高炉布料过程的虚拟现实仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁冶炼过程中,高炉炉顶的炉料分布是影响炉内煤气流分布﹑矿石还原﹑炉料—气体热交换﹑燃料比和高炉寿命的重要因素。为优化高炉操作,实现准确控制炉料分布,需要分析高炉布料过程中影响炉料分布的物理现象,寻找装料条件和炉料分布之间的规律。为了直观、形象地反应炉料的分布状况,预测炉况的变化趋势,使用虚拟现实技术来研究炉料在炉内的分布成为一种可能。
     本文根据高炉炉内炉料分布规律,结合无料钟高炉布料经验,把一次完整的布料过程作为仿真对象。在对其进行数学建模的基础上,运用OpenGL图形库技术,通过对生产工况、场景进行模拟和再现,实时、动态地模拟高炉布料过程。
     本文实现的虚拟现实环境具有场景漫游功能,并且可以实时与高炉布料装置交互,控制布料装置的仰角、高度和旋转速度,此外还能实时跟踪炉料运动轨迹。该仿真模型为高炉操作者了解、分析和控制炉料在炉内的分布提供了一定依据,另外为高炉设计者和研究人员提供了一种有效、可行的设计和分析手段,为高炉布料模型的进一步发展也提供了一个框架和平台。
In iron and steel making processes, burden distribution of blast furnace top is the main factors which influence the gas flow distribution, ore reduction, heat exchange between burden and gas flow, fuel rate and blast furnace campaign life. In order to optimize the operation of blast furnace and control burden distribution precisely, the physical phenomena which influence the burden distribution in the process of burden charging should be analysed, and the relation between charging condition and burden distribution should be searched. Applying the virtual reality technology to simulating the process of burden charging can display the burden distribution states directly and visually, and this could be a better way to estimate the trend of the states of burden distribution.
     According to the burden distribution rules of the blast furnace and combining the burden distribution experience of the bell-less blast furnace, this paper simulates a whole process of burden charging and realizes visual simulation of the process of burden charging based on mathematics model, using OpenGL library technique, through simulation and reappearance of production and scene.
     The user can not only navigate in the virtual reality environment, but also be able to interact with the charge distributor of the blast furnace through controlling the angle, height of elevation and angular velocity. Further more, the system can also track the movement path of the charging in real time. This simulation model provides a specific basis to analyse and control the states of the charging contribution for the operator. It can also help the designers who design the blast furnace to evaluate and analyse feasibility of the designs. Moreover, it provides a foundation for the deep development of charging model.
引文
[1] 毕学工.高炉过程数学模型及计算机控制[M].北京:冶金工业出版社,1996:1-15
    [2] 洪炳镕, 蔡则苏, 唐好选.虚拟现实及其应用.北京:国防工业出版社[M],2005:1-12,89-106
    [3] 胡小强.虚拟现实技术[M].北京:北京邮电大学出版社,2005:13-35
    [4] 汪成为,高文,王行仁.灵境 (虚拟现实)技术的理论的实现及应用[M].北京:国防工业出版社,2002:5-27
    [5] 刘文全. 神经网络高炉工艺布料模型和布料操作指导系统的研究[D].博士论文.北京科技大学, 1995
    [6] 丁金发. 串罐无钟高炉布料数学模型的开发[D]. 武汉科技大学硕士论文, 2006
    [7] 稻叶晋一. 神户制铁技报[J]. 1984,34(4):42-47
    [8] Yoshio Okuno, Kazuya Kunimoto, Shinroku Matsuzaki. Development of a Mathematical Model for Burden Distribution in a Blast Furnace[C]. Ironmaking conference proceedings, 1985, 543-553
    [9] 西尾,浩明. 带料钟和可调炉喉保护板的高炉炉料分布模拟模拟模型[J]. 国外钢铁,1988(4):1-8
    [10] Mats J. Nikus, Henrik Saxen. Model of the Ore-to-coke Distribution in the Blast Furnace Shaft[C]. 61st IRONMAKING CONFERENCE PROCEEDINGS, 2002:31-36
    [11] 杨天均,徐金梧等. 高炉冶炼过程控制模型[M]. 北京:科学出版社,1995:10-26
    [12] YC.Liu. The Fundamentals of Blast Furnace Burden Distribution. Metallurgical Industry Publishing Corporation of China[J].1992,1(1):22-23
    [13] 经文波,毕小雷. 无料钟高炉布料数学模型研究[J]. 北京:冶金自动化,2003,(1):29-31
    [14] 周勇,毕学工. 焦炭坍塌理论在钟式高炉炉顶炉料分布模型中的应用[J]. 武汉:钢铁研究,2004,1(1):1-4
    [15] 宁志宇,吴敏,许永华. OpenGL 技术在高炉料面分布动态三维仿真中的应用[J]. 长沙:计算技术与自动化. 2005,24(2):118-120
    [16] 刘云彩. 高炉布料规律[M]. 北京:冶金工业出版社,1984,15-38
    [17] 刘云彩.高炉布料规律(第 3 版)[M].北京:冶金工业出版社,2005:17-30
    [18] 符祥. 基于桌面的虚拟现实技术研究.西安电子科技大学硕士学位论文[D],2005
    [19] Donald Hearn, M. Pauline Baker 著,蔡士杰,宋继强,蔡敏 译.计算机图形学(第三版)[M].电子工业出版社 2005:330-417 334,53-54
    [20] 向世明. OpenGL 编程与实例[M].北京:电子工业出版社,1999
    [21] 白建军. OpenGL 三维图形设计与制作[M].北京:人民邮电出版社,1999
    [22] 和平鸽工作室. OpenGL 高级编程与可视化系统开发.高级编程篇(第二版). 北京:中国水利水电出版社,2005
    [23] Richard S.Wright, Jr.Benjamin Lipchak 著,徐波译. OpenGL 超级宝典(第三版)[M]. 北京:人民邮电出版社,2005
    [24] Fletcher Dumn 著,史银雪,毕洪,王荣静译.3D 数学基础:图形与游戏开发[M].北京:清华大学出版社,2005
    [25] Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics(2 edition)(M). Hingham Massachusetts:Charles River Media,2003
    [26] 白燕斌. OpenGL 三维图形库编程指南[M]. 北京:机械工业出版社. 1998: 292-315
    [27] Randi J. Rost 著,天宏工作室译.OpenGL 着色语言[M].北京:人民邮电出版社,2006
    [28] 李胜睿. 计算机图形学实验教程[M]. 北京:机械工业出版社,2004
    [29] 胡峪,刘静. VC++高级编程技巧与示例[M]. 西安:西安电子科技大学出版社,2001
    [30] 毕学工,丁金发. 无钟高炉装料装置内炉料运动的数字模拟. 第七届全国大高炉炼铁学术会议论文集. 本溪:2006
    [31] Attewell,P.B.,Farmer,I.W.工程地质学原理. 地址:中国建筑工业出版社,1982
    [32] 湖南水利水电勘测设计院. 边坡工程地质. 水力电力出版社,1983
    [33] 邓守强. 高炉炼铁技术[M]. 北京:冶金工业出版社,1990:443
    [34] Yongfu Zhao, C.Jefferson Obert, Tianjun Yang, Zhengkai Gao. Burden Distribution Computer Simulation for Fairfield Works No.8 Blast Furnace, 61st IRONMAKING CONFERENCE PROCEEDINGS, 2002, March 10-13
    [35] 高征凯,杨天钧,赵永福等. 无钟布料仿真模型在美钢联 Fairfield 厂 8 号高炉的应用[C]. 2002 年全国炼铁生产技术会议暨炼铁年会文集
    [36] Reeves W T. Particle systems-A technique for modeling a class of fuzzy objects[J]. ACM Transactions on Graphics, 1983, 2(2): 91-108
    [37] 张 芹 , 吴 慧 中 , 张 建 . 基 于 粒 子 系 统 的 建 模 方 法 研 究 [J]. 计 算 机 科学,2003,30(8):144-146
    [38] Gino Van Den Bergen. Efficient collision detection of complex deformable models using AABB trees[J].1999,4(2):1-13
    [39] Bernhard Geiger. Real-Time Collision Detection and Response for Complex Environments[C]. Proceedings of the International Conference on Computer Graphics. NW Washington, DC USA:IEEE Computer Society,2000:105-113
    [40] Tomas Akenine-Moller, Eric Haines. Real-Time Rendering (2nd Edition)[M].Wellesley Massachusetts:AK Peters, Ltd,2002
    [41] 丁强,毕青林,左福强.基于 L0D 的火焰粒子生成技术[J].计算机应用,2005, 25: 257-259
    [42] 石琼,沈春林,谭皓.基于 OpenGL 的三维建模实现方法[J].计算机工程与应用,2004.18:122-124
    [43] 朱福全. 基于 OpenGL 的虚拟化学实验系统的研究与实现[D]. 四川师范大学硕士学位论文,2007
    [44] P.den Exter, A.G.S. Steeghs, H.L. Toxopeus, R.Godijn, C. van der vliet, R. Chaigneau, R.M.C. Timmer: The Formation of an Ore Free Blast Furnace Center by Bell Charging, ironmaking conference proceedings[C].1997.531-537
    [45] Juan JIMENEZ et.al. Burden Distribution Analysis by Digital Image Processing in a Scale Model of a Blast Furnace Shaft. ISIJ International,Vol.40, 2000:114-120
    [46] Jan HINNELA, Henrik SAXEN. Neural Network Model of Burden Layer Formation Dynamics in the Blast Furnace[J]. ISIJ International,Vol.41.2001:142-150
    [47] Samuel Ranta-Eskola. Binary Space Partioning Trees and Polygon Removal in Real Time 3D Rendering[D].Sweden Uppsala University Master's Theses,2001
    [48] Randima Fernando, Mark J. Kilgard. The Cg Tutorial:The Definitive Guide to Programmable Real-Time Graphics[M].Addison-Wesley,2003
    [49] 吴恩华,柳有权. 基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612
    [50] Michael Macedonia. The GPU Enters Computing's Mainstream[J]. IEEE Computer Society, 2003. 36(10):106-108
    [51] Mark J. Harris. Mapping computational concepts to GPUs. GPU Gems 2: Programming Techniquesfor High-Performance Graphics and General-Purpose Computation[M]. Addison-Wesley Professional, 2005:493–508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700