登陆台风短时暴雨中的中β尺度辐合线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个多台风的国家,而浙江省又是我国每年遭受台风灾害最严重的沿海省份之一。为了能深入了解严重影响浙江地区的强台风短时暴雨天气的发生发展机制以及在发生演变过程中的影响因子,揭示暴雨的地面启动机制,并为精细化预报提供科学依据,本文利用中尺度数值模式WRF(Weather Rearch Forecast)对近年来严重影响浙江省的强台风短时暴雨个例进行模拟,结合WRF-Var三维变分系统每6小时一次将常规观测资料、雷达反射率和径向速度资料同化到模式中,用以改进模拟结果。对比多种方案的模拟结果和实况验证表明,WRF能够较好地模拟出台风中尺度短时暴雨过程,对台风路径、台风强度变化和降水的模拟基本符合实况,能够反映台风实际的演变过程;同化实况资料能在一定程度上明显改进模拟效果,是提高模拟精度的一种有效途径。
     利用模式输出的高时空分辨率结果进行诊断分析发现,暴雨发生前低层有气流的汇合,高层有气流的辐散,有利于上升运动的维持和加强,为暴雨的发生提供了有利的环境条件;暴雨区的水汽来源为台风东北象限的低空东南风急流,当急流靠近暴雨区时,能直接将水汽源源不断地输送而来,但当急流距离较远时,水汽会经由其他气流输送到暴雨区。在暴雨发生期间近地面边界层中会出现中-β尺度强辐合带,同时在实况雷达回波上显示为强回波带,沿着辐合带在下一小时会出现强降水,雨带的分布、移动和发展随辐合带变化而出现相应变化。不同台风中的中尺度强辐合带的发展高度各不相同,但辐合带上的强辐合中心区域都分布在近地面和边界层顶之间,辐合在垂直方向上有时会随高度向台风外围方向倾斜。强辐合中心顶部有低空急流,辐合区内有气流汇合上升。研究还发现,辐合在垂直方向上的发展和分布是由辐合在垂直方向上的轴线决定的,辐合带在垂直方向上沿着这条轴线分布,辐合带的发展高度受垂直轴线高度的影响和制约。辐合的垂直轴线出现在水平风梯度小于-1.2×10~(-4)s~(-1)的区域内。辐合垂直轴线一般在近地面开始出现,随后便向上发展。在向上发展的过程中,可能会出现向台风环流外围方向倾斜或水平转向的特点,有时则会基本保持直立状态;有时辐合垂直轴线到达边界层顶高度后,便会停止发展,而有时则会继续向上发展到对流层中低层。产生辐合垂直轴线的原因主要有两种:一种是由不同方向气流分量之间直接相向汇合形成的,另一种是由于同方向气流的风速递减导致空气质点堆积,由此产生辐合。汇合气流基本都来自台风环流中的低空东南风急流。
     研究结果还显示,台风短时暴雨的触发机制主要三种情况:一种是“高能舌”型。这种类型的热力能量场由于有弱湿冷空气的侵入,会在暴雨区边界层内出现向上凸起的相当位温高值区,暖湿空气在辐合的作用下产生上升运动,快速释放出水汽和能量,触发对流的发生;同时冷空气与下层暖湿空气在边界层内形成“上冷下暖”的不稳定层结,辐合的形成能触层结中不稳定能量的释放,进一步促进对流天气的发展。另一种是“能量锋”型。这是由于不同属性的较强的干冷和暖湿气流在暴雨区汇合,产生很高的相当位温梯度,从而在暴雨区出现能量锋区。在能量锋区的驱动作用下,暖湿空气沿着锋面爬升并释放能量和水汽,触发对流的发生。产生降水后气流冷却下沉达到近地面,一方面加强了地面冷空气,使能量锋区得到维持;另一方面气流下层后流回到上升区,与上升的暖湿气流构成中尺度垂直环流圈,并在边界层内形成强辐合,进一步促进气流的上升运动,对对流运动起到正反馈作用。第三种类型是“强迫抬升”型。在这种情况下,边界层内都是具有高相当位温的暖湿气流,属性单一,层结稳定,虽然蕴含有丰富的水汽和能量,但是没有外力的作用下,不容易触发对流天气。因此,只有当暴雨区内出现较强的辐合时,才能提供一个强冲击力,使暖湿气流被迫抬升,触发对流的发生,开始产生降水。当气流上升到边界层以上时,由于产生降水释放出凝结潜热使该高度上的空气加热,进一步促进了上升运动的发展,同时还与对流层中层冷空气构成不稳定层结,对对流起到了一个正反馈作用,使降水出现增幅。除此之外,暴雨区强辐合带上还都对应有强的正相对涡度区,涡度正中心总是分布在近地面强辐合中心顶部,涡度正值区域的范围不仅覆盖了近地面的辐合区,还一直向上延伸到了辐散中心所在的高度,为暴雨的持续提供了有利的动力条件。
     最后,本文总结了台风短时暴雨天气过程的气流结构模型,提取了若干个预报信息因子,建立了台风短时暴雨预报的初步模型,为这类天气的预报提供了一些科学的参考依据。
Zhejiang province is one of the most-hit areas by typhoon in China every year. In order to further understand the origin and development of the short-time rainstorm process caused by landfalling typhoon impacting Zhejiang province seriously, discover the ground trigger mechanism of the rainstorm and provide some scientific references for the refined short-range forecast, the advanced research WRF modeling system is used to simulate this kind of rainstorm processes in recent years. With the WRF-Var 3-D assimilation system, conventional surface, upper air data and radar reflectivity as well as radial wind are assimilated into WRF every 6 hours. Results show that the typhoon track and intensity development and precipitation are well simulated by WRF, and the assimilation of observed data into model can to some extent improve the simulated results.
     Results reveals that there's confluent stream in the low level and effluent stream in the upper level before the rainstorm happens, which provides favorable environment for the rainstorm. The water vapor comes from the low-level southeast jet stream to the northeast of typhoon center. When the jet stream is close to the rainstorm zone, the water vapor will be transferred there directly by the jet stream, while the jet stream is far away from the rainstorm zone, the water vapor will be transferred by other streams. During the rainstorm process, there's a meso-β-scale convergence belt appearing within the planetary boundary layer which can be observed by radar. There will be strong precipitation occurring along the convergence belt in the next hour. The distribution of precipitation is similar to the convergence belt, traveling and developing with the convergence belt. The convergence belt develops upward and inclines to the outside of typhoon, but the height is not fixed. However, the strongest convergence center always locates within the planetary boundary layer. On the top of the convergence center, there's a low-level jet stream. Below the jet stream, there's stream conflux and ascent in the convergence zone. The vertical distribution and development of convergence belt is up to the vertical convergence line, which appears in the area with horizontal wind gradient less than -1.2×10~(-4) s~(-1). The vertical convergence line first appears on the surface and then develops upward, either remaining upright or inclining to the outside of typhoon. Sometimes the vertical convergence line stops developing when it reaches the top of boundary layer, sometimes it keeps developing upward to the middle level of troposphere. The vertical convergence line is mainly caused by the direct confluent of streams from different directions and the velocity degression in the same stream. The streams come mainly from the low-level southeast jet stream to the northeast of typhoon center.
     The analysis also indicates that there're generally three types of trigger mechanisms of the rainstorm. In the first type, there's weak cold wet air intruding into the warm wet air zone and causing convergence, which forces the warm wet air to ascend and release vapor and energy rapidly, and finally trigger convection. Besides, the cold wet air and the warm wet air below make the air unstable in the zone. Once the convergence formed, it will also lead unstable energy to release and intestify the rainstorm. In the second type, there's a strong cold dry stream butting up against the warm wet stream in the rainstorm zone which causes an energy front. When the convergence forms. The warm wet air will ascend along the front and release vapor and energy quickly, which can bring about convection. After the precipitation produced, the air cools down and descends to the surface, which strengthens the strong cold stream and maintains the energy front. Then desending air flows back to the ascending area and makes confluent with the warm wet air, causing convergence and vertical circulation, which could intestify the ascending air and strengthen convection. In the third type, the structure in the rainstorm zone is stable and all the air in the planetary boundary layer are warm and wet. When convergence forms, it forces the warm wet air to ascend, which starts the convection and precipitation. After the air ascends beyond the planetary boundary layer, the latent heat released by solidification warms the air, which intestifies the ascending movement and forms unstable structure, then makes the precipitation stronger. Besides, there's strong positive relative vorticity appearing in the rainstorm zone, which will make the precipitation persistent and developing.
     Finally, the structure of short-time rainstorm process caused by landfalling typhoon is summarized, and some forecast factors are extracted to build a forecast model for this kind of rainstorm and provide some scientific references for future forecast.
引文
陈德辉,薛纪善.2004.数值天气预报业务模式现状与展望[J].气象学报,62(5):623-633.
    陈东升,沈桐立,马格兰,等.2004.气象资料同化的研究进展[J].南京气象学院学报,27(4):550-564.
    陈联寿,丁一汇.1979.西太平洋台风概论[M].北京:科学出版社.
    程麟生.1999.中尺度大气数值模式发展现状和应用前景[J].高原气象,18(3):350-360.
    陈渭民.2003.卫星气象学[M].北京:气象出版社.
    程正泉,陈联寿,徐祥德,等.2005.近10年中国台风暴雨研究进展[J].气象,31(12):3-9.
    丁一汇,蔡则怡,李吉顺.1978.1975年8月上甸河南特大暴雨的研究[J].大气科学,2(4):276-289.
    丁治英,陈久康.1995.台风暴雨与环境水汽场的数值试验[J].南京气象学院学报,18(1):33-38.
    董佩明,薛纪善,黄兵,等.2008.数值天气预报中卫星资料同化应用现状和发展[J].气象科技,36(1):1-7.
    范永祥.1996.台风现场科学业务试验综述[M]//台风科学业务试验和天气动力学理论研究(一).北京:气象出版社,1-4.
    葛晶晶,钟玮,杜楠,等.2008.地形影响下四川暴雨的数值模拟分析[J].气象科学,28(2):176-183.
    何光碧,陈静,李川,等.2005.低涡与急流对“04.9”川东暴雨影响的分析与数值模拟[J].高原气象,24(6):1012-1023.
    黄嘉宏,李江南,魏晓琳,等.2006.同化QuikSCAT资料对台风Vongfong(2002)数值模拟的影响[J].中山大学学报:自然科学版,45(4):116-120.
    黄克慧.2006.台风云娜后部强降水分析[J].气象,32(2):99-103.
    黄士松.1986.华南前汛期暴雨[M].广州:广东科技出版社.
    黄勇,张晓芳,陆汉城.2006.平均螺旋度在强降水过程中的诊断分析[J].气象科 学,26(2):171-176.
    冀春晓,薛根元,赵放,等.2007a.台风Rananim登陆期间地形对其降水和结构影响的数值模拟研究[J].大气科学,31(2):233-244.
    冀春晓,陈联寿,赵放.2007b.登陆台风Matsa维持机理的数值研究[J].气象学报,65(6):888-895.
    江敦春,党人庆,陈联寿.1994.卫星资料在台风暴雨数值模拟中的应用[J].热带气象学报,10(4):318-324.
    江敦春,党人庆,朱志宏.1997.台风暴雨中尺度系统与结构的数值研究[J].热带气象学报,13(2):168-172.
    科技部台风项目办公室.2002.我国登陆台风灾害的监测及预报技术研究-项目的意义和进展[J],中国气象科学研究院年报,1:24-26.
    李华宏,薛纪善,王曼,等.2007.多普勒雷达风廓线的反演及变分同化试验[J].应用气象学报,18(1):50-57.
    李江南,王安宇,杨兆礼,等.2003.台风暴雨的研究进展[J].热带气象学报,19(增刊):152-159.
    李江南,蒙伟光,闫敬华,等.2005.热带风暴Fitow(0114)暴雨的中尺度特征及成因分析[J].热带气象学报,21(1):24-32.
    李生艳,丁治英,周能.2007.0307号台风“伊布都”影响广西南部暴雨的数值模拟及诊断分析[J].台湾海峡,26(2):204-212.
    李志楠,郑新江,赵亚民,等.2000.9608号台风低压外围暴雨中尺度云团的发生发展[J].热带气象学报,16(4):316-326.
    梁必骐,梁经萍,温之平.1995.中国台风灾害及其影响的研究[J].自然灾害学报,4(1):84-91.
    梁军,陈联寿,张胜军.2008.冷空气影响辽东半岛热带气旋降水的数值试验[J].大气科学,32(5):1107-1118.
    廖移山,李俊,闵爱荣,等.2008.一次暴雨过程的数值模拟分析[J].高原气象,27(3):558-566.
    林爱兰,丁伟钰,万齐林,等.2004.登陆广东热带气旋中尺度降水分布变化特征[J].气象,30(10):33-37.
    刘爱鸣,刘铭,林毅.2004.低空急流对0212号台风“北冕”后部暴雨影响的分析和数值试验[J].台湾海峡,23(1):1-7.
    刘健文,郭虎,李耀东,等.2005.天气分析预报物理量计算基础[M].北京:气象出版社.
    刘伟,张庆红.2004.登陆台风中的中尺度对流系统的数值研究[J].北京大学学报:自然科学版,40(1):73-79.
    陆汉城,康建伟,寇正,等.2004.台风内中尺度混合波的动力学特征[J].自然科学进展,14(5):541-546.
    罗保华,温仁枚.2005.台风螺旋雨带相对静止与大暴雨关系初探[J].广西气象,26(增刊):6-9.
    骆荣宗.1997.9012号台风中尺度螺旋雨带与暴雨的观测分析[J].热带气象学报,13(2):173-179.
    吕振平,姚月尾.2006.浙江省台风灾害及应急机制建设[J].灾害学,21(3):69-71.
    毛冬艳,乔林,陈涛,等.2008.2004年7月10日北京局地暴雨数值模拟分析[J].气象,34(2):25-32.
    闵锦忠,彭霞云,赖安伟,等.2007.反演同化和直接同化多普勒雷达径向风的对比试验[J].南京气象学院学报,30(6):745-754.
    邱崇践,余金香,Xu Qin,等.2000.多普勒雷达资料对中尺度系统短期预报的改进[J],气象学报,58(2):244-249.
    盛春岩,浦一芬,高守亭.2006.多普勒天气雷达资料对中尺度模式短时预报的影响[J].大气科学,30(1):93-107.
    施素芬,赵利刚.2006.强台风“云娜”灾害特征及其评估[J].气象科技,34(3):315-318.
    孙建华,齐琳琳,赵思雄.2006.“9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究[J].气象学报,64(1):58-71.
    孙莹,王艳兰,李向红.2004.CINRAD SA/SB雷达基数据初步应用[J].广西气象,27(增刊Ⅰ):21-22.
    陶诗言.1980.中国之暴雨[M].北京:科学出版社.
    万齐林,薛纪善,庄世宇,等.2005.多普勒雷达风场信息变分同化的试验研究[J],气象学报,63(2):129-145.
    王欢,倪允琪.2006.2003年淮河汛期一次中尺度强暴雨过程的诊断分析和数值模拟研究[J].气象学报,64(6):734-742.
    王鹏云.1998.台湾岛地形对台风暴雨影响的数值研究[J].气候与环境研究,3(3):235-246.
    王舒畅,黄思训,李毅.2007.2003年江淮连续梅雨暴雨过程的中尺度数值试验[J].解放军理工大学学报:自然科学版,8(2):190-197.
    王亦平,陆维松,潘益农,等.2008.淮河流域东北部一次异常特大暴雨的数值模拟研究Ⅱ:不稳定条件及其增强和维持机制分析[J].气象学报,66(2):177-189.
    王勇,丁治英.2008.台风“海棠”的螺旋雨带结构及特征[J].南京气象学院学报,31(3):352-362.
    吴启树,沈桐立,李双锦.2005.影响福建沿海的0010号“碧利斯”台风暴雨的地形敏感性试验[J].台湾海峡,24(2):236-242.
    吴启树,沈桐立,苏银兰,等.2006.2000年第10号台风的水汽分析与试验[J].气象科学,26(4):384-391.
    徐国强,张迎新.2005.“96.8”暴雨的水汽来源及对水汽敏感性的模拟分析[J].气象,25(7):12-16.
    许映龙,高拴柱,刘震坤.2005.台风云娜陆上维持原因浅析[J].气象,31(5):32-36.
    徐远波,尹恒,赵世黎,等.2008.湖北十堰“05.8”台风倒槽特大暴雨的多尺度分析[J],暴雨灾害,27(1):49-72.
    徐枝芳,徐玉貌,葛文忠.2002.雷达和卫星资料在中尺度模式中的初步应用[J].气象科学,22(2):167-173.
    薛根元,诸晓明,朱健.2005.0505号台风“海棠”灾害的初步诊断研究[J].科技导报,23(10):30-35.
    薛纪善.1999.1994年华南夏季特大暴雨研究[M].北京:气象出版社.
    薛纪善.2006.新世纪初我国数值天气预报的科技创新研究[J].应用气象学报,17 (5):602-610.
    杨慧娟,李宁,雷飏.2007.我国沿海地区近54a台风灾害风险特征分析[J].气象科学,27(4):413-418.
    杨毅.2007.Doppler雷达资料同化技术研究[D].兰州:兰州大学大气科学学院.
    杨毅,邱崇践,龚建东,等.2007.同化多普勒雷达风资料的两种方法比较[J].高原气象,26(3):547-555.
    姚才,贺海宴,黄明策.2005.华南西部登陆台风的大尺度条件对比分析[J].中山大学学报:自然科学版,44(6):110-122.
    游景炎,胡欣,杜青文.1998.9608台风低压外围暴雨中尺度分析[J].气象,24(10):14-19.
    余贞寿,廖胜石.2005.0414号台风“云娜”的数值模拟[J].气象学报,63(6):903-913.
    余志豪.2002.台风螺旋雨带-涡旋Rossy波[J].气象学报,60(4):502-507.
    翟国庆,高坤,俞樟孝,等.1995.暴雨过程中中尺度地形作用的数值试验[J].大气科学19(4):475-480.
    张爱忠,齐琳琳,纪飞,等.2005.资料同化方法研究进展[J].气象科技,33(5):385-393.
    张福青,蒋全荣,党人庆.1996.8805号登陆台风特大暴雨的数值模拟[J].热带气象学报,12(3):257-264.
    章国材.2004.美国WRF模式的进展和应用前景[J].气象,30(12):27-31.
    张华,丑纪范,邱崇践,等.2004.西北太平洋威马逊台风结构的卫星观测同化分析[J].科学通报,49(5):493-498.
    张林,倪允琪.2006.雷达径向风资料的四维变分同化试验[J].大气科学,30(3):433-440.
    张玉玲,吴辉碇,王晓林.1986.数值天气预报[M].北京:科学出版社.
    赵宇,吴增茂.2004.9711号北上台风演变及暴雨过程的位涡诊断分析[J].中国海洋大学学报,34(1):13-21.
    郑庆林,吴军,蒋平.1996.我国东南海岸线分布对9216号台风暴雨增幅影响的数值研究[J].热带气象学报,12(4):304-313.
    周海光.2008.强热带风暴碧利斯(0604)引发的特大暴雨中尺度结构多普勒雷达资料分析[J].大气科学,32(6):1276-1288.
    周毅,刘宇迪,桂祁军,等.2002.现代数值天气预报[M].北京:气象出版社.朱抱真.1986.数值天气预报概论[M].北京:气象出版社.
    朱佩君,郑永光,王洪庆,等.2005.台风螺旋雨带的数值模拟研究[J].科学通报,50(5):486-494.
    朱乾根,林锦瑞,寿绍文,等.2000.天气学原理和方法[M].3版.北京:气象出版社.
    Anthes RA.1982.热带气旋的发展、结构和影响[M].李毓芳,译.北京:气象出版社.
    Anthes R A,Kuo Y R,Benjamin S G,et al.1982.The evolution of the mesoscale environment of severe local storms:Preliminary modeling results[J].Monthly Weather Review,110(9):1187-1213.
    Barker D,Huang W,Guo Y R,et al.2001.A three-dimensional variational(3DVAR)data assimilation system for use with MM5[M/OL].Colorado:NCAR,MMM Division.[2009-04-30].http://www.mmm.ucar.edu/mm53dvar/docs/3DVARTech Doc.pdf.
    Barker D.2007.WRF Variational Data Assimilation system(WRF-Var)overview[R/OL].Colorado:NCAR,MMM Division.[2009-04-30].http://www.cosmic.ucar.edu/summercamp_2005/presentations/Barker_Dale_20050502.pdf.
    Barnes G M,Zipser E J,Jorgensen D,et al.1983.Mesoscale and convective structure of a hurricane rainband[J].Journal of the Atmospheric Sciences,40(9):2125-2137.
    Barnes G M,Stossmeister G J.1986.The structure and decay of a rainband in hurricane Irene(1981)[J].Monthly Weather Review,114:2590-2601.
    Barnes G M,Gamache J F,Lemone M A,et al.1991.A convective cell in hurricane rainband[J].Monthly Weather Review,119:776-794.
    Barnes G M,Powell M D.1995.Evolution of the inflow boundary layer of hurricane Gilbert(1998)[J].Monthly Weather Review,114:2348-2368.
    Betts A K.1986.A new convective adjustment scheme.Part Ⅰ:Observational and theoretical basis[J].Quarterly Journal of the Royal Meteorological Society,112:677-691.
    Betts A K,Miller M J.1986.A new convective adjustment scheme.Part Ⅱ:Single column tests using GATE wave,BOMEX,and arctic air-mass data Sets[J].Quarterly Journal of the Royal Meteorological Society,112:693-709.
    Chen Lianshou.1992.An overview on tropical cyclone disasters preliminary study on SPECTRUM-90,tropical cyclone disasters,Proceeding of ICSU/WMO International Symposium,Peking University[C].Beijing:Peking University Press,1993.
    Chen Lianshou.1995.An overview on tropical cyclones structure and structure change,Proceeding of the Second WMO International Workshop WMO/TD[C].No.361,52-62.
    Chen Lianshou,Luo Zhexian.1995.Effect of the interaction of different-scale vortices on the structure and motion of typhoons[J].Advances in Atmospheric Sciences,12(2):207-214.
    Chen Lianshou,Luo Huibang,Duan Yihong,et al.2004a.An overview of tropical cyclone and tropical meteorology research progress[J].Advances in Atmospheric Sciences,21(3):505-514.
    Chen Lianshou,Luo Zhexian.2004b.Interaction of Typho hand Mesoscale Vortex[J].Advances in Atmospheric Sciences,21(4):515-528.
    Crook N A,Sun J.2002.Assimilating radar,surface and profiler data for the Sydney 2000 Forecast Demonst ration Project[J].Journal of Atmospheric and Oceanic Technology,19:888-898.
    Dodge P,Spratt S M,Mwrks F D,et al.2000.Dual-doppler analyses of mesovortices in a hurricane rainband[C]//American Meteorology Society.24th Conference on Hurricanes and Tropical Meteorology,May 29-June 6,2000,Ft.Lauderdale,Florida.[S.1.]:[s.n.],302-303.
    Elsberry.1994.热带气旋全球观[M].北京:气象出版社.
    Gao Jidong,Xue Ming,Shapiro A,et al.2001.Three-dimensional simple adjoint velocity retrievals from single-doppler radar[J].American Meteorological Society,18:26-38.
    Haltiner G J.1975.数值天气预报[M].北京大学地球物理系气象专业,译.北京:科学出版社.
     Hong S Y,Dudhia J.2003.Testing of a new non-local boundary layer vertical diffusion scheme in numerical weather prediction applications:16th conference on numerical weather prediction,Seattle,WA,January 10- 15,2004[C].[S.1.]:[s.n.]
    Ide K,Courtier P,Ghil M,et al.1997.Unified notation of data assimilation:Operational,sequential and variational[J].Journal of the Meteorological Society of Japan,75(1B):181-189
    Janjic Z I.1994.The step-mountain eta coordinate model:Further developments of the convection,viscous sublayer,and turbulenece closure schemes[J].Monthly Weather Review,121:927-945.
    Lin Y L,Farley R D,Orville H D.1983.Bulk parameterization of the snow field in a could model[J].Journal of Applied Meteorology,22(6):1065-1092.
    Liu Shun,Qiu Chongjian,Xu Qin,et al.2005.An improved method for doppler wind and thermodynamic retrievals[J].Advances in atmospheric sciences,22(1):90-102.
    Lorenc,A C.1986.Analysis methods for numerical weather prediction[J].Quarterly Journal of the Royal Meteorological Society,112:1177-1194.
    MacDanald N J.1968.The evidence for the existence of Rossby - like waves in the hurricane vortex[J].Tellus,20:138-150.
    Mark F D,Houze R A.1984.Airborne Doppler radar observations in hurricane Debby[J].Bulletin of the American Meteorological Society,65:569-582.
    Maynard R H.1945.Radar and weather[J].Journal of the Atmospheric Sciences,2(4):214-226.
    Meng Zhiyong,Nagata Masashi,Chen Lianshou.1996.A numerical study on the formation and development of island-induced cyclone and its impact on typhoon structure change and motion[J].Acta Meteoroiogica Sinica,10(4):430-443.
    Montgomery M T. 1997. A theory for vortex Rossby - wave and it application to spirial bands and intensity changes in hurricanes[J]. Quarterly Journal of the Royal Meteorological Society, 123:453-436.
    Montgomery M T, Enagonio J. 1998. Tropical cyclogenesis via convectively forced Vortex Rossby waves in a three-dimensional qusigeostropic model[J]. Journal of the Atmospheric Sciences, 55: 3176-3207.
    Parrish D F, Derber J C. 1992. The national meteorology center's spectral statistical interpolation analysis system[J]. Monthly Weather Review, 120: 1747-1763.
    Parrish D F, Purser J. 1998. Anisotropic covariances in 3D-Var: Application to hurricane Doppler radar observations: HIRLAM4 workshop on Variational analysis in limited area models , Meteo-France , Toulouse, February 23-25, 1998[C]. [S. 1.]:[s.n.]
    Parrish J R, Burpee R W, Marks J F D, et al. 1982. Rainfall patterns observed by digitized radar during landfall of Hurricane Frederic (1979)[J]. Monthly Weather Review, 110(12): 1933-1944.
    Powell M D. 1990a. Boundary layer structure and dynamics in outer hurricane rainbands, Part I: Mesoscale rainfall and kinematic structure[J]. Monthly Weather Review, 118: 891-917.
    Powell M D. 1990b. Boundary layer structure and dynamics in outer hurricane rainbands, Part II: Downdraft modification and mixed layer recovery[J]. Monthly Weather Review, 118: 918-938.
    Rutledge S A, Hobbs P V. 1984. The mesoscale and microscale structure and organization of coulds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow could-frontal rainbands[J]. Journal of the Atmospheric Sciences, 20: 2949-2972.
    Ryan B E, Barnes G M, Zipser E J. 1992. A wide rainband in a developing tropical cyclone[J]. Monthly Weather Review, 120: 431-437.
    Shapiro A, Robinson P, Wurman J, et al. 2003. Single-doppler velocity retrieval with rapid-scan radar data[J]. American Meteorological Society, 20: 1758-1775.
    Snyder C, Zhang Fuqing. 2003. Assimilation of simulated Doppler radar observations with an Ensemble Kalman Filter[J].Monthly Weather Review,131(8):1663-1667.
    Southern R L.1979.The global socio-economic impact of tropical cyclones[J].Australian Meteorological Magazine.27:175-195.
    Sun J,Crook N A.1997.Dynamical and microphysical retrieval from Doppler radar observation using a cloud model and its ajoint.Part Ⅰ:Model development and simulated data experiments[J].Journal of the Atmospheric Sciences,54:1642-1661.
    Sun J,Crook N A.1998.Dynamical and microphysical retrieval from Doppler radar observation using a cloud model and its ajoint.Part Ⅱ:Retrieval experiments of an observed Florida convective storm[J].Journal of the Atmospheric Sciences,55:835-852.
    Tao W K.1989.An ice-water saturation adjustment[J].Monthly Weather Review,117:231-235.
    Wang W,Barker D,Bruy e re C,et al.2008.WRF Use's Guide[M/OL],Colorado:Mesoscale & Microscale Meteorology Division,National Center for Atmospheric Research.[2009-04-30].http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3.1/ARWUsersGuideV3.pdf
    Zhai Guoqing,Zhou Lingli,Wang Zhi,et al.2007.Analysis of a group of weak small-scale vortexes in the planetary boundary layer in the Mei-yu front[J].Advances in Atmospheric Sciences,24(3):399-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700