy. Meteor. S oc. , 1963 , 89 : 75~84
    [38] Takahashi T. Hail in an axisymmetric cloud model . J . Atmos. Sci. , 1976 , 33 : 1579~1601
    [39] Orville H D , Kopp F J . Numerical simulation of t he life history of a hailstorm. J . A tmos. Sci. , 1977 , 34 : 1596~1618
    [40] Farley R D , Orville H D. Numerical modeling of hailstorms and hailstone growth. Part I : Preliminary model verification and sensitivity test s. J . Climate A p pl . Meteor. , 1986 , 25 :2014~2035
    [41] Xu Jia Liu. Hail growth in a t here dimensional cloud model .J . A tmos. Sci. , 1983 , 40 : 185~203
    [42]许焕斌,段英.强对流(冰雹)云中水凝物的积累和云水的消耗.气象学报, 2002 , 60 (5) : 575~584 (5) : 575~584
    [43]孔凡铀.冰雹云三维数值模拟研究.中国科学院大气物理研究所博士学位论文, 1991
    [44] Sulakvelidze G K,Bibilashvili N Sh,Lapcheva V F. Formation of Precipitation and Modification of Hail Processes. Translated from Russian by Israel Program for Scientific Translations, Jerusalem,1967.208pp
    [45]寿绍文等.中尺度气象学.气象出版社,2003.316-366
    [46]许焕斌,段英.强对流(冰雹)云中水凝物的积累和云水的消耗.气象学报,2002,60 (5):575~584
    [49]康凤琴等青藏高原东北边缘冰雹形成机理高原气象Vol. 23 No. 6 2004.12 749-757
    [50] Chrles A,Knight,Patrick Squires. Hailstorms of Central High Plains,I: The national hail research experiment . Colorado Associated University Press,1982.1-282
    [51] ANGUS P J . Shortter prediction of thunderstorm probality and intensity by screening observational derived predictors[M] :23th radar meteor conf ,1988 :368- 371.
    [52]张鸿发等平凉冰雹云回波特征分析气象学报vol.60,no.1 ,2,2002
    [53]李金辉,樊鹏.冰雹云提前识别及预警的研究[J ].南京气象学院学报,2007 ,30(1) :114 - 119.
    [54]冯建民,徐阳春,李凤霞,等.宁夏地区强对流天气雷达判别及预报指标检验[J ].高原气象,2001 ,20(4) :447 - 452.
    [55]刘子英,陆海席,赵秀英,等.逐步消空法在雹云识别中的应用[J ].气象,2000 ,26(10) :41 - 44.
    [56]戴铁丕,张秀华.综合概率法判别冰雹云及效果检验[J ].气象,1989 ,15(7) :45 - 48.
    [57]李祚泳,刘少侬,邓新民,等.基于主分量的雷达回波资料的冰雹云识别及其效果检验[J ].高原气象,1993 ,12(1) :84 - 89.
    [58]李祚泳.基于神经网络B2P算法的雹云识别模型及其效果检验[J ].高原气象,1994 ,13(1) :51- 57.
    [59] Witt A , M D Elit s , GJ Stumpf et al . An enhanced hail detection algorit hm for t he WSR - 88D [ J ] . Wea Forecasting ,1998 , 13 : 286 - 303
    [60] Amburn S A , P L Wolf . VIL Density as a Hail Indicator [J ] .Wea Forecasting , 1997 , 12 : 473 - 478
    [61] Witt A , S Nelson. The relationship between upper2level divergent outflow magnitude as measured by Doppler radar and hailstorm intensity [ C ] . Preprint s , 22nd Radar Meteorology Conf . , AMS , Boston , 1984. 108– 111
    [62]郑媛媛,俞小鼎,方翀等.一次典型超级单体风暴的多普勒天气雷达观测分析,气象学报, 2004 , 62 (3) : 317 - 328
    [63] Zrnic D S. Three2body scattering produces precipitation signature of special diagnostic value[J ] . Radio Sci , 1987 , 22 : 76 -86
    [64] Wilson J W , D Reum. The flare echo : Reflectivity and velocity signature[J ] . J Atmos Oceanic Technol , 1988 , 5 : 197 - 205
    [65]廖玉芳,俞小鼎,郭庆.一次强对流系列风暴个例的多普勒天气雷达资料分析[J ] .应用气象学报, 2003 , 14 (6) : 656 - 662
    [66] Lemon L R. The radar t hree2body scatter spike : An operational large2hail SiGnature [ J ] . Wea Forecasting , 1998 , 13 :327 - 340
    [67] Muller A R , C A DoswellⅢ, M P Foster et al . The operational recognition of supercell thunderstorm environments and storm structures[J ] . Wea Forecasting , 1994 , 9 : 327 - 347
    [68] Atlas.D.,Radar in Meteorology,Amer.Meteor.Soc,Boston,1990,153~191
    [69] Bringi,V.N.,T.A.Seliga and S.M.Cherry, Statistical properties of the dual polarization differential reflectivity(ZDR) hail signal, IEEE Trans Geosci. Remote Sens.,1983,21,215~220
    [70] Aydin K.,T.A.seliga and V. Balaji, Remote sensing on hail with a dual linear polarization radar, J.Climate Appl.Meteor.,1986,25,1475~1484
    [71] Illingworth.A.J.,W.F.Goddard and S.M.Cherry,Polarization radar studies of precipitation development in convective storms.Quart.J.Roy.Meteor.Soc.,1987,113,469-489
    [72] Bringi V.N.,J.Vivekanandan and J.D.Tuttle,Multiparameter radar measurement in Colorado convective storms.Part 2:Hail detection studies.J.Atmos.Sci.,1986,43,2364-2577.
    [73] Balakrishnan N. and D.S.Zrinc,Estimation of rain and hail rates in mixed-phase precipitation,J.Atmos.Sci.,1990,47,565-585.
    [74]蔡启铭等,降雨强度、雨区衰减与双线偏振雷达观测量关系的研究,高原气象,1990 ,9(4) ,347-355
    [75]刘黎平等,不同相态的模式雹块对雷达波散射及衰减特性的研究,高原气象,1991 ,10(1),26-33
    [76]刘黎平等,用波段双线偏振雷达研究冰雹云,大气科学,1992 ,16(3),54(5),370-376
    [77]钱永甫等,用双线偏振雷达研究云内粒子相态及尺度的空间分布,气象学报,1996 ,545) ,590-598
    [78] Petrocchi, P. J., 1982: Automatic detection of hail by radar. AFGLTR-82-0277. Environmental Research Paper 796, Air Force Geophysics Laboratory, Hanscom AFB, MA, 33 pp.
    [79] Witt, A., Eilts, M. D., Stumpf, G. J., Johnson, J. T.,Mitchell, E. D., and Thomas, K. W., 1998: An Enhanced Hail Detection Algorithm for the WSR-88D, Wea. Forecasting,13, 286-303.
    [80] Krishnamurti T.N.,Ingles K.,Cocke S.,Pasch R.,Kitade T.,Details of low latitude medium range weather prediction using a global spectral model. Part 2:Effect of orography and physical initialization. J.Meteor.Soc.Japan,1984,62:613-649
    [81]崔春光,强降水过程模式中中尺度水汽初值的敏感性试验。气象,2000,26(11):3-6
    [82] Raymond W.H.,Olson W.S.,Callan G.,Diabatic forcing and initialization with assimilation of cloud water and rainwater in a forecast model,Mon. Wea. Rev.,1995,123:365-382
    [83] Lin Y.P.,etc,Initialization of a modeled convective storm using Doppler radar derived fields.,Mon .Wea.Rev,1993,121:2757-2775
    [84] Hane C.E. and Ray P.S.,Ressure and buyoncy fields derived from Doppler radar data in a tornadic thunderstorm ,J Atmos.Sci.,1985,42:18-35
    [85] Haase G.,etc,Physical initialization of the Lokalmodel(LM) using radar data,Third international SRNWP Workshop on non-hydrostatic Modelling,Offenbach,Germany,1999
    [86] Xue M.,Brewster K.,etc, The 1996 CAPS spring operational forecasting period Realtime storm-scale NWP Part 2:Operational summary and examples.Preprint,11th Conf. on Num.Wea.Pred.,Amer.Meteor.Soc.,Norfolk, VA,1996,297-300
    [87] Bielli S. and Roux F.,Initallization of a Cloud-Resolving Model with AirBorne Doppler Radar Observations of an Oceanic Tropical Convective System ,Mon Wea Rev,1999,127:38-1055
    [88] Ducrocq V.,Lafore J.P., Mesoscale Initialzation for explicit prediction of convective systems . 8th AMS Conference on Mesoscale processes, Boulder,1999:316-319
    [89] Ducrocq V., Lafore J.P.,Initialisation of a fine scale model for convective system prediction: A case study, O.J.Roy.Meteor.Soc.m in press,2000
    [90] Albers S.C.,McGinley J.A.,Birkenheuer D.A. and Smart J.R.,The Local analysis and prediction system(LAPS):Analysis of clouds, precipitation and temperature. Wea Forecasting, 1996,11 :273-287
    [91] Xue M,Droegemeier K.K.,etc. ARPS Version4.0 User’s Guide,1995
    [92] Xue M,Droegemeier K.K.,etc. The Advanced Regional Prediction System(ARPS)- a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I:Model dynamics and verification. Meteor Atmos Phys.,2001,75:161-193
    [93] Brewster K., Implementation of a Bratseth analysis scheme including Doppler radar. Preprints 15th Conf. On Weather Analysis and Forecasting,AMS,Boston,1996:92-95.
    [94] Zhang J,Carr F.H. and Brewster K. ADAS Cloud Analysis. 12th Conf. on Num. Wea. Prediction, Phoenix,AZ, Amer. Meteor.Soc.,1998:185-188
    [95] Zhang J. Mosture and diabatic initialization based on radar and satellite observations Ph.D.,Oklahoma,1999
    [96] Janiskova M.Preparatory studies for the use of observations from the Earth radiation Mission inNWP.2001,esa contract report No.13151
    [97] Sun J.,Crook N.A. , Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint.Part I: Model development and simulated data experiments. J Atmos Sci,1997,54:1642-1661
    [98] Sun J.,Crook N.A. ,Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint.Part 2:Retrieval experiments of an observed Florida convective storm . J Atmos Sci,1998,55:835-852
    [99] Zou X.,Navon I.M. and Sela J.G., Variational data assimilation with moist threshold processes using the NMC spectral model.Tellus,1993,45A:370-387
    [100] Ming Hu et al. 3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact[J]. Weather and Forecasting, 2006,134: 675-697.
    [101] Wu B.etc., Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J Atmos Sci,2000,57:262-283.
    [102] Courtier P.,Freydier C.etc., The Arpege project at Meteo-France Proc. ECMWF Workshop on numerical methods in atmospheric model, Reading,9-13 Sep,1991:193-231
    [103] Powers J.G. and Gao K., Assimilation of DMSP and TOVS satellite soundings in a mesoscale model.. J Appl Meteor,2000,39:1727-1741
    [104] Zapotocnt T.H.,Nieman S.J.,Menzel W.P.,etc, Study of the sensitivity of the data assimilation system. Wea Forecasting,2000,15:603-621
    [105]郭霞等,1999:雷达资料在江淮流域暴雨数值模拟中的应用。热带气象学报,15:356-362。
    [106] Xu Xiaoyong, LIU Liping, Zheng Guoguang. Dynamical and Microphysical Retrieval from Simulated Doppler Radar Observations Using the 4DVAR Assimilation Technique[J]. Acta Meteor. Sinica, 2006,19(2):160-173
    [107]顾建峰.多普勒雷达资料三维变分直接同化方法研究, 2006年博士论文
    [108]李永平等.应用雷达回波强度资料反演大气云微物理量[J].气象学报, 2004, 62(6): 814-820
    [109] Dixon M and Wiener G. TITAN: Thunderstorm Indetification, Tracking, Analysis,and Nowcasting-A Radar-Based Methodology, J. Atmos. Oceanic Technol. 1993:8,467-476
    [110] Johnson J,P.Mackeen A,Witt E M,et al.The storm cell identification and tracking algorithm:An enhanced WSR-88D algorithm.Weather and Forecasting, 1998,13:263-276.
    [111] Hilst, G R and Russo J A, An objective extrapolation technique for semi-conservative Fields with an Application to Radar Patterns,1960:Tech. Memo. No.3, Contract AF30-635-14459,The Travelers Weather Research Center, Inc.
    [112] Rinehart R,Garvey E. Three–dimensional storm motion detection by conventional weather radar. Nature, 1978,273: 287-289.
    [113] Li L, Schmid W, Joss J. Nowcasting of motion and growth of precipitation with radar over a complex orography. J Appl Meteor,1995,34:1286~1300.
    [114] Mueller C, Saxen T, Roberts R, et al. NCAR Auto-Nowcast System . Weather and Forecasting, 2003 18:545~561.
    [115] Li P W, Wong W K, Chan K Y, et al . SWIRLS——An Evolving Nowcasting System. Technical Note, No.100. Hong Kong Observatory,2000.
    [116]陆汉城等,中尺度天气原理和预报,气象出版社,2004
    [117]朱乾根等,天气学原理和方法(第四版),2007
    [118] Polston K.L.,1996:Synoptic patterns and environmental conditions associated with very large hail events. Preprints,18th Conf. on Severe Local Storms,349-356
    [119]彭治班等,国外强对流天气的应用研究,气象出版社,2001
    [120] Doswell C.A.,et al,1993:Tornado forecasting- A review.Proc., Tornado Symp. C. Church. Ed., Amer. Geophys. Union
    [121] Johns R.H.,and C.A. Doswell,1992:Severe Local storms forecasting,7,588-612
    [122] Wehry W.,L.Lesch and C. Gerecht,1998: Nowcasting of extreme weather events like large amount of convective rain or hail in Central Europe.Preprints,16th Conf. on WAF,AMS,323-325
    [123] Donner, L. J. An initialization for cumulus convection in numerical weather prediction models[J]. Mon. Wea. Rev., 1988 , 116: 377-385
    [124] Albers S. J. McGinley, D. Birkenheuer, and J. Smart. The Local Analysis and Prediction System (LAPS): Analyses of clouds,precipitation, and temperature[J]. Weather and Forecasting, 1996,11:273-287.
    [125] M. Xue, Donghai Wang, Jidong Gao, Keith Brewster. The Advanced Regional Prediction System(ARPS) Storm-scale numerical weather prediction[J]. Meteor. Atmos. Phys., 2002,82: 139–170.
    [126] Ming Hu et al. 3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part I: Cloud Analysis and Its Impact[J]. Weather and Forecasting, 2006,134: 675-697.
    [127]程麟生,冯伍虎.中纬度中尺度对流系统研究的若干进展[J ] .高原气象, 2002 , 21 (4) : 337 - 347
    [128]王劲松,李耀辉,康凤琴等.西北东部一次暴雨的数值模拟试验[J ] .高原气象, 2002 , 21(3): 258- 267
    [129]李晓霞,康凤琴,张铁军等.甘肃一次强对流天气的数值模拟和分析[J].高原气象, 2007 , 26 (5): 1077-1084
    [130] Xu Xiaoyong, LIU Liping, Zheng Guoguang. Dynamical and Microphysical Retrieval from Simulated Doppler Radar Observations Using the 4DVAR Assimilation Technique[J]. Acta Meteor. Sinica, 2006,19(2):160-173
    [131]顾建峰.多普勒雷达资料三维变分直接同化方法研究, 2006年博士论文
    [132]李永平等.应用雷达回波强度资料反演大气云微物理量[J].气象学报, 2004, 62(6): 814-820
    [133] Haines, P. A., J. K. Luers, C. A. Cerbus. The role of the Smith-Feddes model in improving the forecasting of aircraft icing[J]. 3rd Conf. on Aviation Weather System, Anaheim, Cal, 1989,Amer. Meteor. Soc.: 258-263.
    [134] Smith, P. L., Jr., C. G. Myers, H. D. Orville. Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation[J]. J. Appl. Meteor., 1975,14:1156-1165.
    [135] Tong, M., M. Xue. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments[J]. Mon. Wea. Rev., 2005,133: 1789–1807.
    [136] Kessler E. On the Distribution and Continuity of Water Substance in Atmospheric Circulations[J]. Meteor. Monogr., No.32, Amer. Meteor. Soc., 1969 :84 .
    [137] Rogers, R. R., M. K. Yau. A Short Course in Cloud Physics. 3d ed. Pergamon Press, 1989:293.
    [138]肖艳娇.新一代天气雷达三维组网技术及应用研究. 2007博士论文
    [139]洪延超等.冰雹云中微物理过程研究[J].大气科学, 2002, 26(3):421-432
    [140] Colle B.A.,Weatrick K.J. and Mass C.F., Evaluation of MM5 and Eta-10 precipitation forecast over the Pacific Northwest during the cool season. Wea Forecasting,1999,14:137-154
    [141] Mueller C, Saxen T, Roberts R, et al. NCAR Auto-Nowcast System.Weather and Forecasting. 2003, 18:545~561.
    [142]杨引明,刘晓波. WSR-88D多普勒雷达产品在数值模式中的初步应用.中美强对流天气临近预报技术国际研讨会文集, 2003,北京.
    [143]渠永兴,张强,康凤琴.甘肃永登对流云的雷达气候学特征分析.高原气象,2004,23(6):775.
    [144]楼小凤,胡志晋,王广河.对流云降水过程中地形作用的数值模拟.应用气象学报,2001, 12(增刊):113-121
    [145]徐国钧,余隽勇,谢光荣.复杂地形影响冰雹云发展的数值模拟实验.云南大学学报(自然科学版),2000 ,22 ( 4) :274-279
    [146]许焕斌,王思微.二维冰雹云数值模式.气象学报,1988,46(2):227-235
    [147]康凤琴,张强,马胜萍.青藏高原东北边缘冰雹形成机理.高原气象,23(6):751-757
    [148]施望芝,金琪,郭施.湖北一次冰雹天气过程的落区诊断分析和预报.热带气象学报,2004,20(2):212-217
    [149]傅抱璞.地形和海拔高度对降水的影响.地理学报,1992 ,7:303~314
    [150]罗培. GIS支持下的气象灾害风险评估模型.自然灾害学报,2007,16(1):37-44
    [151]张鸿发,邓科,王有才.断层与冰雹灾害的相关分析.高原气象, 1995,14(2 ):157-164
    [152]谢静芳,王晓明.吉林省对流性天气的分布特征及地形影响机制.气象,1994,20(8): 43-47
    [153]刘引鸽.下垫面对冰雹的影响机理.宝鸡文理学院学报,2000,20(4):295-297
    [154]周启鸣,刘学军.数字地形分析.北京:科学出版社,2006.
    [155]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程.北京:科学出版社,2006.
    [156] Dai F C , Lee C F. A spatiotemporal probabilistic modeling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes and Landforms,2003,28:527-545.
    [157] Ohlmacher G C , Davis J C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas. Engineering Geology,2003,69:331-343.
    [158] Chung C F, Fabbri A G. Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing,1999, 65(12):1389-1399.
    [159] Jahn, D., D. Weber, E. Kemp, and H. Neeman, 2000: Evidence of convective-induced turbulence outside the immediate storm region: Part III. CAPS report submitted to AlliedSignal/Honeywell, 37pp.
    [160] Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. J. Atmos. Sci., 45, 3846-3879.
    [161] McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991:Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. J. Appl. Meteor., 30, 985-1004.
    [162] Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particle. J. Climate Appl. Meteor., 23, 1258-1260.
    [163] Smith, P. L., Jr., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14, 1156-1165.
    [164] Amburn, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473–478.
    [165] Hales, J. E., Jr., and D. L. Kelly, 1985: The relationship between the collection of severe thunderstorm reports and warning verification. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 13–16.
    [166] Witt, A., 1990: A hail core aloft detection algorithm. Preprints, 16th Conf. on Severe Local Storms,Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 232–235.
    [167] M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 513–518.
    [168] Wyatt, A., and A. Witt, 1997: The effect of population density on ground–truth verification of reports used to score a hail detection algorithm. Preprints, 28th Conf. on Radar Meteorology, Austin,TX, Amer. Meteor. Soc., 368–369.
    [169] Witt, A., 1993: Comparison of the performance of two hail detection algorithms using WSR-88D data. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 154–156.
    [170] Witt, A., and J. T. Johnson, 1993: An enhanced storm cell identification and tracking algorithm. Preprints, 26th Int. Conf. on Radar Meteorology,Norman, OK, Amer. Meteor. Soc., 141–143.
    [171] Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286–303.
    [172] Witt, A. , E. D. Mitchell, J. T. Johnson, and K. W. Thomas, 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513–518.
    [173] Eric L. and Henry E. F.:An Evaluation of WSR-88D Severe Hail Algorithms along the Northeastern Gulf Coast. Wea. Forecasting, 13,1029-1044
    [174] Winston, H. A., and L. J. Ruthi, 1986: Evaluation of RADAP II severe storm detection algorithms. Bull. Amer. Meteor. Soc., 67, 145–150.
    [175] Mather, G. K., D. Treddenick, and R. Parsons, 1976: An observed relationship between the height of the 45-dBZ contours in storm profiles and surface hail reports. J. Appl. Meteor., 15, 1336–1340.
    [176] Waldvogel, A., W. Schmid, and B. Federer, 1978a: The kinetic energy of hailfalls. Part I: Hailstone spectra. J. Appl. Meteor., 17, 515–520.
    [177] Waldvogel, A, B. Federer, W. Schmid, and J. F. Mezeix, 1978b: The kinetic energy of hailfalls. Part II: Radar and hailpads. J. Appl. Meteor.,17, 1680–1693.
    [178] Waldvogel, A and P. Grimm, 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18, 1521–1525.
    [179] Foster, D. S., and F. C. Bates, 1956: A hail size forecasting technique.Bull. Amer. Meteor. Soc., 37, 135–141.
    [180] Miller, R. C, 1972: Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Central. Tech. Rep.200 (Rev.), Air Weather Service (MAC), U.S. Air Force, 190pp.
    [181] Browning, K. A., and G. B. Foote, 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499–534.
    [182] Moore, J. T., and J. P. Pino, 1990: An interactive method for estimating maximum hailstone size from forecast soundings. Wea. Forecasting, 5, 508–525.
    [183] Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.
    [184] Changnon, S. A., 1970: Hailstreaks. J. Atmos. Sci., 27, 109–125.
    [185] Kessinger, C. J., and E. A. Brandes,and J. W. Smith, 1995: A comparison of the NEXRAD and NSSL hail detection algorithms. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 603–605.
    [186] Eugenia Kalnay,2005:大气模式、资料同化和可预报性,气象出版社。
    [187]计忠平等,2006:基于局部多项式拟合的网格简化算法,浙江大学学报,40(12),1084-2087
    [188] Niles Ritter:GeoTIFF format specification GeoTIFF revision 1.0, http: //www.remotesensing.org/ geotiff/ geotiff.html
    [189]刘修国等,GeoTIFF中的GeoTag域解析,地球科学-中国地质大学学报,27(03),246-249
    [190] Paxton, C. H., and J. M. Shepherd, 1993: Radar diagnostic parameters as indicators of severe weather in central Florida. NOAA Tech.Memo. NWS-SR 149, 12 pp. [Available from NTIS, U.S. Departmentof Commerce, 5285 Port Royal Road, Springfield, VA22161.]
    [191] Ambum, S. A., and P. L. Wolf, 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 73-478.
    [192] Roger Edwards and Richard L. Thompson, 1998:Nationwide Comparisons of Hail Size with WSR-88D Vertically Integrated Liquid Water and Derived Thermodynamic Sounding Data. Wea. Forecasting, 13, 277–285
    [193] Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Physics,75, 161-193.
    [194] Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. eber, Y.Liu, and D. Wang, 2001b: The Advanced Regional Prediction System (ARPS)– A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II:Model physics and applications. Meteor. Atmos. Phys., 76, 143-166.
    [195] Klemp, JB, and RB Wilhelmson: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci.,1978, 35, 1070-1096.
    [196] Soong, S.T. and Y. Ogura: A comparison between axisymmetric and slab-symmetric cumulus cloud models, J.Atmos. Sci., 1973, 39, 879-893.
    [197] Tao, W.-K., Simpson, J.: The Goddard cumulus ensemble model: Part I. Model description. Terr. Atmos. Ocean Sci. 1993, 4, 35–72.
    [198] Lin, Y.L., Farley, R.D. and Orville, H.D.: Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol., 1983, 22, 1065-1092.
    [199] Kain, J. S., and J. M. Fritsch: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., Amer. Meteor. Soc.,1993, 165-170.
    [200] Kuo, HL: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 1965, 22, 40-63
    [201] Kuo, HL: Further studies of the parameterization of the influence of cumulus convection on large scale flow. J. Atmos. Sci., 1974, 31, 1232-1240
    [202] Sun, J. and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.
    [203] Sun, J. and N. A. Crook, 1998: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part II: Retrieval Experiments of an Observed Florida Convective Storm. J. Atmos. Sci., 55, 835-852.
    [204] Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three-dimensional wind and temperature fields from simulated single-Doppler radar data. J. Atmos. Sci., 48,876-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700