原地应力对比测量试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原地应力状态是固体地球最重要的物理参数之一。进行地应力测量,研究地壳应力状态,对于地球动力学问题和工程应用问题具有十分重要的意义。国际岩石力学学会推荐过应力解除法和水压致裂法作为地应力测量的两种主要方法。这两种方法都属于平面应力测量,其测量准确度和适用性一直是本研究领域很关注的问题之一。
     本论文依托于“原地应力测试技术方法试验研究”项目,主要工作在河北易县紫荆关试验场完成,作者参与了全部的野外应力对比测量工作。基于该工作,本论文体现的研究内容如下:
     (1)收集资料和文献,研究总结压磁应力解除法的理论依据和数据处理方法,并对已有的压磁应力解除系统进行分析,归纳总结新型压磁应力解除系统的改进和创新点;
     (2)总结水压致裂法测量数据处理方法,并对水压致裂测量试验数据选择合适的方法,综合岩芯情况以及测量曲线分析,最终确定合理的应力值;
     (3)完成3个钻孔中4个深度的压磁应力解除法地应力测量和4个钻孔不同深度水压致裂地应力测量,并创造了该方法的国内外最大测量深度:
     (4)完成了压磁应力解除法和水压致裂法地应力对比测量分析,探讨了两种方法的测量可靠性、适用性以及影响因素。
     通过上述工作,得出以下几点认识和看法:
     (1)新型压磁应力解除系统比传统系统有了很大创新和进步,基于该系统的压磁应力解除法地应力测量效率更高,深度也比以往有很大提高,达到国内外最深的213.6米。
     (2)针对4个钻孔相同(相似)深度段的压磁应力解除法和水压致裂法地应力测量结果,对比研究所得地应力状态,可知:
     ①压磁应力解除法在浅孔中(约200m以上)测量效果较好。以其为比较基准,和水压致裂法测得的最大水平主应力相差基本在10%以内,最小水平主应力相差36%以内,一致性比较好;最大水平主应力方向基本和区域应力场主应力方向吻合;
     ②水压致裂法在4个浅孔中获得了较为一致的应力变化趋势,但在相近的深度,不同钻孔中测量点应力值有不同程度的差别,不论是岩体完整段或者是原生裂隙发育的地方,这体现了应力场的复杂性;最大水平主应力方向为NW40°~50°,和区域应力场主应力方向一致;
     ③不同钻孔相近深度的最大和最小水平主应力值的比较说明,测量点附近存在裂隙会影响测量结果,若存在破碎带则影响更大。完整可以很好地赋存原地应力,相近深度测量点得到的应力值也比较接近。
In-situ stress state is one of the most important physical parameters of the solid earth. Carrying out stress measurement and studying stress state in the crust are of considerable interest for the issues of earth dynamics and engineering application. ISRM has recommended overcoring and hydraulic fracturing as the major methods for in-situ stress measurement. The two methods are both belong to plane stress measurement, however, their accuracy and usability has always been a concerned problem in the field.
     This paper based on the "an experimental study of in-situ stress measurement techniques" project and main tasks were done in experimental field in Zijingguan, Yixian of Hebei Province. The author has joined all the stress comparison measurements in the field. Based on the jobs, what this paper has completed are as following:
     (1) A good many of data and literature were studied to summarize the theory and data process of piezomagnetic overcoring. Analysis for the old piezomagnetic overcoring system were done and summaries for improvements and invocations of the new version were shown;
     (2) Data process methods of hydraulic fracturing were summarized. Proper methods in this study were chosen, combined with drilled cores and measurement curves, to determine the final stress values;
     (3) Piezomagnetic overcoring stress measurements at4different depths in3boreholes and hydraulic fracturing at different depths in4boreholes were finished. The deepest piezomagnetic overcoring measurement was done in the world;
     (4) Comparison measurement analysis for piezomagnetic overcoring and hydraulic fracturing was conducted and reliability, usability and influence factors of the two methods were discussed.
     By what have done above, some conclusions can be drawn as following:
     (1) The new piezomagnetic overcoring systems has improved a lot than the old one. In-situ stress measurement based on the system was more effective and could work in deeper rock mass than before. The deepest depth it completed in the world was213.6m.
     (2) Based on comparison study of piezomagnetic overcoring and hydraulic fracturing stress measurements in the same or similarly depth in4boreholes, some conclusions can be obtained:
     ①It was proven that, above200m, take piezomagnetic overcoring as reference, the difference between the maximum horizontal principal stress obtained from piezomagnetic overcoring and that from hydraulic fracturing, was less than10%, and as for the minimum horizontal principal stress was less than36%. Also, the principal stress direction agreed with that of regional stress field, stating that results of two methods measurement agree well with each other.
     ②Hydraulic fracturing got the concordant stress change trend in4boreholes. However, different depths in different boreholes showed different stress values, not only for intact rock mass, but also for some place with pre-existing fractures developed, which indicated the complexity of stress field. The directions of maximum horizontal principal stress between NW40°~50°, which agreed with that of regional stress field.
     ③Comparisons between the maximum and minimum horizontal principal stress at similar depths in different boreholes stated that if there existed fractures near the measurement sites, the measurement results were to be influenced and fracture zone affected more. Intact rock mass can store in-situ stress well and stress values obtained from similar depth were similar to each other, as well.
引文
[1]Amadei B, Stephansson O. Rock stress and its measurement[M]. London:Chapman & Hall,1997. 490pp.
    [2]田中丰、藤森邦夫、大塚成昭.1998.地壳应力·歪の测定·观测によゐ大地震发生の预测.地震,第2辑,第50卷,201-208.
    [3]李四光.地质力学方法[M],1976,北京:科学出版社.
    [4]陈群策、谢富仁,中国大陆地壳应力环境基础数据库在地学研究和工程实践中的意义,中国大陆地壳应力环境研究:地质出版社,2003,30-36
    [5]王连捷,潘立宙,廖椿庭等.地应力测量及其在工程中的应用[M].北京:地质出版社,1991.
    [6]吴满路,廖椿庭,张春山等.红透山铜矿地应力测量及其分布规律研究[J].岩石力学与工程学报,2004,23(23:3943-47.
    [7]康红普,林建,张晓.深部矿井地应力测量方法研究与应用[J]岩石力学与工程学报,2007,26(5):929-933
    [8]康红普,林健,颜立新等.山西煤矿矿区井下地应力场分布特征研究[J].地球物理学报,2009,5(7):1782-1792.
    [9]廖椿庭,施兆贤.金川矿区原岩应力实测及在矿山设计中的应用[J].岩石力学与工程学报,1883,2(1):103-112.
    [10]吴满路,马宇,廖椿庭等.金川二矿深部1000m中段地应力测量及应力状态研究[J].岩石力学与工程学报,2008,27(增2):3785-3790.
    [11]蔡美峰,刘卫东,李远.玲珑金矿深部地应力测量及矿区地应力场分布规律[J].岩石力学与工程学报,2010,29(2):227-233.
    [12]蔡美峰,乔兰,于波等.金川二矿深部地应力测量及其分布规律研究[J].岩石力学与工程学报,1999,18(4):414-418.
    [13]施兆贤、丁旭初、安其美、刘宗坚、赵仕广、李立球、李文,拉西瓦水电站地应力测量及有关问题讨论,地壳构造与地壳应力文集,1991,(5):167-180
    [14]郭启良、安其美、赵仕广,水压致裂应力测量在广州抽水蓄能电站中的应用,[J]岩石力学与工程学报,2002,21(6):3943-3947
    [15]吴满路,张春山,廖椿庭等.青藏高原腹地现今地应力测量与应力状态研究[J].地球物理学报,2005,48(2):327-32.
    [16]吴满路,马寅生,张春山等.兰州至玛曲地区地应力测量与现今构造应力场特征研究[J].[]地球物理学报,2008,51(5):1468-74.
    [17]Tanaka, Y.,1986. State of Crustal stress inferred from in situ stress measurements. [J]J.Phys. Earth,34, Suppl. S57-S70。
    [18]Stephansson O., et al.1986. State of Stress in Fennoscandia, Proceeding of the International Symposium on Rock Stress and Rock Stress Measurements, Stockholm,1-3, September
    [19]Zoback M.D., Tsukahara H., Hickman S.,1980. Stress measurements in the vicinity of the San Andreas fault:Implications for the magnitude of shear stress at depth. [J] J.Geophys. Res.,85, B11, 6157-6173.
    [20]陈群策,李宏,廖椿庭等.地应力测量与监测技术实验研究-SinoProbe-06项目介绍[J].地球学报,2011,32(增1):113-124.
    [21]董树文,李廷栋,SinoProbe团队.深部探测技术与实验研究(SinoProbe)[J]地球学报,2011,32(增1):3-23.
    [22]蔡美峰.地应力测量原理与技术[M].,2000,北京:科学出版社.
    [23]C.Ljunggren, et al. An overview of rock stress measurement methods [J]. Int.J.Rock Mech.& Min.Sci.,2003,40:975-89.
    [24]Kiyoshiko Yamamoto etal.1990, Deformation Rate Analysis:A new method for in-situ stress estimation from inelastic deformation of rock samples under uniaxial compression's, Tohoru [J]Geophysical Journal, (The science reports of the Tohoku University, Series5) Vol.33, No.2, Oct. pp127-147.1990.
    [25]S.M.Cowgill, P.G.Meredith, S.A.F.Murrell. Crustal Stress in the North Sea from Breakouts and other Borehole Data[J]. Int.J.Rock.Mech.Min.Sci.&Geomech.Abstr.,1993,30(7):1111-14.
    [26]Weiren Lin, En-Chao Yeh, Jih-Hao Hung, et al. Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelunpu-fault Drilling Project(TCDP)[J]. Tectonophysics,2010,482:82-91.
    [27]林为人,基于岩芯非弹性应变恢复测量的深孔三维地应力测试方法[J].岩石力学与工程学报,2008,27(12):2387-94.
    [28]Jun-wen Cui, Lian-jie Wang, Pengwu Li, et al. Wellbore breakouts of the main borehole of Chinese Continental Scientific Drilling(CCSD) and determination of the present tectonic stress state[J]. Tectonophysics,2009,475:220-25.
    [29]李宏,张伯崇.北京房山花岗岩原地应力状态AE法估计[J].岩石力学与工程学报,2004,23(8):1349-52.
    [30]M.Seto, M.Utagawa, K.Katsuyama, et al. In situ stress determination by acoustic emission technique[J]. Int.J.Rock Mech. & Min.Sci.34:3-4, paper No.281.
    [31]J.Sjoberg, R.Christiansson, J.A.Hudson. ISRM Suggested Methods for stress estimation-Part 2: overcoring methods[J]. Int.J.Rock Mech. & Min.Sci.,2003,40:999-1010.
    [32]Haimson B.C, Cornet F.H. ISRM Suggested Methods for rock stress estimation-Part 3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. Int.J.Rock Mech. & Min.Sci.,2003,40:1011-20.
    [33]李方全.地应力测量[J].岩石力学与工程学报,1985,4(1):95-111.
    [34]李方全,翟青山,毕尚熙等.水压致裂法原地应力测量及初步结果[J]地震学报,1986,8(4)431-438.
    [35]李方全.套芯法、水压致裂法原地应力测量、钻孔崩落及震源机制解分析所得结果的对比[J]地震学报,1992,14(2)149-155
    [36]Hast N. The state of stress in the upper part of the earth's crust. [J] Eng Geol.1966;2:5-17.
    [37]张宁,岩体初始地应力发育规律研究[D]浙江大学硕士论文,2002.
    [38]张鹏,金川二矿区深部地应力测量及应力状态研究[D]中国地质大学(北京)硕士论文,2011.
    [39]Haimson B.C. The hydrofracturing stress measuring method and recent field results [J]. Int. J.Rock.Mech.Min.Sci.&Geomech.Abstr.,1978,15(4):167-78.
    [40]刘亚群,李海波,景峰等.考虑应力梯度的原生水压致裂法地应力测量原理及工程应用[J].岩石力学与工程学报,2007,26(6):1145-50.
    [41]陈群策、李方全, 水压致裂法三维地应力测量的实用性研究,[J]地质力学学报,2001,7(1)
    [42]郭启良,水压致裂应力测量方法的新发展,中国大陆地壳应力环境研究:地质出版社,2003,164-173
    [43]尤明庆.水压致裂地应力测量方法的研究[J].岩土工程学报,2005,27(3):350-353.
    [44]M.D.Zoback., C.A.Barton, M.Brudy, et al, Determination of stress orientation and magnitude in deep wells, [J]Int. J. Rock Mech, Min. Sci.,40(2003),1049-1076.
    [45]Cheung,L.S, B.C.Haimson. Laboratory study of hydraulic fracturing pressure data-How valid is their conventional interpretation?[J].Int.J.Rock-Mech.Min.Sci& Geomech.Abstr,1989,26:595-605.
    [46]吴满路,张岳桥,廖椿庭等.汶川震后沿龙门山断裂带原地应力测量初步结果[J]地质学报,2010,84(9):1292-1299.
    [47]丰成君,龙门山断裂带东北段现今地应力状态研究[D]中国地质科学院硕士论文,2011.
    [48]王建军.应用水压致裂法测量三维地应力的几个问题[J]岩石力学与工程学报,2000,19(2):229-233.
    [49]Liao, C., C. Zhang, M. Wu, Y. Ma, and M. Ou. Stress change near the Kunlunfault before and after the Ms 8.1 Kunlun earthquake. Geophys. Res. Lett.,30(20):2027, doi:10.1029/2003GL018106,2003.
    [50]王成虎,郭启良,陈群策等.新一代超声波钻孔电视及其在工程勘察中的应用[J].地质与勘察,2007,43(1):98-101.
    [51]K.Huber, K.Fuchs, J.Palmer, et al. Analysis of borehole televiewer measurement in the Vorotilov drillhole, Russia-first results [J].Tectonophysics,1997,275:261-72.
    [52]丰成君,陈群策,吴满路等.水压致裂应力测量数据分析——对瞬时关闭压力PS的常用判读方法讨论[J]岩土力学,2012,33(7)2149-2159.
    [53]Hayashi.K, B.C.Haimson. Characteristics of Shut-in Curves in Hydraulic Fracturing Stress Measurements and Determination of in Situ Minimum Compressive Stress[J].Journal of Geophysical Research,1991,96(18):311-321.
    [54]陈桂华,紫荆关断裂带活动构造特征——以太行山北段为例[D]中国地质大学(北京)硕士论文,2002.
    [55]B.C.Haimson. The effect of lithology, inhomogeneity, topography, and faults, on in situ stress measurements by hydraulic fracturing, and the importance of correct data interpretation and independence evidence in support of results[C]//Furen Xie. Rock Stress and Earthquakes. Proceedings of the 5th International Symposium on In-Situ Rock Stress. Balkema, Leiden, The Netherlands:CRC Press,2010,11-14.
    [56]陈群策等,2005,原生裂隙对水压致裂测量结果的影响,[J]岩土工程学报,27(3).
    [57]Mizuta Y., Sano O., Ogino S., et al.,1987. Three dimensional by hydraulic fracturing for underground excavation design. [J] Int. J.Rock Mech. Sci. & Geomech. Abstr.24,1,15-29.
    [58]Serata S., Sakuma S., Kikmchi S., and Mizuta Y.,1992. Double Fracture Method of In Situ Stress Measurement in Brittle Rock. [J]Rock Mechanics and Rock Engineering.25,89-108.
    [59]Brown E T, Hoek E. Technical note trends in relationships between measured in-situ stress and depth[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstra.,1978,15(4),211-215.
    [60]赵德安,陈志敏,蔡小林等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700