先天性颅颈交界区畸形的三维可视化解剖形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究先天性颅颈交界区畸形的解剖与形态学变化,了解不同个体骨性畸形的特征、寰枕融合时椎动脉的走行变化、寰枕融合时侧块关节的形态生物力学变化,以及颈椎2-3融合时螺钉内固定的适用性。
     方法:41例先天性颅颈交界区畸形患者,经螺旋CT扫描后,图像序列导入Amira影像工作站,构建枕骨-寰椎-枢椎的三维模型,通过对三维模型选择性显示、切割以及多角度旋转观察局部的解剖与形态特征,并完成相关解剖学测量。
     结果:先天性颅颈交界区畸形包含了复杂的枕骨、寰椎和枢椎的畸形。本组病例中以扁平颅底、颅底陷入、寰枕融合和颈椎2-3融合最为常见,部分病例也合并了一些特殊的畸形如单侧寰椎侧块过度肥大、枢椎椎板裂、枕骨髁旁突等。对骨性畸形的解剖观察显示,斜坡、枕骨髁、寰椎侧块、寰椎后弓的畸形伴有不同程度的发育不全,部分病例寰枕融合表现为明显的旋转性错位融合。三维可视化同步对比观察23例寰枕融合的局部骨性畸形与椎动脉的走行,提示寰椎和枕骨大孔周边结构不同程度的融合和发育不全,造成了椎动脉在该区域的走行发生多种变异。对35例寰枕融合畸形的寰椎下关节面的三维形态学观察显示,寰椎下关节面的前倾角和外倾角具有广泛的个体间差异,不同程度对称或不对称的下关节面前倾与不同形式的寰枢椎脱位具有一定相关性。对17例颈2-3融合畸形的枢椎关节间部和颈3椎弓根进行的局部解剖学测量显示,因关节间部和颈3椎弓根双侧狭窄而不适于3.5mm螺钉置入者分别见于1例和3例,因单侧狭窄不适于螺钉置入者分别见于4例和7例。
     结论:1.先天性颅颈交界区畸形的基本特征是枕骨、寰椎、枢椎在不同程度的发育不全基础上发生了不同程度和方式的畸形融合,因而不同个体存在各自的形态差异。寰枕融合时,椎动脉入颅方式存在多种变异,这些变异与骨性畸形有一定关系。外科医生需要对骨性畸形以及椎动脉的走行变异有
    足够的认识,以免手术中出现意外损伤。2.寰枕融合时寰枢椎之间承重关节常呈现不同程度的前倾和不对称,这种几何形态变化所导致的关节生物力学变化可能是寰枢椎脱位的重要原因。3.尽管先天性颈2-3融合解剖形态与正常颈2-3结构相异甚大,多数病例应用螺钉内固定技术仍然可行。
Objective: To describe the anatomical and morphologic characteristics of the congenital craniovertebral junction (CVJ) malformation, including assessment of the discrepancies of bony anomalies, variations of the route of vertebral artery (VA) in the subgroup with occipitalization of the atlas, biomechanical diversities of atlantoaxial facet joints morphology of occipitalization of the atlas, and anatomical suitability of screw fixation for the subgroup with C2-3 fusion.
    Methods: 41 patients with congenital CVJ malformation were analyzed. After spiral CT scan, the image files in D1C0M format were transferred to the three-dimensional visualization workstation based on a set of Amira software. Three dimensional (3D) models of occipito-atlanto-axial complex were constructed. Anatomical and morphological evaluations were examined by selective display and cutting, arbitrary rotation of the 3D models in the virtual environment. Also the related measurements were made with respect to the selected landmarks.
    Results: The congenital CVJ malformation compromises anomalies form occiput, atlas and axis. In this series, often the malformed osseous architectures were different combinations of platybasia, basilar invagination, occipitalization of atlas, and C2-3 fusion. Several uncommon anomalies were also found in association, such as unilateral atlantal lateral mass hypertrophy, spina bifida of axis, and occipital paracondylar process. Detailed analysis of the bony anomalies suggested the concomitant dysplasia was common in anomalies of clivus, occipital condylar, atlantal lateral mass, and atlantal posterior arch. Occipitalization of atlas in some cases manifested rotated fusion, representing the rotated misalignment of atlas to occiput. Comparative observations of bony
    anomalies and variations of the route of VA in 23 cases of occipitalization of atlas revealed that the VAs may take several discrete routes to enter the crania in respect of the varied extent of fusion and dysplasia between atlas and foramen magnum. In 35 cases of occipitalization of atlas, three dimensional morphometrics of atlantal inferior facet were carried out, showing a great scope of variation of facet angles both on the sagittal and coronal planes. Excessive anterior tilting and/or asymmetry of atlantal inferior facet may be in relation to the various types of atlantoaxial dislocation. Anatomical measurement of C2-3 fusion for evaluation of screw placement, which were performed in 17 cases of C2-3 fusion, demonstrated that narrowing of C2 pars interaticularis or C3 pedicle, which caused unsuitability for a 3.5mm screw placement, on both side was seen in one or 3 cases, on single side was seen in 4 or 7 cases, respectively.
    Conclusion: 1. The essential configuration of congenital CVJ malformation is the diversiform segmentation failure on the basis of the dysplasia to various extents in occiput, atlas and axis; hence the prevalence of individual discrepancy regarding the detail anatomy. In those patients where existed the occipitalization of atlas, several regular patterns of intracranial route of VA were found, which may or may not resemble the normal anatomy. These patterns were accompanied by some detailed variation of the bony malformation, and also further suggested some embryologic discrepancy in the formation process of the unsegmented occipito-axial structure. The surgeons should familiar to the bony and vascular variations in order to avoid the unexpected injuries such as the compromise of VA during a surgery. 2. Prevalence of anterior tilting and asymmetric articulations can be seen in the load-bearing joints of atlantoaxial complex in patients with occipitalization of atlas. The resulting biomechanical changes may be a more proximate cause for atlantoaxial dislocation in these patients. 3. Although quite a few morphological variations was seen in congenital C2-3 fusion, application of screw fixation techniques in this structure was still feasible in majority of the patients.
引文
[1] Tubbs RS, Salter EG, Oakes WJ. Klippel-Feil anomaly with associated rudimentary cervical ribs in a human skeleton: case report and review of the literature. Folia Morphol (Warsz). 2006,65(1):92-94.
    
    [2] Mahirogullari M, Ozkan H, Yildirim N, et al. [Klippel-Feil syndrome and associated congenital abnormalities: evaluation of 23 cases]. Acta Orthop Traumatol Turc. 2006,40(3):234-239.
    
    [3] Clarke RA, Catalan G, Diwan AD, et al. Heterogeneity in Klippel-Feil syndrome: a new classification. Pediatr Radiol. 1998,28(12):967-974.
    
    [4] Guille JT, Sherk HH. Congenital osseous anomalies of the upper and lower cervical spine in children. J Bone Joint Surg Am. 2002,84-A(2):277-288.
    
    [5] Menezes AH. Embryology, development, and classification of disorders of the craniovertebral junction. In: Dickman CA, Spetzler RF, Sonntag VKH, eds. Surgery of the Craniovertebral Junction. Thieme. 1998:pp3-10.
    
    [6] Hayes M, Parker G, Ell J, et al. Basilar impression complicating osteogenesis imperfecta type IV: the clinical and neuroradiological findings in four cases. J Neurol Neurosurg Psychiatry. 1999,66(3):357-364.
    
    [7] Koenigsberg RA, Vakil N, Hong TA, et al. Evaluation of platybasia with MR imaging. AJNR Am J Neuroradiol. 2005,26(1 ):89-92.
    
    [8] Tassanawipas A, Mokkhavesa S, Chatchavong S, et al. Magnetic resonance imaging study of the craniocervical junction. J Orthop Surg (Hong Kong).2005,13(3):228-231.
    
    [9] Mandel IM, Kambach BJ, Petersilge CA, et al. Morphologic considerations of C2 isthmus dimensions for the placement of transarticular screws. Spine. 2000,25(12): 1542-1547.
    
    [10] Naderi S, Arman C, Guvencer M, et al. An anatomical study of the C-2 pedicle. J Neurosurg Spine. 2004,1(3):306-310.
    [11] Adam AM. Skull radiograph measurements of normals and patients with basilar impression; use of Landzert's angle. Surg Radiol Anat. 1987,9(3):225-229.
    
    [12] 周定标,张远征,余新光,等.自发性寰枢椎脱位(附155例报告).中华神经外科杂志.2000,16(5):270—273.
    
    [13] Wang C, Yan M, Zhou HT, et al. Open reduction of irreducible atlantoaxial dislocation by transoral anterior atlantoaxial release and posterior internal fixation. Spine. 2006,31(1 l):E306-313.
    
    [14] Goel A, Kulkarni AG, Sharma P. Reduction of fixed atlantoaxial dislocation in 24 cases: technical note. J Neurosurg Spine. 2005,2(4):505-509.
    
    [15] Goel A, Sharma P. Craniovertebral junction realignment for the treatment of basilar invagination with syringomyelia: preliminary report of 12 cases. Neurol Med Chir (Tokyo). 2005,45(10):512-517.
    
    [16] Toussaint P, Desenclos C, Peltier J, et al. [Transarticular atlanto-axial screw fixation for treatment of C1-C2 instability]. Neurochirurgie. 2003,49(5):519-526.
    
    [17] Gluf WM, Schmidt MH, Apfelbaum RI. Atlantoaxial transarticular screw fixation: a review of surgical indications, fusion rate, complications, and lessons learned in 191 adult patients. J Neurosurg Spine. 2005,2(2): 155-163.
    
    [18] Shen FH, Samartzis D, Herman J, et al. Radiographic assessment of segmental motion at the atlantoaxial junction in the Klippel-Feil patient. Spine. 2006,31(2): 171-177.
    
    [19] Goel A, Bonde V, Menon R. Unilateral atlantal lateral mass hypertrophy. Report of four cases. J Neurosurg Spine. 2006,4(4):334-337.
    
    [20] Koyama T, Tanaka K, Handa J. A rare anomaly of the axis: report of a case with shaded three-dimensional computed tomographic display. Surg Neurol. 1986,25(5):491-494.
    
    [21] Asakawa H, Yanaka K, Narushima K, et al. Anomaly of the axis causing cervical myelopathy. Case report. J Neurosurg. 1999,91(1 Suppl): 121-123.
    [22] Pizzutillo PDMD, Woods MMD, Nicholson LMSMC, et al. Risk Factors in Klippel-Feil Syndrome. Spine. 1994, 19(18): 2110-2116.
    [23] Winter RB, Moe JH, Lonstein JE. The incidence of Klippel-Feil syndrome in patients with congenital scoliosis and kyphosis. Spine. 1984, 9(4): 363-366.
    [24] Jain VK, Behari S. Management of congenital atlanto-axial dislocation: some lessons learnt. Neurol India. 2002, 50(4): 386-397.
    [25] 周海涛,党耕町,王超.寰枢椎脱位与不稳定388例住院病例分析.中华骨科杂志.2001,21(4):218-221.
    [26] Mac Millan M, Stauffer ES. Traumatic instability in the previously fused cervical spine. J Spinal Disord. 1991, 4(4): 449-454.
    [27] Tokuda K, Miyasaka K, Abe H, et al. Anomalous atlantoaxial portions of vertebral and posterior inferior cerebellar arteries. Neuroradiology. 1985, 27(5): 410-413.
    [28] Tubbs RS, Salter EG, Oakes WJ. The intracranial entrance of the atlantal segment of the vertebral artery in crania with occipitalization of the atlas. J Neurosurg Spine. 2006, 4(4): 319-322.
    [29] Muller F, O'Rahilly R. Segmentation in staged human embryos: the occipitocervical region revisited. J Anat 2003, 203(3): 297-315.
    [30] Al-Mefty O, Borba LA, Aoki N, et al. The transcondylar approach to extradural nonneoplastic lesions of the craniovertebral junction. J Neurosurg. 1996, 84(1): 1-6.
    [31] 宋跃明,黄思庆,龚全,et al.经枕颈后外侧入路行畸形齿突切除术.中华骨科杂志.1999,19(10):581-584.
    [32] Ture U, Pamir MN. Extreme lateral-transatlas approach for resection of the dens of the axis. J Neurosurg Spine. 2002, 96(1): 73-82.
    [33] Oya S, Tsutsumi K, Shigeno T, et al. Posterolateral odontoidectomy for irreducible atlantoaxial dislocation: a technical case report. Spine J. 2004, 4(5): 591-594.
    [34] Kawashima M, Tanriover N, Rhoton AL, Jr., et al. Comparison of the far lateral and extreme lateral variants of the atlanto-occipital transarticular approach to anterior extradural lesions of the craniovertebrai junction. Neurosurgery. 2003, 53(3): 662-674.
    [35] Kandziora F, Pflugmacher R, Ludwig K, et al. Biomechanical comparison of four anterior atlantoaxial plate systems. J Neurosurg Spine. 2002, 96(3): 313-320.
    [36] Stulik J, Vyskocil T, Sebesta P, et al. [Harms technique of C1-C2 fixation with polyaxial screws and rods]. Acta Chir Orthop Traumatol Cech. 2005, 72(1): 22-27.
    [37] Bassi P, Corona C, Contri P, et al. Congenital basilar impression: correlated neurological syndromes. Eur Neurol. 1992, 32(4): 238-243.
    [38] 李青,贾连顺,陈雄生,等.寰椎枕骨化对枕颈部生物力学影响的实验研究.中国临床解剖学杂志.2002,20(6):469-472.
    [39] Naderi S, Pamir MN. Further cranial settling of the upper cervical spine following odontoidectomy. Report of two cases. J Neurosurg Spine. 2001, 95(2): 246-249.
    [40] Goel A. Progressive basilar invagination after transoral odontoidectomy: treatment by atlantoaxial facet distraction and craniovertebral realignment. Spine. 2005, 30(18): E551-555.
    [41] Shea KG, Ford T, Bloebaum RD, et al. A comparison of the microarchitectural bone adaptations of the concave and convex thoracic spinal facets in idiopathic scoliosis. J Bone Joint Surg Am. 2004, 86-A(5): 1000-1006.
    [42] Henriques T, Cunningham BW, Olerud C, et al. Biomechanical comparison of five different atlantoaxial posterior fixation techniques. Spine. 2000, 25(22): 2877-2883.
    [43] Paramore CG, Dickman CA, Sonntag VK. The anatomical suitability of the C1-2 complex for transarticular screw fixation. J Neurosurg 1996,85(2):221-224.
    
    [44] Abou Madawi A, Solanki G, Casey AT, et al. Variation of the groove in the axis vertebra for the vertebral artery. Implications for instrumentation. J Bone Joint Surg Br. 1997,79(5):820-823.
    
    [45] Nogueira-Barbosa MH, Defino HL. Multiplanar reconstructions of helical computed tomography in planning of atlanto-axial transarticular fixation. Eur Spine J. 2005,14(5):493-500.
    
    [46] Madawi AA, Casey AT, Solanki GA, et al. Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. J Neurosurg 1997,86(6):961-968.
    
    [47] Wang C, Yin SM, Yan M, et al. [Posterior occipitocervical fixation using C(2) pedicle screws and occipitocervical plate systems]. Zhonghua Wai Ke Za Zhi 2004,42(12):707-711.
    
    [48] Suchomel P, Stulik J, Kiezl Z, et al. [Transarticular fixation of C1-C2: a multicenter retrospective study]. Acta Chir Orthop Traumatol Cech 2004,71(1):6-12.
    
    [49] Neo M, Matsushita M, Yasuda T, et al. Use of an aiming device in posterior atlantoaxial transarticular screw fixation. Technical note. J Neurosurg Spine. 2002,97(l):123-127.
    
    [50] Bloch O, Holly LT, Park J, et al. Effect of frameless stereotaxy on the accuracy of C1-2 transarticular screw placement. J Neurosurg Spine. 2001,95(1):74-79.
    
    [51] Jones EL, Heller JG, Silcox DH, et al. Cervical pedicle screws versus lateral mass screws. Anatomic feasibility and biomechanical comparison. Spine. 1997,22(9):977-982.
    
    
    [52] Ludwig SC, Kowalski JM, Edwards CC, 2nd, et al. Cervical pedicle screws: comparative accuracy of two insertion techniques. Spine. 2000,25(20):2675-2681.
    
    [53] Kawaguchi Y, Ishihara H, Ohmori K, et al. Computer-assisted Magerl's transarticuiar screw fixation for atlantoaxial subluxation. J Orthop Sci 2002,7(1):131-136.
    
    [54] Laherty R, Kahler R, Walker D, et al. Stereotactic atlantoaxial transarticuiar screw fixation. J Clin Neurosci. 2005,12( 1 ):62-65.
    [1] Hott JS, Lynch JJ, Chamberlain RH, et al. Biomechanical comparison of C1-2 posterior fixation techniques. J Neurosurg Spine. 2005, 2(2): 175-181.
    [2] Nogueira-Barbosa MH, Defino HL. Multiplanar reconstructions of helical computed tomography in planning of atlanto-axial transarticular fixation. Eur Spine J. 2005, 14(5): 493-500.
    [3] Goel A, Desai KI, Muzumdar DP. Atlantoaxial fixation using plate and screw method: a report of 160 treated patients. Neurosurgery. 2002, 51(6): 1351-1356.
    [4] Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine. 2001, 26(22): 2467-2471.
    [5] Resnick DK, Benzel EC. C1-C2 pedicle screw fixation with rigid cantilever beam construct: case report and technical note. Neurosurgery. 2002, 50(2): 426-428.
    
    [6] Wright NM. Posterior C2 fixation using bilateral, crossing C2 laminar screws: case series and technical note. J Spinal Disord Tech. 2004, 17(2): 158-162.
    
    [7] Wright NM. Translaminar rigid screw fixation of the axis. Technical note. J Neurosurg Spine. 2005, 3(5): 409-414.
    
    [8] Lapsiwala SB, Anderson PA, Oza A, et al. Biomechanical comparison of four c1 to c2 rigid fixative techniques: anterior transarticular, posterior transarticular, c1 to c2 pedicle, and cl to c2 intralaminar screws. Neurosurgery. 2006, 58(3): 516-521.
    
    [9] Vender JR, Houle PJ, Harrison S, et al. Occipital-cervical fusion using the Locksley intersegmental tie bar technique: long-term experience with 19 patients. Spine J. 2002, 2(2): 134-141.
    
    [10] Gonzalez LF, Crawford NR, Chamberlain RH, et al. Craniovertebral junction fixation with transarticular screws: biomechanical analysis of a novel technique. J Neurosurg Spine. 2003, 98(2): 202-209.
    
    [11] Goel A, Kulkarni AG. Screw implantation in spinous process for occipitoaxial fixation. J Clin Neurosci. 2004, 11(7): 735-737.
    
    [12] Puttlitz CM, Melcher RP, Kleinstueck FS, et al. Stability analysis of craniovertebral junction fixation techniques. J Bone Joint Surg Am. 2004, 86-A(3): 561-568.
    
    [13] Naderi S, Usal C, Tural AN, et al. Morphologic and radiologic anatomy of the occipital bone. J Spinal Disord 2001. 14(6): 500-503.
    
    [14] Toussaint P, Desenclos C, Peltier J, et al. Transarticular atlanto-axial screw fixation for treatment of C1-C2 instability. Neurochirurgie. 2003, 49(5): 519-526.
    
    [15] Gluf WM, Schmidt MH, Apfelbaum RI. Atlantoaxial transarticular screw fixation: a review of surgical indications, fusion rate, complications, and lessons learned in 191 adult patients. J Neurosurg Spine. 2005, 2(2): 155-163.
    
    [16] Goel A, Kulkarni AG, Sharma P. Reduction of fixed atlantoaxial dislocation in 24 cases: technical note. J Neurosurg Spine. 2005, 2(4): 505-509.
    
    
    [17] Goel A, Sharma P. Craniovertebral junction realignment for the treatment of basilar invagination with syringomyelia: preliminary report of 12 cases. Neurol Med Chir (Tokyo). 2005, 45(10): 512-517.
    
    [18] Nguyen HV, Ludwig SC, Silber J, et al. Rheumatoid arthritis of the cervical spine. Spine J. 2004, 4(3): 329-334.
    
    [19] Kolen ER, Schmidt MH. Rheumatoid arthritis of the cervical spine. Semin Neurol. 2002, 22(2): 179-186.
    
    [20] Neo M, Matsushita M, Yasuda T, et al. Use of an aiming device in posterior atlantoaxial transarticular screw fixation. Technical note. J Neurosurg Spine. 2002,97(1): 123-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700