高水压砂土地层中泥水盾构隧道开挖面失稳机理与风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国地下空间的大规模开发利用,盾构隧道工程的环境条件越来越复杂,施工中出现了诸多问题,其中较为突出的是支护压力不足造成的开挖面失稳及地层变形过大。特别是近年来我国水下盾构隧道工程快速发展,由于覆土厚度一般较浅、水压较大,开挖面稳定难以控制,稍有不慎就有可能发生开挖面坍塌和水体倒灌等事故。因此,研究高水压条件下盾构隧道开挖面失稳风险具有现实意义。
     本文结合南京地铁10号线江心洲站~中间风井区间过江隧道工程,通过理论分析、数值模拟以及现场调查和实测等方法,对高水压条件下砂土地层中泥水盾构隧道施工过程中的开挖面稳定性相关问题进行了研究,主要工作和研究成果包括以下几个方面:
     (1)利用Handy拱效应理论和Mohr-Coulomb准则得出了失稳土体形状的计算方法,失稳土体形状类似贝壳形。基于极限平衡分析理论建立了盾构隧道开挖面稳定性分析模型,并将模型的计算结果与其他理论分析方法、离心试验以及数值模拟分析的结果进行了对比。提出了可用于指导施工的开挖面支护压力极限值工程参考图。
     (2)利用FLAC3D有限差分程序计算了高水压条件下砂土地层中大直径泥水盾构隧道开挖面支护压力极限值,分析了砂土内摩擦角、黏聚力、弹性模量、隧道埋深、直径、水位等因素对开挖面支护压力的影响,研究了失稳破坏模式以及失稳过程中土压力的变化规律。结果表明,高水压条件下开挖面支护压力极限值比无水压时增大约一个量级。
     (3)借鉴W. Kent Muhlbauer提出的在管道风险管理领域应用广泛的肯特法的基本思想,对泥水盾构隧道开挖面失稳风险进行了分析,将风险因素分为地质指数、隧道指数、设计指数、施工指数等项,建立了风险评估模型。修改肯特法中相关指数的评分准则,采用风险指数先相加、再与后果系数相乘的算法计算相对风险评估值,得分越高,风险越大。
     (4)结合南京地铁10号线江心洲站~中间风井区间过江隧道工程,利用本文建立的泥水盾构隧道开挖面失稳风险评估模型,选取了开挖面失稳风险相对较大和较小的2个典型断面进行了开挖面失稳风险评估,并根据评估结果分析了导致事故发生的主要风险因素,给出了在施工过程中对盾构施工参数进行有针对性的动态调整的建议。
With the large-scale development of underground space in China, The environmental conditions of shield tunneling is increasingly complex. Many problems appear during the construction process and one of the more prominent problems is face instability and large ground deformation, which is caused by lack of face supporting pressure. Especially with the rapid development of underwater shield tunnel project at home and abroad in recent years, face stability is difficult to control due to shallow depth and high hydraulic pressure. Therefore, the research on instability risk of shield tunneling face subject to high hydraulic pressure has practical significance,
     In this dissertation, combined with the cross-river shield tunneling project of Jiangxinzhou sation~Zhongjianfengjing interval in Nanjing Metro Line10, face stability during the construction process of slurry shield tunnel in sands under high hydraulic pressure were studied by theoretical analysis, numerical simulation and on-site survey. The main work and achievements are as follows.
     (1) According to the Mohr-Coulomb failure criterion, the Handy soil arching theory was used to determine the position and shape of unstable soil. The shape of unstable soil is similar to the shell-shaped. Based on the theory of limit equilibrium analysis, face stability analysis model of shield tunnel was established. The calculation results of this model were compared with the results of other theoretical analysis method, the centrifuge test and numerical simulation analysis. The engineering reference of face limit supporting pressure was proposed, which could be used to guide the construction.
     (2) Based on FLAC3D finite difference calculated program, face limit supporting pressure of large diameter slurry shield tunnel in sands under high hydraulic pressure was studied. The influences of soil internal friction angle, cohesion, elastic modulus, tunnel depth, diameter and water level on face supporting pressure were analyzed. The failure mode of tunnel face and the variation of earth pressure in the instability process were researched. The results show that, compared to the value under no hydraulic pressure, the limit supporting pressure under high hydraulic pressure increases by about an order of magnitude.
     (3) Learned from the basic idea of the Kent Method, which was proposed by W. Kent Muhlbauer and was widely used in the field of pipeline risk management, the instability risk of slurry shield tunneling face was analyzed. Risk factors included geological index, tunnel index, design index and construction index. A risk assessment model was established and the scoring criteria of risk index in the Kent Method were modified. The relative risk assessment value was calculated by using the algorithm that risk index adding together, and then multiplying with the consequences coefficient. The risk is proportional to the assessment value.
     (4) Combined with the cross-river shield tunneling project of Jiangxinzhou station~Zhongjianfengjing interval in Nanjing Metro Line10, two typical sections were selected to assess the face instability risk by the risk assessment model which was established in this dissertation.
引文
[1]王梦恕等.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010.
    [2]宋建,陈百玲,范鹤.水下隧道穿越江河海湾的综合优势[J].隧道建设,2006,26(3):9-10,16.
    [3]王梦恕.水下交通隧道发展现状与技术难题——兼论“台湾海峡海底铁路隧道建设方案”[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [4]杨文武.盾构法水下隧道工程技术的发展[J].隧道建设,2009,29(2):145-151.
    [5]Shogo Matsuo. An overview of the Seikan tunnel project[J]. Tunnelling and Underground Space Technology.1986,1(3-4):323-331.
    [6]孙谋,谭忠盛.盾构法修建水下隧道的关键技术问题[J].中国工程科学,2009,11(7):18-23.
    [7]宋克志,王梦恕.国内外水下隧道修建技术发展动态及其对渤海海峡跨海通道建设的经验借鉴[J].鲁东大学学报(自然科学版),2009,25(2):182-187.
    [8]王梦恕.水下交通隧道的设计与施工[J].中国工程科学,2009,11(7):4-10.
    [9]王梦恕,皇甫明.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1-4.
    [10]蒋美蓉,金丰年,王斌.21世纪我国越江的主要方式——水下隧道[J].工程力学,2002,增刊:185-188.
    [11]周文波.盾构法隧道施工技术及应用[M].中国建筑工业出版社,2004.
    [12]B. B. Broms, H. Bennermark. Stability of clay at vertical openings[J]. Journal of the Soil Mechanics and Foundations Division,1967,93(1):71-94.
    [13]E. H. Davis, M. J. Gunn, R. J. Mair, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Geotechnique,1980,30(4):397-416.
    [14]T. Kimura, R. J. Mair. Centrifugal testing of model tunnels in soft clay[C]. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, Rotterdam,1981:319-322.
    [15]J. H. Atkinson, D. M. Potts. Stability of a shallow circular tunnel in cohesionless soil[J]. Geotechnique,1977,27(2):203-215.
    [16]E. Leca, L. Dormieux. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Geotechnique,1990,40(4):581-606.
    [17]P. Chambon, J. F. Cort6. Shallow tunnels in cohesionless soil:Stability of tunnel face[J]. ASCE Journal of Geotechnical Engineering,1994,120:1148-1165.
    [18]Abdul-Hamid Soubra, Daniel Dias, Fabrice Emeriault, Richard Kastner. Three-dimensional face stability analysis of circular tunnels by a kinematical approach[C]. ASCE, GeoCongress 2008:894-901.
    [19]Y. Li, F. Emeriault, R. Kastner, Z.X. Zhang. Stability analysis of large slurry shield-driven tunnel in soft clay[J]. Tunnelling and Underground Space Technology,2009,24:472-481.
    [20]Haitao Wang, Jinqing Jia. Face Stability Analysis of Tunnel with Pipe Roof Reinforcement Based on Limit Analysis[J]. EJGE,2009,14:1-15.
    [21]G. Mollon, K.K. Phoon, D. Dias, A.-H. Soubra. A new 2D failure mechanism for face stability analysis of a pressurized tunnel in spatially variable sands[C]. ASCE, GeoFlorida 2010: 2052-2061.
    [22]Guilhem Mollon, Daniel Dias, Abdul-Hamid Soubra. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of geotechnical and geoenvironmental engineering, 2010,136(1):215-229.
    [23]Guilhem Mollon, Daniel Dias, Abdul-Hamid Soubra. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield[J]. International journal for numerical and analytical methods in geomechanics.2011,35(12):1363-1388.
    [24]Horn N. Horizontal earth pressure on perpendicular tunnel face[C]. Hungarian National Conference of the Foundation Engineer Industry, Budapest.1961:7-16. (In Hungarian)
    [25]Jancsecz, S., Steiner, W. Face support for a large mix-shield in heterogeneous ground conditions[C]. Tunnelling 94, London.1994:531-550.
    [26]Anagnostou G., Kovari K. The face stability of slurry shield driven tunnels[J]. Tunneling and Underground Space Technology,1994,9(2):165-174.
    [27]Anagnostou G., Kovari K. Stability analysis for tunneling with slurry and EPB shield[C]. MIR'94, "Gallerie in condizioni difficili", Torino,1994:27-29.
    [28]Anagnostou G., Kovari K. Face Stability Conditions with Earth-Pressure-Balanced Shields[J]. Tunnelling and Underground Space Technology.1996,11(2):165-173.
    [29]Broere W. Tunnel Face Stability & New CPT Applications[D]. PhD thesis, Delft University of Technology, Delft,2001.
    [30]C. Cassinis, P. Nisio, V. Capata. Settlement and face stability boring a large tunnel[C]. Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, Rotterdam,1985:2057-2062.
    [31]M.P. Romo, C. Diaz. Face stability and ground settlement in shield tunneling[C]. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Rotterdam,1981:357-360.
    [32]Kanayasu S., Kubota I., Shikibu N. Stability of face during shield tunneling-A survey of Japanese shield tunneling[C]. Underground Construction in Soft Ground, Rotterdam, Balkema. 1995:337-343.
    [33]M. Mohkam, Y. W. Wong. Three dimensional stability analysis of the tunnel face under fluid pressure[C]. Numerical Methods in Geomechanics, Rotterdam,1989:2271-2278.
    [34]T. Krause. Schildvortrieb mit flussigkeits und erdgestutzter Ortsbrust[D]. Technischen Universitat Carolo-Wilhelmina, Braunschweig,1987.
    [35]魏纲.顶管工程土与结构的形状及理论研究[D].博士学位论文.杭州:浙江大学,2005.
    [36]G. Anagnostou & K. Serafeimidis. The dimensioning of tunnel face reinforcement[C]. Proceedings of ITA World Tunnel Congress 2007 "Underground space-The 4th dimension of metropolises", Prague,2007,5:1-7.
    [37]K. Serafeimidis, M. Ramoni & G. Anagnostou. Analysing the stability of reinforced tunnel faces[C]. XIV European conference on soil mechanics and geotechnical engineering, Madrid, Spain,2007,9:1-8.
    [38]雷明锋,彭立敏,施成华,赵丹.迎坡条件下盾构隧道开挖面极限支护力计算与分析[J].岩土工程学报,2010,32(3):488-492.
    [39]P. Chambon, J. F. Corte. Shallow tunnels in cohesionless soil:Stability of tunnel face[J]. ASCE Journal of Geotechnical Engineering,1994,120:1148-1165.
    [40]M. Hisatake, T. Eto, T. Murakami. Stability and failure mechanisms of a tunnel face with a shallow depth[C]. Proceedings of the 8th Congress of the International Society for Rock Mechanics, International Society for Rock Mechanics,1995:587-591.
    [41]J. H. Atkinson, D. M. Potts. Stability of a shallow circular tunnel in cohesionless soil[J]. Geotechnique,1977,27(2):203-215.
    [42]R. J. Mair, R. N. Taylor. Theme lecture:Bored tunnelling in the urban environment[C]. Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Rotterdam,1997:2353-2385.
    [43]H.GB. Allersma. Simulation of the trap-door problem in a geotechnical centrifuge[C]. In Mechanics of Jointed and Vaulted Rock, Rotterdam,1995:521-526.
    [44]程展林,吴忠明,徐言勇.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J].长江科学院院报,2001,18(5):53-55,64.
    [45]P. Oblozinsky, J. Kuwano. Centrifuge experiments on stability of tunnel face[J]. Slovak journal of civil engineering,2004,3:23-29.
    [46]D. Takano, J. Otani, H. Nagatani, and T. Mukunoki. Application of X-ray CT on boundary value problems in geotechnical engineering-Research on tunnel face failure[C]. Geocongress 2006, ASCE, Reston, Va.2006:1-6.
    [47]李昀,张子新,张冠军.泥水平衡盾构开挖面稳定模型试验研究[J].岩土工程学报,2007,29(7):1074-1079.
    [48]李昀.软土中超大直径泥水平衡盾构开挖面稳定性研究[D].博士学位论文.上海:同济大学,2008.
    [49]Ansgar Kirsch. Experimental investigation of face stability of shallow tunnels in sand[C].3rd International Workshop of Young Doctors in Geomechanics, Paris, France,2008,11:61-64.
    [50]Ansgar Kirsch. Experimental and numerical investigation of the face stability of shallow tunnels in sand[C]. Proceedings of the ITA-AITES World Tunnel Congress, Kocsonya,2009.
    [51]Ansgar Kirsch. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica,2010,5:43-62.
    [52]李君.盾构开挖面稳定性理论与试验研究[D].硕士学位论文.杭州:浙江大学,2010.
    [53]陈仁朋,李君,陈云敏,孔令刚.干砂盾构开挖面稳定性模型试验研究[J].岩土工程学报,2011,33(1):117-122.
    [54]李君,陈仁朋,孔令刚.干砂地层中盾构开挖面失稳模式及土拱效应试验研究[J].土木工程学报,2011,44(7):142-148.
    [55]W. Fellin, A. Kirsch, J. King, M. Oberguggenberger. Uncertainty modelling and sensitivity analysis of tunnel face stability[J]. Structural Safety,2010,32(6):402-410.
    [56]J. Messerli, E. Pimentel & G. Anagnostou. Experimental study into tunnel face collapse in sand[C]. Physical Modelling in Geotechnics,2010:575-580.
    [57]Mahmoud Ahmed, Magued Iskander. Tunnel Face Support Pressure and Associated Risk[C]. ASCE, GeoRisk 2011:939-947.
    [58]Qianwei Xu, Hehua Zhu, Wenqi Ding, Xiurun Ge. Laboratory model tests and field investigations of EPB shield machine tunnelling in soft ground in Shanghai[J]. Tunnelling and Underground Space Technology,2011,26:1-14.
    [59]A. Mori, M. Tamura, K. Kurihara, H. Shibata. A suitable slurry pressure in slurry-type shield tunneling[C]. Tunneling'91, Institution of Mining and Metallurgy, London,1991:361-369.
    [60]S. Kanayasu, I. Kubota, N. Shikibu. Stability of face during shield tunneling-A survey of Japanese shield tunneling[C]. Underground Construction in Soft Ground. Rotterdam,1995: 337-343.
    [61]P. Aristaghes, F. Berbet, P. Michelon. CATSBY:Collapse real-time prevention system for slurry tunnel boring machines in soft ground[C]. Geotechnical Aspects of Underground Construction in Soft Ground, Rotterdam,1996:245-250.
    [62]Sang-Hwan Kim, Gyeong-Hwan Jeong, Inn-Joon Park, Byeong-Heon Min. Evaluation of Shield Tunnel Face Stability in Soft Ground[C]. International Symposium on Underground Excavation and Tunnelling, Bangkok, Thailand,2006:213-220.
    [63]P. de Buhan, A. Cuvillier, L. Dormieux, S. Maghous. Face stability of shallow circular tunnels driven under the water table:A numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23:79-95.
    [64]Konishi, Shinji. Evaluation of tunnel face stability by the rigid plasticity finite element method[J]. Railway technology avalanche,2004,5:29.
    [65]秦建设.盾构施工开挖面变形与破坏机理研究[D].博土学位论文.南京:河海大学,2005.
    [66]秦建设,虞兴福,钟小春,朱伟.黏土中盾构开挖面变形与破坏数值模拟研究[J].岩土力学,2007,28(增刊):511-515.
    [67]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897-902.
    [68]朱伟,钟小春,加瑞.盾构隧道垂直十压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-754.
    [69]黄止荣,朱伟,梁精华,等.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.
    [70]黄正荣,朱伟,梁精华,等.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006,39(10):112-116.
    [71]Ashraf ABU-KRISHA. Numerical modeling of face stability for TBM tunneling[C]. Underground Space-the 4th Dimension of Metropolises,2007:373-376.
    [72]高健,张义同.实施超前注浆管棚支护的隧道开挖面稳定分析[J].天津大学学报,2009,42(8):666-672.
    [73]乔金丽,张义同,许春彦.考虑渗流的盾构隧道开挖面稳定性分析[J].水文地质工程地质,2009,1:80-85.
    [74]Seung Han Kim, Fulvio Tonon. Face stability and required support pressure for TBM driven tunnels with ideal face membrane-Drained case[J]. Tunnelling and Underground Space Technology,2010,25(5):526-542.
    [75]Z. X. Zhang, X. Y. Hu, Kieffer D. Scott. A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils[J]. Computers and Geotechnics,2011,38: 94-104.
    [76]厚美瑛,陆坤权.奇异的颗粒物质[J].新材料产业,2001,2:26-28.
    [77]贾海莉,王成华,李江洪.关于土拱效应的儿个问题[J].西南交通大学学报,2003,38(4):398-402.
    [78]Terzaghi K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]. First International Conference on Soil Mechanics and Foundation Engineering, Cambridge,1936: 307-311.
    [79]Terzaghi K. Theoretical soil mechanics[M]. New York:John Wiley and Sons Inc,1943:69-76.
    [80]Mcnulty, J.W. An experimental study of arching in sand[D]. Ph.D. thesis in civil engineering, University of Illinois,1965.
    [81]Ladanyi, B. and B. Hoyaux. A study of the trap-door problem in a granular mass[J]. Canadian Geotechnical Journal,1969,6(1):1-11.
    [82]Vardoulakis, I., B. Graf, and G Gudehus. Trap-door problem with dry sand:a statical approach based upon model test kinematics[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1981,5:57-78.
    [83]Koutsabeloulis, N.C., Griffiths, D.V.. Numerical modeling of the trap door problem[J]. Geotechnique,1989,39(1):77-89.
    [84]Ono, K. and Yamada, M. Analysis of the arching action in granular mass[J]. Geotechnique, 1993,43(1):105-120.
    [85]Handy R L. The arch in soil arching[J]. Journal of Geotechnical Engineering,1985,111(3): 302-318.
    [86]K.H. PAIK and R. SALGADO. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Geotechnique,2003,53(7):643-653.
    [87]蒋波.挡土结构土拱效应及土压力理论研究[D].博士学位论文,杭州:浙江大学,2005.
    [88]王立国,王志凯.考虑土拱效应的挡土墙被动土压力分析[J].水利与建筑工程学报,2010,8(4):146-149.
    [89]徐东,周顺华,黄广军,刘建国.上海粘土的成拱能力探讨[J].上海铁道大学学报,1999,20(6):49-54.
    [90]C.J. Lee, B.R. Wu, H.T. Chen, K.H. Chiang. Tunnel stability and arching effects during tunneling in soft clayey soil[J]. Tunnelling and Underground Space Technology,2006,21: 119-132.
    [91]Evans C. H. An examination of arching in granular Soils[D]. M.S. Thesis, MIT,1983.
    [92]周小文,濮家骝,包承纲.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报,1999,16(4):9-14.
    [93]Adachi T, Kimura M, Kishida K. Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor tests[J]. Tunnelling and Underground Space Technology,2003,18:171-183.
    [94]加瑞,朱伟,钟小春.砂土拱效应的挡板下落试验及机理研究[J].岩土力学,2006,12(27):687-692.
    [95]加瑞.盾构隧道垂直土压力松动效应的研究[D].硕士学位论文,南京:河海大学,2007.
    [96]V.J. Potts and L. Zdravkovid. Finite Element Analysis of Arching Behaviour in Soils[C]. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India,2008,10:3642-3649.
    [97]秦建设,吕国君.太沙基隧道松动土压力研究[J].施工技术,2007,36(7):390-392.
    [98]郅彬,杨更社.盾构施工隧道开挖面上覆士压力的研究[J].施工技术,2008,37(12):246-248.
    [99]朱斌,陈若曦,陈云敏,陈仁朋.Trapdoor位移相关土压力及抗沉陷加筋设计新方法[J].岩土工程学报,2009,31(12):1895-1901.
    [100]黄学军,马小汀.高压水下泥水盾构掘进技术[J].隧道建设,2004,24(6):39-40.
    [101]罗伟雄.盾构法过江隧道施工的风险及对策[J].施工技术,2005,9:67-69.
    [102]潘学政,陈国强,彭铭.钱江特大隧道盾构推进段施工风险评估[J].地下空间与工程学报,2007,3(7):1245-1254.
    [103]吴贤国,吴刚,骆汉宾.武汉长江隧道工程盾构施工风险研究[J].中国市政工程,2007,1:51-53.
    [104]季玉国.江海盾构隧道施工风险分析与评价[J].探矿工程,2008,06:76-79.
    [105]安政拥,季玉国.大型越江盾构隧道施工安全与风险管理探讨[J].探矿工程,2008,12:78-83.
    [106]Huseby A. B., S Skogen. Dynamic risk analysis:the DynRisk concept[J]. International Journal of Project Management 1992,10:160-164.
    [107]赵彪,陈志鼎,杨丽丽.基于过程的水电工程全面动态风险管理[J].水利经济,2007,25(4):68-70,80.
    [108]J. H. M. Tah, V. Carr. R. Howes. Information modelling for case-based construction planning of Highway Bridge projects[J]. Advances in Engineering Software,1999,30:495-509.
    [109]Soren Degn Eskesen, Per Tengborg, Jorgen Kampmann, Trine Holst Veicherts. Guidelines for tunneling risk management:International tunneling association working group No.2.[J]. Tunnelling and Underground Space Technology,2004,19:217-237.
    [110]张建设,张宝善,林伟民.建筑工程施工的动态安全分析方法[J].基建优化,2002,23(5):33-40.
    [111]孙成双,王要武.建设项目动态风险分析方法研究[J].土木工程学报,2003,36(3):41-45.
    [112]姜冠杰,黄敏,金天吴.基于马尔可夫过程的虚拟企业动态风险评价方法的研究[J].鞍山科技大学学报,2005,28:247-251.
    [113]张增刚,李继志,李永安.城市蒸汽管网系统动态风险评估技术[J].流体机械,2006,34(4):38-40,9.
    [114]胡林,冯仲科,孙玉清.基于GIS的林火动态风险等级区的划分[J].福建林学院学报,2006,26(2):131-134.
    [115]赵彪,陈志鼎,杨丽丽.基于过程的水电工程全而动态风险管理[J].水利经济,2007,25(4):68-70.
    [116]戴晓坚,黄宏伟,刘千伟.上海长江隧道工程建设动态风险分析与控制[C].2007第三届上海国际隧道工程研讨会,2007:47-54.
    [117]彭铭,黄宏伟,胡群芳,等.基于盾构隧道施工监测的动态风险数据库开发[J].地下空间与工程学报,2007,3(7):1255-1260
    [118]H. John Hovland. Three-dimensional slope stability analysis method[J]. Journal of the geotechnical engineering division,1977,103(GT9):971-986.
    [119]Jiin-Song Tsai & Jia-Chyi Chang. Three-dimensional stability analysis for slurry-filled trench wall in cohesionless soil[J]. Canadian Geotechnical Journal,1996,33(5):798-808.
    [120]藁奕吕.连续壁槽溝挖之破壤土楔研究[D].硕士学化,论文,台南:国立成功大学,2002.
    [121]Kingsley H W. Arch in soil arching[J]. Journal of Geotechnical Engineering,1989,115(3): 415-419.
    [122][日]土木学会主编,朱伟 译.隧道标准规范[盾构篇]及解说(2006年制定)[s].北京:中国建筑工业出版社,2011.
    [123]Terzaghi K著,徐志英译.理论土力学[M].北京:地质出版社,1960:76-85.
    [124]陈若曦,朱斌,陈云敏,等.基于主应力轴旋转理论的修止Terzaghi松动土压力[J].岩土 力学,2010,31(5):1042-1046.
    [125]Itasca Consulting Group, Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions, version 3.0, user's manual[R]. Itasca Consulting Group, Inc.,2005.
    [126]孙书伟,林杭,任连伟.FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011,6.
    [127]W. Kent Muhlbauer著,杨嘉瑜,等译.管道风险管理手册[M].北京:中国石化出版社,2005.
    [128]彭祖赠,孙韫玉.模糊(Fuzzy)数学及其应用[M].武汉:武汉大学出版社,2002.
    [129]中华人民共和国国家标准.GB50487-2008,水利水电工程地质勘查规范[S].北京:中国计划出版社,2008.
    [130]中华人民共和国国家标准.GB50715-2011,地铁工程施工安全评价标准[S].北京:中国计划出版社,2011.
    [131]中华人民共和国国家标准.GB50652-2011,城市轨道交通地下工程建设风险管理规范[S].北京:中国计划出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700