北方岩溶区建设项目地下水资源论证模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶水(Karst Water)又称喀斯特水,是贮存于可溶性岩石区(如石灰岩、白云岩、大理岩、石膏、岩盐等)的溶蚀裂隙和溶洞中的地下水,是岩溶区最常见的富水形式。
     岩溶水是我国北方岩溶区主要的地下水资源,也是岩溶区新建、改建、扩建工业及生活用水建设项目主要取用水源。近年来,为满足北方岩溶区经济社会的快速发展,岩溶水开采量逐渐增大,导致许多地区岩溶水系统采补失衡,地下水水位大幅度下降,漏斗面积逐年扩大,相继出现地面沉降、地面塌陷、水质污染等水文地质环境灾害。因此,对北方岩溶区建设项目取用岩溶水进行合理论证,成为学术界研究的热点课题。
     2003年3月,水利部、国家发改委颁布了《建设项目水资源论证管理办法》(中华人民共和国水利部和中华人民共和国国家发展计划委员会令(第15号)),水利部发布了《建设项目水资源论证导则(试行)》(SL/Z 322-2005),标志着我国水资源论证制度的建立。《办法》以水资源条件与经济社会建设布局相适应、实现水资源承载能力与经济社会建设规模相协调为基础,加强水资源管理,深化取水许可管理制度改革,对于促进水资源的优化配置和可持续利用,保障建设项目的合理用水要求,健全水资源开发、管理与保护有着重要意义。
     目前,对建设项目水资源论证管理的理论和实践总结还存在一些不足之处,尤其是在水文地质条件复杂的北方岩溶区进行建设项目地下水资源论证,在区域水资源状况及其开发利用范围、水源范围、取退水影响范围等方面,存在范围划定难;区域水文地质参数推求误差大,允许开采量评价结果的准确性不能保证;开采井位确定方法合理性差等问题。
     本文在研究《建设项目水资源论证管理办法》和《建设项目水资源论证导则》基础上,结合实际生产经验,针对北方岩溶区独特的水文地质条件,研究了该类型区建设项目地下水资源论证的特点,即与非岩溶水、南方岩溶区地下水资源论证的不同之处,并且重点研究了这些不同之处的分析计算和论证方法。
     该文的特色及创新之处在于(1)研究了北方岩溶区建设项目地下水资源论证之区域水资源状况及其开发利用分析范围、水源论证范围、取退水影响论证范围的确定方法,得出水源论证范围为区域范围,研究了井群概化改进法,建立了优选岩溶区抽水试验观测孔井位的多目标多层次系统模糊决策模型,并运用半对数拐点法求解整个水源论证范围的区域水文地质参数,进而形成了区域水文地质参数系统模糊层次决策模型法;(2)对水量均衡法加以改进,研究了水量均衡改进法、开采试验法及数值模拟法在岩溶水可开采量评价中的应用问题,并研究了不同评价方法所得结果的比选问题;(3)应用模糊综合评判理论和模糊聚类分析理论,分析岩溶水的属性、含水层间的水力联系以及岩溶水的补排关系,进而研究岩溶区不同水化学特征的影响因素及变化机理,从而研究出开采井位确定水质因素模糊综合分析法,以综合水量因素分析法,形成合理确定开采井位的关键技术。
Karst Water is groundwater which is stored in fissures and tunnel caves of solubility rocks and the most common water rich types of karst areas.
     Karst Water is the main ground water resources used by Construction Projects of industrial water and domestic water in the Karst Area in northern China. At present, in order to support the fast development of economic and society in the Karst Area in northern China, the exploitation yield of Karst Water is becoming larger and larger, which result in the more geological disasters, for example, the declined groundwater level, the expanding funnel area, land subsidence, ground collapses, water pollution and so on. So, the job of underground water resources demonstration of construction projects in the Karst Area in northern China has become more and more important and the key topic for study.
     In The management methods of construction projects water resource demonstration (ministry of water resources and the national development and reform commission document 15th) and the rules of construction projects water resource demonstration (SL/Z 322-2005) had been issued by the ministry of water resources and the national development and reform commission, which marks the development water resources assessment system. This method made basis for deepening the License System Of Water Diversion, strengthening water resource management, studying Water Right Theories and water market theories, making sure initial Water Right, which are significant for water resources allocation optimization and Sustainable utilization, guaranteeing water demand of construction project, and development, utilization and administration of water resources so on.
     At present, water resources demonstration for construction project has some drawbacks, especially in the aspects of underground water resources demonstration of construction projects in the Karst Area in northern China where conditions of hydrological geology are complicated. In these area, analysis areas of water resources situation, development and utilization, scope of water resources demonstration, and scope of infection argumentation are not made sure simply, and it is very difficult to determine the area hydrogeology parameters, which insult in the result of allowable withdrawal of groundwater argumentation and confirming methods of the pumping well place are not reasonable.
     On the basis of the management methods of construction projects water resource demonstration and the rules of construction projects water resource demonstration, combining the fact and the hydrogeological condition feature of Karst area in northern China, the text studied the feature of Underground Water Resources Demonstration of Construction Projects in the Karst Area in northern China, which includes the differences of other Underground Water Resources Demonstration and especially the methods of the differences.
     The feature and innovation of this article is like this (1)the deciding methods of analysis areas of water resources situation, development and utilization, scope of water resources demonstration, and scope of infection argumentation in the Karst Area in northern China were studied, multiple well generalized method were studied , a fuzzy decision pattern of multilayer and multi-objective system were set up, semi-logarithm method was used, and in the end the zone hydrogeological parameters system fuzzy layer decision model were formed; (2) the water volume equilibrium method was advanced, application of water volume equilibrium method, exploitation experiment method and numerical simulation method in the permissive karst water exploitation yield assessment were used, the combined method of evaluation of Karst water exploitable yield was formed, and the choosing of all results were studied; (3) the mathematical model of karst groundwater environment quality evaluation was established by the fuzzy comprehensive evaluation method and the assessment of karst groundwater environment quality of prepared pumping wells were made up, and the hydrochemical classification of all prepared pumping wells were made up by the fuzzy clustering analysis method, various properties of groundwater, hydraulic relationships among water source sites, and correlation of supplement and discharge were studied in terms of obtained results, in the end, considering the factor of water quantity, the key technology of confining the pumping well place was formed.
引文
[1]白利平,王金生. GMS在临汾盆地地下水数值模拟中的应用[J].山西建筑,2004,30(16):78-79(3):72-74
    [2]曹剑峰,冶雪艳,姜纪沂等.黄河下游悬河段断流对沿岸地下水的影响评价[J].资源科学,2005,27(5):77-93
    [3]常玉萍.大同市区供水水源区地下水动态分析.山西水利科技,2004
    [4]陈劲松,万力. MODFLOW中不同方程组求解方法差异分析[J].工程勘察,2002(3):25-32
    [5]陈喜,陈洵洪.含水层和上覆弱透水层水文地质参数的计算方法[J].工程勘察,2004(5):34-36
    [6]陈喜,陈洵洪.美国Sand Hills地区地下水数值模拟及水量平衡分析[J].水科学进展,2004,15(2):94-99
    [7]崔亚莉,邵景力,谢振华等.基于MODFLOW的地面沉降模型研究[J].工程勘察,2003(5):19-22
    [8]杜霞,彭文启.我国城市供水水源地水质状况分析及其保护对策[J].水利技术监督,2004(3):50-52
    [9]郭飞,朱学愚,刘建立等.山东淄博裂隙岩溶水中污染物运移的数值模拟及治污措施[J].水利学报,2004(7):57-63
    [10]郭孟卓,赵辉.世界地下水资源利用与管理现状[J]. China Water Resources, 2005(3):59-62
    [11]郭卫星,卢国平,朱学愚等.MODFLOW:块化三维有限差分地下水流动模型[M].南京:南京大学出版社,1999
    [12]韩魏,胡立堂,陈崇希等.疏勒河流域玉门-踏实盆地地下水流模拟设计中的几个问题探讨[J].勘探科学技术,2005(1):15-18
    [13]韩志勇,郑西来,林国庆.大沽河下游地区地下咸水恢复方案的数值分析[J].工程勘察,2004(6):25-28
    [14]贺国平,邵景力,崔亚莉等. FEFLOW在地下水流模拟方面的应用[J].成都理工大学学报(自然科学版),2003,30(4):356-360
    [15]贺国平,周东,杨忠山等.北京市平原区地下水资源开采现状及评价[J].水文地质工程地质,2005(2):45-48
    [16]侯燕军.临汾市土门水源地保护区划分的数值模拟方法研究[D].太原理工大学硕士学位论文.2006,5
    [17]胡立堂,陈崇希,钱云平.黑河中游盆地地下水流建模的若干问题[J].人民黄河,2005,27(5):11-13
    [18]华志均.渭北岩溶水污染现状与治理[J].陕西煤炭技术,1998年第4期:15-18
    [19]贾金生,田冰,刘昌明. Visual MODFLOW在地下水模拟中的应用——以河北省栾城县为例[J].河北农业大学学报,2003,26(2):71-78
    [20]金光炎.城市供水与地下水资源.地下水[J].1996,18(1):16-17
    [21]李宾.城市供水水源地地下水环境模拟与安全供水对策研究[D].山东农业大学硕士论文
    [22]李斌,王刚,王开章等. Aqua3D在傍河饮用水水源地地下水污染数值模拟中的应用[J].山东农业大学学报(自然科学版),2007,38(2):281-290
    [23]李宏卿,吴琼,李宏罡等. Visual Modflow在地下水资源评价中的应用[J].工程勘察,2005(3):27-28
    [24]李文跃,张博,洪梅等. Visual MODFLOW在大庆龙西地区地下水数值模拟中的应用[J].世界地质,2003,22(2):161-165
    [25]林洪孝等.优选抽水实验井位的多层次多目标系统模糊决策方法[J].系统工程理论与实践,1998年第9期:72-77
    [26]刘予伟,史春华,金栋梁.山丘区地下水资源评价方法综述[J].人民长江, vol.35 No.9 2004,9:33-36
    [27]刘志峰,郭晓波,林洪孝*等.西龙河峄山断层带水源地开采井位确定中水质因素分析[J].地球与环境,2007,35(2):171—175
    [28]刘志峰,李福军,王琳琳等.山东某断层带水源地岩溶水允许开采量评价[J].勘察科学技术,2007年第6期:44—47
    [29]刘志峰,林洪孝*,许向君等.数值模拟法在西龙河峄山断层带水源地岩溶水允许开采量评价中的应用[J].灌溉排水学报,2007,26(4(B)):116—117
    [30]刘志峰,林洪孝*,许向君等.西龙河峄山断层带水源地开采前地下岩溶水环境质量评价[J].科学技术与工程,2007,7(4):576—580
    [31]刘志峰,林洪孝*,许向君等.西龙河峄山断层带水源地水化学特征及岩溶水开采后影响因素分析[J].环境化学,2007,26(3):409—409
    [32]刘志峰,林洪孝*,许向君等.小范围群井与单井抽水试验推求水文地质参数的比较分析[J].地质与勘探,2007,43(1):94—97
    [33]刘志峰,林洪孝,许向君等.西龙河峄山断层带水源地地下岩溶水供水水质评价[J].科技信息,2006年第11期:70—71
    [34]刘志峰,于仲伟,郭晓波等.模糊聚类分析法与舒卡列夫法在小范围内岩溶水化学分类中的比较分析[J].地下水,2007年第4期:26—29
    [35]罗元华.荷兰地下水资源管理综述[J].地质科技情报,Vol.16 No.4 1997,12:84-86
    [36]骆淼,潘和平,黄东山.地球物理测井在水文地质勘查中的应用综述[J].工程地球物理学报,vol.1 No.2 2004,4:136-145
    [37]马兴旺,李保国,吴春荣等.民勤绿洲现状土地利用模式影响下地下水位时空变化的预测[J].水科学进展,2003,14(1):85-89
    [38]马振民,刘立才,陈鸿汉等.山东泰安岩溶水系统地下水化学环境演化[J].现代地质,vol.16 No.4 2002,12:423-428
    [39]彭涛,詹松.三维地下水数值模拟方法在基坑涌水量预测中的应用——以广州地铁某基坑为例[J].工程勘察,2005(3):20-23
    [40]钱家忠,吴剑锋,董洪信等.徐州市张集水源地裂隙岩溶水三维等参有限元数值模拟[J].水利学报,2003(3):37-41
    [41]钱家忠,吴剑锋,朱学愚等.徐州市张集水源地裂隙岩溶水群孔抽水试验研究[J].水科学进展,Vol.14 No.5 2003,9:598-601
    [42]钱家忠.中国北方型裂隙岩溶水模拟及水环境质量评价[M].合肥:合肥工业大学出版社,2003
    [43]申献辰,杜霞,邹晓雯.水源地水质评价指数系统的研究[J].水科学进展,2000(3):260-265
    [44]束龙仓,朱元生,孙庆义等.地下水允许可采量确定的风险分析[J].水利学报,2000(3):77-81
    [45]水利部水政水资源司.全国城市供水水源地普查汇总报告[R].2002
    [46]水利部水资源管理司,水利部水资源管理中心.建设项目水资源论证培训教材[M].北京:中国水利水电出版社
    [47]苏淑荣,林洪孝,刘志峰等.兖矿集团国宏化工公司西龙河峄山断层带水源地供[2]水水文地质详查报告[R].兖矿集团东华建设有限公司地质工程分公司,2006,5
    [48]王滨.鲁中南岩溶塌陷岩溶水污染途径研究[J].地球与环境,vol.33 No.4 2005:53-57
    [49]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1994
    [50]王宏,娄华君,邹立芝. MODFLOW在华北平原区地下水库模拟中的应用[J].世界地质,2003,22(1):69-72
    [51]王金生,王长申,滕彦国.地下水可持续开采量评价综述[J].水利学报,第37卷第5期2006,5:525-533
    [52]王文生,阎战友.加强建设项目水资源论证工作,促进水资源的可持续利用[J].海河水利,2004年第2期:4-5
    [53]魏林宏,束龙仓,郝振纯.地下水流数值模拟的现状和发展趋势[J].重庆大学学报(自然科学版),2000,23:50-52
    [54]吴剑锋,朱学愚,费光灿.口泉沟南岩溶裂隙水水源地环境同位素研究和地下水资源评价[J].煤田地质与勘探,1997,25(3):35-39
    [55]吴希龙,李华民,庞军等.泰安市地下水资源开发利用[R].泰安市水利与渔业局,1997.10
    [56]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1995(5):16-21
    [57]薛禹群,朱学愚,吴吉春.地下水动力学[M].北京:地质出版社,1997
    [58]杨维,王恩德,陈曦.基于AQUA3D的地下水流模拟实例[J].工程勘察,2004(3):32-34
    [59]张洪亮.大型火电厂集中开采岩溶水所造成的水环境影响[D].华北电力大学硕士学位论文,2000,5
    [60]张人权.地下水资源特性及其合理开发利用[J].水文地质工程地质,2003,30(6):1-5
    [61]张志忠,董青红,李义昌等.徐州市岩溶水资源管理模型的建立与应用[J].勘查科学技术,1999年第3期:40-44
    [62]章程.模糊聚类分析在岩溶水化学分类中的应用[J].中国岩溶,vol.14 No.1 1995,3:9-17
    [63] Alumbaugh D L, Newman G A. Three-dimensional massively parallel electromagnetic inversion: analysis of across well experiment [J].Geophys J In, 1997, 128:355-363.
    [64] Anon D, 2000. Visual MODFLOW V.2.8.2 user’s manual for professional application three-dimensional groundwater flow and contaminant transport modeling [M]. Ontario: Waterloo Hydrogeologic Inc.
    [65] Anon. Visual Groundwater User's Manual [M]. Ontario: Waterloo Hydrogeologic Inc., 2000.1978.
    [66] Anon. Visual MODFLOW V.2.8.2 User's Manual for Professional Applicationsin Three-Dimensional Groundwater Flowand Contaminant Transport Modeling [M].Ontario: Waterloo Hydrogeologic Inc., 2000.13.
    [67] Anon.S S G Software [M]. Washington: The Scientific Software Group, 2000.45.
    [68] Chen J Z. Research in the mid and long term forecast model of groundwater resources [J]. In: Xue T Q, Bear J, eds. Proceeding of the International Conference on Modeling Groundwater Flow and Pollution. Nanjing University Press, 1991.149-157
    [69] Cooley R L. Incorporation on parameters into nonlinear regression groundwater flow model.1, Theory [J]. Water Resources Research, 1982, 18(4):965-976
    [70] Cooley R L. Incorporation on parameters into nonlinear regression groundwater flow model.2, Application [J]. Water Resources Research, 1983, 19(3):662-676
    [71] Dagan G, Time-Dependent macrodispersion for solute transport in anistropic heterogeneous aquifers [J]. Water Resources Research, 1998, 24(9):1491-1500
    [72] Henk Haitjema et al, Selecting MODFLOW Cell Sizes for Accurate Flow Fields[J]. Ground Water, 2001, 39(6):931-938
    [73] Hyndman D W, Harris J M, Gorelick S M. Coupled seismic and tracer test inversion for aquifer property characterization [J]. Water ResourRes, 1994, 30(7):1965-1977.
    [74] John Doherty, Improved Calculations for Dewatered Cells in MODFLOW [J]. Ground Water, 2001, 39(6):863-869
    [75] Karasaki K, Freifeld B, Cohen A, et al. A multidisciplinary fractured rock characterization study at Raymond Field Site, Raymond, California [J].Journal of Hydrology, 2000, 20(4):201-211.
    [76] Lee D S, Stevenson V M, Johnston P F, et al. Time lapse cross well seismic tomography to characterize flow structure in the reservoir during the thermal stimulation[J].Geophysics,1995, 60(3):660-666.
    [77] Naff R L, Haley D F, Sudicy E A. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media, Methology and flow results[J].Water Resources Research, 1998,34(4):663-677
    [78] Nekut A G. Electromagnetic ray-trace tomography [J].Geophysics, 1994,55:371-377.
    [79] Neville C J, M J Tonkin. Modeling Multiaquifer Wells with MODFLOW[J]. Ground Water, 2004,(6):185-193
    [80] Norman L. Jones et al, Generating MODFLOW Grids from Boundary Representation Solid Models [J]. Ground Water, 2002, 40(2):194-200
    [81] Parkhurst D L, Appelo C A J. User's Guideto PH-REEQC (Version2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations[M]. Denver: Geological Survey, 1999.14.
    [82] Rector J W. Crosswell methods [J].Geophysics,1995,60:627-920.
    [83] Richard H McCuen. Bringing Groundwater Quality Research to the Watershed Scale [J]. Journal of the American Water Resources Association, 2005, 41(5):1247-1248
    [84] Robert B, etal. The WASP5 model documentation [J]. Anther Environment Research Lab US EPA .1993
    [85] Rubin Y, Gomez-Hernandez J J. Astochastic approach to the problem of upscaling of conductivity in disordered media: theory and unconductional numerical simulations [J].Water Resour Res,1990,26(4):691-701.
    [86] Siegel D I, Bickford M E, Orrel S E. The use of strontium and lead isotopes to identify sources of water discharge[J]. Applied Geochemistry, 2000, 12:493-500.
    [87] Smith T, Hoversten M, Gasperikova E, et al. Sharp Boundary inversion of 2D magnetotelluric data[J].Geophysical Prospecting,1999,47:469-486.
    [88] Sophocleous M. From safe yield to sustainable development of water resources the Kansas experience [J]. Journal of Hydrology, 2000,3:27一43
    [89] The finite element modeling of groundwater flow[J]. Water Resources Research, 1981,17(5):1529-1634
    [90] Therrien R, Sudicky E A. Well bore boundary conditions for variably saturated flow modeling [J]. Adv Water Resour, 2001,(2):1239-1241
    [91] Tichelaar B W, Hatchell P J. Inversion of 4C borehole flexural waves to determine anisotropy in a fractured carbonate reservoir [J].Geophysics,1997,62(5):1432-1441.
    [92] Vasco D W, Karasaki K K, Myer L. Monitoring of fluid injection and soil consolidation using surface tilt measurements[J]. Journal of Geotechnical and Geoenviron-mental Engineering, 1998,124(1):29-37.
    [93] Vasco D W, Peterson J E, Lee K H. Ground-penetrating radar velocity tomography in heterogeneous and anisotropic media[J].Geophysics,1997, 62(6):1758-1773.
    [94] Walsh J J. Fracture estimation from parametric inversion of S V waves inmulticomponent off set VSP data[A].In: Society of Exploration Geophysicists, ed. Expanded abstracts with biographies, technical program: 63rd Annual Meeting and International Exhibition, Tulsa OK [C] [s. l.]:[s. n.], 1993.140-142.
    [95] Wilt M J, Alumbaugh D L, Morrison H F, et al. Crosswell electromagnetic tomography, system design Considerations and field result [J]. Geophysics, 1995,60(3):871-885.
    [96] Xue Y Q, Xie C H, Wu J C. A numerical model of the seawater intrusion in coastal aquifer[J]. In: Xue T Q, Bear J, eds. Proceeding of the International Conference on Modeling Groundwater Flow and Pollution. Nanjing University Press, 1991.13-20
    [97] Yeh W W G. On the computation of Galerkin velocity and mass balance: The finite element modeling of groundwater flow [J]. Water Resources Research, 1981, 17(5):1529-1634
    [98] Zhang Y K, Neuman S P.A quasi-linear theory of non-Fickian and Fickian subsurface dispersion, Application to anisotropic media [J]. Water Resources Research, 1990, 26(5):903-913

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700