膝关节力学建模与屈曲运动生物力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以“植入假体的生物摩擦学关键基础问题研究”以及“中国力学虚拟人”国家自然科学基金重点项目为支撑,在建立人体膝关节“骨组织-软组织”三维几何模型以及进行屈曲运动分析的基础上,分别建立了自然膝关节以及全膝关节置换后的膝关节的几何解剖模型,进行膝关节骨骼建模精度验证与分析,模型包括股胫关节、髌股关节的骨组织及软骨、半月板、韧带等软组织。提出基于三维图像配准的膝关节运动分析方法,进行膝关节屈曲运动分析。分别建立了自然膝关节以及全膝关节置换后的膝关节的几何解剖模型和动态有限元模型,构建膝关节屈曲运动生物力学实验系统,模拟人体下蹲动作进行了相应尸体实验。针对自然膝关节和全膝置换后膝关节屈曲运动的运动和接触的动态特征进行分析,并与相应的尸体实验的结果进行验证分析。结果表明,该有限元模型能够对于膝关节屈曲运动的运动和应力等生物力学特征进行合理的预测。所建立的膝关节运动分析方法以及膝关节生物力学实验系统,能够有效的测量和分析人体自然和全膝置换后膝关节屈曲运动的运动和接触特征。具体的研究内容包括:
     (1)人体膝关节“骨组织-软组织”几何建模。通过研究人体解剖结构对于人体生物力学行为的影响,保留绝大多数对于人体生物力学行为起到主要作用的组织,从而建立一个包含人体膝关节主要组织在内的对于膝关节生物力学行为起到决定性影响的人体膝关节几何解剖模型。
     构建的膝关节模型包括:股骨、胫骨、髌骨、软骨、半月板、前后交叉韧带、内外侧副韧带、股四头肌腱和髌腱。同时,模拟临床手术的要求,分别对膝关节股骨、胫骨和髌骨进行截骨;针对重建的膝关节模型,采用目前临床普遍应用的PFC固定平台人工膝关节,与前者在CAD环境下模拟装配,从而构成分析人工膝关节置换的TKR模型。模型可以用来做植入假体的几何仿真和有限元力学分析,为人体膝关节的分析提供了一个目前该研究领域中较为完整和解剖相似性较高的模型。
     通过测量三个正交方向上规则骨的六个面之间的线性和角度误差来表达测量点之间距离的建模误差,从而预测复杂曲面建模精度。避免了由于针对特征点进行测量所引起的由于特征点的选择所带来的较大的基础误差。为人体骨骼重建精度的评价提供参考。
     (2)通过运动捕捉系统进行人体典型屈曲运动-下蹲的运动测量,获得屈曲运动的基本特征。通过三维图像配准,将不同屈曲位的膝关节三维图像放在一致的坐标系下,建立膝关节各个骨组织的正交坐标系,通过运动坐标系坐标变换得到膝关节相对运动的数据。建立了一种基于三维几何解剖模型的结合三维图像配准和坐标变换进行膝关节相对运动分析的方法。
     (3)构建了一套测量自然和全膝置换膝关节屈曲运动的动态运动和接触应力测量系统,分别进行自然和全膝置换后膝关节屈曲运动的体外测试。该测试系统可以同步进行胫股关节和髌股关节测量,而且可以同步测量膝关节屈曲的运动和接触行为。通过该实验系统进行有限元模型的有效程度验证。
     (4)分别建立了天然膝关节以及全膝关节置换后的膝关节下蹲时的有限元模型,并进行了相应尸体实验,针对膝关节假体下蹲时的屈曲运动和接触应力的动态特征进行分析。模型包括股胫关节、髌股关节骨组织及其软骨、半月板、韧带和肌腱。并与相应的尸体实验的结果进行验证分析。该有限元模型能够对于膝关节下蹲时的运动和应力等生物力学特征进行合理的预测。不仅建立了自然膝关节的有限元分析模型,而且建立了全膝置换膝关节的有限元模型。该模型既可以同时模拟胫股关节和髌股关节的运动,又可以同步进行运动和接触等的生物力学分析。
     本文建立了包括人体主要骨与软组织的自然膝关节以及全膝关节置换后膝关节的几何解剖模型。进行膝关节下蹲运动测量以及膝关节相对屈曲运动分析。构建膝关节屈曲行为的运动和接触测量系统。建立了自然以及全膝置换后膝关节的动态有限元模型。分析自然及全膝置换后膝关节屈曲运动的生物力学特征,讨论人工膝关节设计的参考因素和方向。所建立的有限元模型和实验系统能够对于膝关节的运动、接触等力学行为进行评估,为临床膝关节全膝置换术和膝关节假体的设计提供有力的分析工具。研究结果可以为膝关节病理、康复研究以及人工膝关节设计提供参考。
This research is supported by NSFC (Natural Science Foundation of China), Key Project‘Implanting prothesis’s biotribological key basic research’and‘Mechanical Virtual Human of China’. Based on reconstructed model of three-dimensional (3D) geometric knee including both bone and soft-tissue and the analysis of knee flexion motion, natural knee and post total knee arthroplastic knee three-dimensinal geometric models were built, the overall reconstruction precision of the 3D medical imaging of human knee bone was predicted. The models include femoral-tibial articulation, patella-femoral articulation and their bone, cartilage, meniscus and ligments. 3D registration combined with coordinate transformation technique was proposed and applied to investigate the relative flexion kinematics of the normal knee in vivo including stibio-femoral joint and patello-femoral joint. Dynamic finite element (FE) model of knee and post total knee replacement (TKR), which include tibio-femoral, patello-femoral articulations and the surrounding soft tissues, were developed in this research, to simulate both the kinematics and the internal stresses during knee flexion simulation. The biomechanical experimental system of knee flexion motion was set up to simulate human knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee joint and knee post TKR were analysed, and were verified by comparison with the data from cadaver in vitro experiment. Results showed that dynamic FE models of knee and knee post TKR are capable of predicting kinematics and contact stresses during flexion,and could be a efficient tool for the analysis of TKR and knee prosthesis design. Contents of this thesis are as following: (1) Three-dimensional bone and soft-tissue geometric knee and knee post TKR models. By the analysis of human knee anatomic structure impact on human biomechanical behavior, the main components of knee were included to be built as 3D geometric knee models.
     Quadriceps tendon, patella tendon, tibia collateral ligament, fibular collateral ligament, posterior cruciate ligament, anterior cruciate ligament, meniscus and femur, tibia, patella’s cartilage were built in knee model. Commonly adopted TKR components (Sigma PFC) were modeled in this research. The Simulation resection and prosthesis assembly were carried out on the natural knee models. By above mentioned, the 3D geometric model of knee joint post TKR was established. Both of above models are relatively comprehensive and higher comparability models for the analysis of knee, TKR and knee prosthesis design.
     The overall reconstruction precision of the 3D medical imaging of complex surfaces human bone was evaluated by acquiring not only translational but also angular errors in three orthogonal directions between six orthogonal planes on machined bone segments. In this way, the error based on the identification of anatomical landmarks was avoided. This method can provide a reference for assessing the sensitivity, reliability and accuracy of human bone reconstruction.
     (2) The typical flexion motion-squating was measured by motion capturing system. The basic motion characteristics of knee flexion were obtained. Different models of several flexion knee positions were aligned to the same coordinate system by using the technique of 3D registration algorithm. Moreover, as for each model of the knee, an improved orthogonal object coordinate system was built on femur, tibia and patella. By establishing orthogonal coordinates on each part of the knee, the Euler angle coordinate transformation was applied to acquire data of knee relative flexion kinematics. In this way, 3D registration combined with coordinate transformation technique was proposed and applied to study the relative kinematics of knee.
     (3) A dynamic biomechanical experimental in vitro system of knee and knee post TKR flexion motion was established. This system was used to simulate human knee squatting using cadaver knee. Not only the synchronal measurement of both tibio-femoral and patello-femoral articulations but also the synchronal measurement of both kinematics and contact can be implemented in this experiment system. By comparing the results of cadaver knee flexion to those of FE model analysis, the effective degree of FE model analysis could be evaluated.
     (4) Dynamic finite element model of knee and post TKR, which include tibio-femoral, patello-femoral articulations and the surrounding soft tissues, were developed in this research, to simulate both the kinematics and the internal stresses during squat simulation. The kinematic simulating results and the contact stresses distribution of a full deformable contact analysis of knee and prosthetic knee joint during squat were verified by comparing to data from in vitro experiment. The established dynamic FE models of knee and knee after TKR could be used to predict the biomechanical characteristics of kinematics and the contact stresses during flexion. Not only the knee FE model but also the FE model of knee post TKR was esteablished. By using these established models, analysis of both tibio-femoral and patello-femoral articulations can be synchronal. Also, the synchronal biomechanical analysis of both kinematics and contact can be obtained.
     The three-dimensional geometric model of knee and knee post TKR including key bone and soft-tissue were built in this research. The motion of knee squat was measured and the relative movement of knee flexion was investigaed. A dynamic biomechanical experimental in vitro system of knee and knee post TKR flexion motion was established. Dynamic finite element model of knee and post TKR were developed in this research. The biomechanical characteristics of knee and knee post TKR flexion were studied. And the reference factors and the prediction of artificial knee joint design were discussed in this research. The established dynamic FE models and experiment system are capable of predicting the kinematics and the stresses during knee flexion,and could be efficient tools for the analysis of TKR and knee prosthesis design. Results of this research could be references for the research of knee pathology, rehabilitation and prosthesis design.
引文
[1]陈兰田等译.人工关节经十年的进展(1)整形外科的发展. Vol. 30. 1979.
    [2]Knutson, K., S. Lewold, O. Robertsson, and L. Lidgren. The Swedish knee arthroplasty register: A nation-wide study of 30,003 knees 1976-1992. Acta Orthopaedica Scandinavica. 1994. 65(4):375.
    [3]Blunn, G.W., A.B. Joshi, R.J. Minns, L. Lidgren, P. Lilley, L. Ryd, E. Engelbrecht, and P.S. Walker. Wear in retrieved condylar knee arthroplasties: A comparison of wear in different designs of 280 retrieved condylar knee prostheses. Journal of Arthroplasty. 1997. 12(3):281-290.
    [4]吕厚山.人工关节外科学. 1998:科学出版社.
    [5]Hefzy, M.S. and E. Abdel-Rahman. Dynamic modeling of the human knee joint: formulation and solution techniques. a review paper. Biomedical Engineering - Applications, Basis and Communications. 1995. 7(1):5-21.
    [6]Feikes, J.D., J.J. O'Connor, and A.B. Zavatsky. A constraint-based approach to modelling the mobility of the human knee joint. Journal of Biomechanics. 2003. 36(1):125-129.
    [7]Feikes, J. Articular surface representation in a 3-D model of knee mobility. Journal of Biomechanics. 1998. 31(Supplement 1):148-148.
    [8]Martelli, S., R.E. Ellis, M. Marcacci, and S. Zaffagnini. Total knee arthroplasty kinematics: Computer simulation and intraoperative evaluation. Journal of Arthroplasty. 1998. 13(2):145-155.
    [9]Wilson, D.R., J.D. Feikes, and J.J. O'Connor. Ligaments and articular contact guide passive knee flexion. Journal of Biomechanics. 1998. 31(12):1127-1136.
    [10]Smidt, G.L. Biomechanical analysis of knee flexion and extension. Journal of Biomechanics. 1973. 6(1).
    [11]Lindbeck, L. Impulse and moment of impulse in the leg joints by impact from kicking. Journal of Biomechanical Engineering. 1983. 105(2):108-111.
    [12]Perie, D. and M.C. Hobatho. In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clinical Biomechanics. 1998. 13(6):394-402.
    [13]Bendjaballah, M.Z., A. Shirazi-Adl, and D.J. Zukor. Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. The Knee. 1995. 2(2):69-79.
    [14]Viceconti, M., C. Zannoni, D. Testi, and A. Cappello. CT data sets surface extraction for biomechanical modeling of long bones. Computer Methods and Programs in Biomedicine. 1999. 59(3):159-166.
    [15]Blemker, S.S., D.S. Asakawa, G.E. Gold, and S.L. Delp. Image-based musculoskeletal modeling: Applications, advances, and future opportunities. Journal of Magnetic Resonance Imaging. 2007. 25(2):441-451.
    [16]Li, G., and Loopez, O., . Reliability of a 3D Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis. in 23rd Proceedings of the American Society of Biomechanics. 1999. Pittsburgh, PA.
    [17]Hefzy, M.S. and T.D.V. Cooke. Review of knee models: 1996 update. Applied Mechanics Reviews. 1996. 49(10 PART 2).
    [18]Freudenstein, F. and L.S. Woo. Kinematics of the human knee joint. The Bulletin of Mathematical Biophysics. 1969. 31(2):215-232.
    [19]Hartfel, M.A., H.J. Lysdahl, D.G. Olson, and A.G. Erdman. The use of screw/axis surfaces in the three-dimensional analysis of the human knee joint. In: Lantz S A,King A I,eds.1986,Advances inBioengineering.ASME,WAM,Anaheim CA. 1986. Dec 7-12:105-106.
    [20]Crowninshield, R., M.H. Pope, and R.J. Johnson. An analytical model of the knee. Journal of Biomechanics. 1976. 9(6):397-405.
    [21]Wismans, J., F. Veldpaus, and J. Janssen. A three-dimensioal mathematical model of the knee-joint. Journal of Biomechanics. 1980. 13(8):677-686.
    [22]Moeinzadeh, M.H., A.E. Engin, and N. Akkas. Two-dimensional dynamic modelling of human knee joint. Journal of Biomechanics. 1983. 16(4):253-264.
    [23]Matthews, L.S., D.A. Sonstegard, and J.A. Henke. Load bearing characteristics of the patello-femoral joint. Acta Orthopaedica Scandinavica. 1977. 48(5):511-516.
    [24]Goodfellow, J., D.S. Hungerford, and M. Zindel. Patello femoral joint mechanics and pathology. I. Functional anatomy of the patello femoral joint. Journal of Bone and Joint Surgery - Series B. 1976. 58(3):287-290.
    [25]Veress, S.A., F.G. Lippert, M.C.Y. Hou, and T. Takamoto. Patellar tracking patterns measurement by analytical X-ray photogrammetry. Journal of Biomechanics. 1979. 12(9):639-650.
    [26]Van Eijden, T.M.G.J., E. Kouwenhoven, J. Verburg, and W.A. Weijs. A mathematical model of the patellofemoral joint. Journal of Biomechanics. 1986. 19(3):219-229.
    [27]Abdel-Rahman, E.M. and M.S. Hefzy. Three-dimensional dynamic behaviour of the human knee joint under impact loading. Medical Engineering & Physics. 1998. 20(4):276-290.
    [28]Ling, Z.K., G. Guo, and S. Boersma. Analytical study on the kinematic and dynamic behaviors of a knee joint. Medical Engineering and Physics. 1997. 19(1):29-36.
    [29]Caruntu, D.I. and M.S. Hefzy. 3-D anatomically based dynamic modeling of the human knee to include tibio-femoral and patello-femoral joints. Journal of Biomechanical Engineering. 2004. 126(1):44-53.
    [30]王西十,白瑞浦.关于人膝关节生物力学模型的研究现状.力学进展. 1999. 29 (2):244 - 250.
    [31]樊瑜波.生物力学:一门活跃的交叉学科.医用生物力学. 2003. 18(04):193-194.
    [32]Hirokawa, S. and R. Tsuruno. Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. Journal of Biomechanics. 2000. 33(9):1069-1077.
    [33]Heegaard, J., P.F. Leyvraz, A. Curnier, L. Rakotomananaa, and R. Huiskes. The biomechanics of the human patella during passive knee flexion. Journal of Biomechanics. 1995. 28(11):1265-1279.
    [34]Beynnon, B., J. Yu, D. Huston, B. Fleming, R. Johnson, L. Haugh, and M.H. Pope. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. Journal of Biomechanical Engineering. 1996. 118(2):227-238.
    [35]Bendjaballah, M.Z., A. Shirazi-Adl, and D.J. Zukor. Biomechanical response of the passive human knee joint under anterior-posterior forces. Clinical Biomechanics. 1998. 13(8):625-633.
    [36]Beillas, P., G. Papaioannou, S. Tashman, and K.H. Yang. A new method to investigate in vivo knee behavior using a finite element model of the lower limb. Journal of Biomechanics. 2004. 37(7):1019-1030.
    [37]Pena, E., B. Calvo, M.A. Martinez, and M. Doblare. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics. 2006. 39(9):1686-1701.
    [38]杨桂通.医用生物力学. 1994,北京:科学出版社.
    [39]Carte, D.R. and W.C. Hayes. The compressive behavior of bone as a two-phase porous structure. Journal ofBone and Joint Surgery - Series A. 1977. 59(7):954-962.
    [40]冯元桢.生物力学. 1983,北京:科学出版社. 240-241.
    [41]Keeve, E., S. Girod, P. Pfeifle, and B. Girod. Anatomy-based facial tissue modeling using the finite element method. in Proceedings of the IEEE Visualization Conference. 1996.
    [42]Ashman, R.B., S.C. Cowin, W.C. Van Buskirk, and J.C. Rice. A continuous wave technique for the measurement of the elastic properties of cortical bone. Journal of Biomechanics. 1984. 17(5):349-361.
    [43]Lakes, R.S. and J.L. Katz. Viscoelastic properties of wet cortical bone. III. A non-linear constitutive equation. Journal of Biomechanics. 1979. 12(9):689-698.
    [44]Kuhn, J.L., S.A. Goldstein, M.J. Ciarelli, and L.S. Matthews. The limitations of canine trabecular bone as a model for human: A biomechanical study. Journal of Biomechanics. 1989. 22(2):95-107.
    [45]Eberhardt, A.W., L.M. Keer, J.L. Lewis, and V. Vithoontien. An analytical model of joint contact. Journal of Biomechanical Engineering. 1990. 112(4):407-413.
    [46]Shepherd, D.E.T. and B.B. Seedhom. The 'instantaneous' compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology. 1999. 38(2):124-132.
    [47]Li, G., O. Lopez, and H. Rubash. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. Journal of Biomechanical Engineering. 2001. 123(4):341-346.
    [48]Andriacchi, T.P., P.L. Briant, S.L. Bevill, and S. Koo. Rotational changes at the knee after ACL injury cause cartilage thinning. Clinical Orthopaedics and Related Research. 2006(442):39-44.
    [49]Blankevoort, L. and R. Huiskes. Ligament-bone interaction in a three-dimensional model of the knee. Journal of Biomechanical Engineering. 1991. 113(3):263-269.
    [50]Pandy, M.G. and K.B. Shelburne. Theoretical analysis of ligament and extensor-mechanism function in the ACL-deficient knee. Clinical Biomechanics. 1998. 13(2):98-111.
    [51]Moglo, K.E. and A. Shirazi-Adl. Biomechanics of passive knee joint in drawer: Load transmission in intact and ACL-deficient joints. Knee. 2003. 10(3):265-276.
    [52]Mommersteeg, T.J.A., L. Blankevoort, R. Huiskes, J.G.M. Kooloos, and J.M.G. Kauer. Characterization of the mechanical behavior of human knee ligaments: A numerical-experimental approach. Journal of Biomechanics. 1996. 29(2):151-160.
    [53]Vedi, V., A. Williams, S.J. Tennant, E. Spouse, D.M. Hunt, and W.M.W. Gedroyc. Meniscal movement. An in-vivo study using dynamic MRI. Journal of Bone and Joint Surgery - Series B. 1999. 81(1):37-41.
    [54]Walker, P.S. and M.J. Erkman. The role of the menisci in force transmission across the knee. CLIN.ORTHOP. 1975. No. 109:184-192.
    [55]Tissakht, M. and A.M. Ahmed. Tensile stress-strain characteristics of the human meniscal material. Journal of Biomechanics. 1995. 28(4):411-422.
    [56]Noyes, F.R. and E.S. Grood. The strength of the anterior cruciate ligament in humans and rhesus monkeys: Age related and species related changes. Journal of Bone and Joint Surgery - Series A. 1976. 58(8):1074-1082.
    [57]LeRoux, M.A. and L.A. Setton. Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. Journal of Biomechanical Engineering. 2002. 124(3):315-321.
    [58]Aspden, R.M. A model for the function and failure of the meniscus. Engineering in Medicine. 1985. 14(3):119-122.
    [59]Schreppers, G.J.M.A., A.A.H.J. Sauren, and A. Huson. Numerical model of the load transmission in the tibio-femoral contact area. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1990. 204(1):53-59.
    [60]Andriacchi, T.P., R.P. Mikosz, S.J. Hampton, and J.O. Galante. Model studies of the stiffness characteristics of the human knee joint. Journal of Biomechanics. 1983. 16(1):23-29.
    [61]Donahue, T.L.H., M.L. Hull, M.M. Rashid, and C.R. Jacobs. A finite element model of the human knee joint for the study of tibio-femoral contact. Journal of Biomechanical Engineering. 2002. 124(3):273-280.
    [62]Stone, K.R., W.G. Rodkey, R. Webber, L. McKinney, and J.R. Steadman. Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. American Journal of Sports Medicine. 1992. 20(2):104-111.
    [63]Rankin, E.A., G.S. Alarcon, R.W. Chang, L.M. Cooney Jr, L.S. Costley, A. Delitto, R.A. Deyo, S.K. Donaldson, M.C. Hochberg, C.H. MacLean, E.H. Yelin, and K. Marciel. NIH consensus statement on total knee replacement December 8-10, 2003. Journal of Bone and Joint Surgery - Series A. 2004. 86(6):1328-1335.
    [64]Hungerford, D.S. and L.C. Jones. The rationale for cementless total hip replacement. Orthopedic Clinics of North America. 1993. 24(4):617-626.
    [65]Yoon, Y.S., G.H. Jang, and Y.Y. Kim. Shape optimal design of the stem of a cemented hip prosthesis to minimize stress concentration in the cement layer. Journal of Biomechanics. 1989. 22(11-12):1279-1284.
    [66]Rehder, U. Morphometrical studies on the symmetry of the human knee joint: femoral condyles. Journal of Biomechanics. 1983. 16(5):351-361.
    [67]Mensch, J.S. and H.C. Amstutz. Knee morphology as a guide to knee replacement. Clinical orthopaedics and related research. 1975(112):231-241.
    [68]Kurosawa, H., P.S. Walker, S. Abe, A. Garg, and T. Hunter. Geometry and motion of the knee for implant and orthotic design. Journal of Biomechanics. 1985. 18(7):487-499.
    [69]Essinger, J.R., P.F. Leyvraz, J.H. Heegard, and D.D. Robertson. A mathematical model for the evaluation of the behaviour during flexion of condylar-type knee prostheses. Journal of Biomechanics. 1989. 22(11-12):1229-1241.
    [70]Garg, A. and P.S. Walker. Prediction of total knee motion using a three-dimensional computer-graphics model. Journal of Biomechanics. 1990. 23(1):45-58.
    [71]Sathasivam, S. and P.S. Walker. A computer model with surface friction for the prediction of total knee kinematics. Journal of Biomechanics. 1997. 30(2):177-184.
    [72]Godest, A.C. A computational model for the prediction of total knee replacement kinematics in the sagittal plane. Journal of Biomechanics. 2000. 33(4):435.
    [73]Guoan, L. and Li. A comparison of different methods in predicting static pressure distribution in articulating joints. Journal of Biomechanics. 1997. 30(6):635.
    [74]Piazza, S.J. Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. Journal of biomechanical engineering. 2001. 123(6):599.
    [75]Fregly, B.J. Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. Journal of Biomechanics. 2003. 36(11):1659.
    [76]Fregly, B.J. and Fregly. Computational wear prediction of a total knee replacement from in vivo kinematics. Journal of Biomechanics. 2005. 38(2):305.
    [77]Moran, M.F. and Moran. Computational assessment of constraint in total knee replacement. Journal ofBiomechanics. 2008. 41(9):2013.
    [78]Rawlinson, J.J. Flat medial-lateral conformity in total knee replacements does not minimize contact stresses. Journal of Biomechanics. 2002. 35(1):27.
    [79]Beillas, P. and Beillas. A new method to investigate in vivo knee behavior using a finite element model of the lower limb. Journal of Biomechanics. 2004. 37(7):1019.
    [80]Van Lenthe, G.H. and Lenthe. Stemmed femoral knee prostheses: effects of prosthetic design and fixation on bone loss. Acta orthopaedica Scandinavica. 2002. 73(6):630.
    [81]Miyoshi, S., T. Takahashi, M. Ohtani, H. Yamamoto, and K. Kameyama. Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model. Clinical Biomechanics. 2002. 17(7):521-525.
    [82]Godest, A.C., M. Beaugonin, E. Haug, M. Taylor, and P.J. Gregson. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. Journal of Biomechanics. 2002. 35(2):267-275.
    [83]Liau, J.-J., C.-K. Cheng, C.-H. Huang, and W.-H. Lo. Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint. Clinical Biomechanics. 2002. 17(9-10):698-704.
    [84]Liau, J.J. The effect of malalignment on stresses in polyethylene component of total knee prostheses-a finite element analysis. Clinical Biomechanics. 2002. 17(2):140.
    [85]Villa, T. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations. Journal of Biomechanics. 2004. 37(1):45.
    [86]Chu, T. An Investigation on Contact Stresses of New Jersey Low Contact Stress (NJLCS) Knee using Finite Element Method. Journal of systems integration. 1999. 9(2):187.
    [87]Halloran, J.P. and Halloran. Explicit finite element modeling of total knee replacement mechanics. Journal of Biomechanics. 2005. 38(2):323.
    [88]Giddings, V.L. Total knee replacement polyethylene stresses during loading in a knee simulator. Journal of tribology. 2001. 123(4):842.
    [89]Barink, M. A three-dimensional dynamic finite element model of the prosthetic knee joint: simulation of joint laxity and kinematics. Proceedings of the Institution of Mechanical Engineers; Part H; Journal of Engineering in Medicine. 2005. 219(6):415.
    [90]Ishii, Y., K. Terajima, S. Terashima, and Y. Koga. Three-dimensional kinematics of the human knee with intracortical pin fixation. Clinical orthopaedics and related research. 1997(343):144-150.
    [91]Jonsson, H. Three-dimensional knee joint movements during a step-up: evaluation after anterior cruciate ligament rupture. Journal of Orthopaedic Research. 1994. 12(6):769.
    [92]Dyrby, C.O. Secondary motions of the knee during weight bearing and non-weight bearing activities. Journal of Orthopaedic Research. 2004. 22(4):794.
    [93]Benoit, D.L., D.K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renstrom. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait and Posture. 2006. 24(2):152-164.
    [94]Benoit, D.L. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clinical orthopaedics and related research. 2007. 454:81.
    [95]Leardini, A., L. Chiari, U. Della Croce, and A. Cappozzo. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait & posture. 2005. 21(2):212-225.
    [96]Tashman, S. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. The American journal of sports medicine. 2004. 32(4):975.
    [97]Barrance, P.J. A method for measurement of joint kinematics in vivo by registration of 3-D geometric models with cine phase contrast magnetic resonance imaging data. Journal of biomechanical engineering. 2005. 127(5):829.
    [98]Lerner, A.L. The use of sequential MR image sets for determining tibiofemoral motion: reliability of coordinate systems and accuracy of motion tracking algorithm. Journal of biomechanical engineering. 2003. 125(2):246.
    [99]Sheehan, F.T. Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. Journal of Biomechanics. 1997. 31(1):21.
    [100]Johal, P. and Johal. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using‘interventional’MRI. Journal of Biomechanics. 2005. 38(2):269.
    [101]DeFrate, L.E. The 6 Degrees of Freedom Kinematics of the Knee After Anterior Cruciate Ligament Deficiency. The American journal of sports medicine. 2006. 34(8):1240.
    [102]Miller, M.C. The effect of component placement on knee kinetics after arthroplasty with an unconstrained prosthesis. Journal of Orthopaedic Research. 2001. 19(4):614.
    [103]Hollis, J.M. A six-degree-of-freedom test system for the study of joint mechanics and ligament forces. Journal of biomechanical engineering. 1995. 117(4):383.
    [104]Fujie, H. A novel robotic system for joint biomechanical tests: application to the human knee joint. Journal of biomechanical engineering. 2004. 126(1):54.
    [105]Churchill, D.L., S.J. Incavo, C.C. Johnson, and B.D. Beynnon. The transepicondylar axis approximates the optimal flexion axis of the knee. Clinical orthopaedics and related research. 1998(356):111-118.
    [106]Zavatsky, A.B. Simultaneous in vitro measurement of patellofemoral kinematics and forces. Journal of biomechanical engineering. 2004. 126(3):351.
    [107]Most, E. and Most. Sensitivity of the knee joint kinematics calculation to selection of flexion axes. Journal of Biomechanics. 2004. 37(11):1743.
    [108]Patil, S. Can normal knee kinematics be restored with unicompartmental knee replacement? Journal of Bone and Joint Surgery; American volume. 2005. 87(2):332.
    [109]Asano, T., M. Akagi, K. Tanaka, J. Tamura, and T. Nakamura. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clinical orthopaedics and related research. 2001(388):157-166.
    [110]D'Lima, D.D., C. Poole, H. Chadha, J.C. Hermida, A. Mahar, and C.W. Colwell. Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clinical orthopaedics and related research. 2001(392):213-220.
    [111]More, R.C. Hamstrings—an anterior cruciate ligament protagonist. The American journal of sports medicine. 1993. 21(2):231.
    [112]Most, E. The kinematics of fixed-and mobile-bearing total knee arthroplasty. Clinical orthopaedics and related research. 2003. 416:197.
    [113]Ahmed, A.M. In-Vitro of Measurement of Static Pressure Distribution in Synovial Joints—Part I: Tibial Surface of the Knee. Journal of biomechanical engineering. 1983. 105(3):216.
    [114]Goodfellow, J., D.S. Hungerford, and M. Zindel. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. Journal of Bone and Joint Surgery; British volume. 1976.58(3):287-290.
    [115]DeFrate, L.E. and Defrate. In vivo tibiofemoral contact analysis using 3D MRI-based knee models. Journal of Biomechanics. 2004. 37(10):1499.
    [116]Lin, Y.-C., J. Farr, K. Carter, and B. Fregly. Response surface optimization for joint contact model evaluation. Journal of applied biomechanics. 2006. 22(2):120-130.
    [117]Salsich, G., S. Ward, M. Terk, and C. Powers. In vivo assessment of patellofemoral joint contact area in individuals who are pain free. Clinical orthopaedics and related research. 2003(417):277-284.
    [118]Harris, M.L. An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film-Application to the design of total knee joint replacements. Journal of Biomechanics. 1999. 32(9):951.
    [119]Thambyah, A. and Thambyah. Contact stresses in the knee joint in deep flexion. Medical engineering & physics. 2005. 27(4):329.
    [120]Wirz, D., R. Becker, S.F. Li, N.F. Friederich, and W. Mller. [Validation of the Tekscan system for statistic and dynamic pressure measurements of the human femorotibial joint]. Biomedizinische Technik/Biomedical Engineering. 2002. 47(7-8):195-201.
    [121]Goodfellow, J. and J. O'Connor. The mechanics of the knee and prosthesis design. Journal of Bone and Joint Surgery; British volume. 1978. 60-B(3):358-369.
    [122]Kettelkamp, D.B. and A.W. Jacobs. Tibiofemoral contact area--determination and implications. Journal of Bone and Joint Surgery; American volume. 1972. 54(2):349-356.
    [123]Nakagawa, S. The posterior cruciate ligament during flexion of the normal knee. Journal of Bone and Joint Surgery; American volume. 2004. 86(3):450.
    [124]Fuss, F.K. Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. Journal of anatomy. 1992. 180(2):297-304.
    [125]Iwaki, H., V. Pinskerova, and M.A. Freeman. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. Journal of Bone and Joint Surgery; British volume. 2000. 82(8):1189-1195.
    [126]McPherson, A. and McPherson. Imaging knee position using MRI, RSA/CT and 3D digitisation. Journal of Biomechanics. 2005. 38(2):263.
    [127]Patel, V.V. A three-dimensional MRI analysis of knee kinematics. Journal of Orthopaedic Research. 2004. 22(2):283.
    [128]Hsieh, Y.-F., L. Draganich, S. Ho, and B. Reider. The effects of removal and reconstruction of the anterior cruciate ligament on the contact characteristics of the patellofemoral joint. The American journal of sports medicine. 2002. 30(1):121-127.
    [129]Wilson, D.R., J.D. Feikes, A.B. Zavatsky, and J.J. O'Connor. The components of passive knee movement are coupled to flexion angle. Journal of Biomechanics. 2000. 33(4):465-473.
    [130]Yao, J., S. Lancianese, K. Hovinga, J. Lee, and A. Lerner. Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. Journal of Orthopaedic Research. 2008. 26(5):673-684.
    [131]Freeman, M.A.R. and Freeman. The movement of the normal tibio-femoral joint. Journal of Biomechanics. 2005. 38(2):197.
    [132]Blankevoort, L., R. Huiskes, and A. de Lange. The envelope of passive knee joint motion. Journal ofBiomechanics. 1988. 21(9):705-720.
    [133]Pincivero, D.M. Quadriceps-hamstring EMG activity during functional, closed kinetic chain exercise to fatigue. European journal of applied physiology. 2000. 81(6):504.
    [134]Smith, P.N. Development of the concepts of knee kinematics. Archives of physical medicine and rehabilitation. 2003. 84(12):1895.
    [135]Amiri, S. Mechanics of the passive knee joint. Part 2: interaction between the ligaments and the articular surfaces in guiding the joint motion. Proceedings of the Institution of Mechanical Engineers; Part H; Journal of Engineering in Medicine. 2007. 221(8):821.
    [136]Li, G., E. Most, E. Otterberg, K. Sabbag, S. Zayontz, T. Johnson, and H. Rubash. Biomechanics of posterior-substituting total knee arthroplasty: an in vitro study. Clinical orthopaedics and related research. 2002(404):214-225.
    [137]Delp, S.L. Tradeoffs between motion and stability in posterior substituting knee arthroplasty design. Journal of Biomechanics. 1995. 28(10):1155.
    [138]Pagnano, M.W., A.D. Hanssen, D.G. Lewallen, and M.J. Stuart. Flexion instability after primary posterior cruciate retaining total knee arthroplasty. Clinical orthopaedics and related research. 1998(356):39-46.
    [139]Hsu, H.C., Z.P. Luo, J.A. Rand, and K.N. An. Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. The Journal of arthroplasty. 1997. 12(1):74-83.
    [140]Stiehl, J.B. Kinematics of the patellofemoral joint in total knee arthroplasty. The Journal of arthroplasty. 2001. 16(6):706.
    [141]Hefzy, M.S., W.T. Jackson, S.R. Saddemi, and Y.F. Hsieh. Effects of tibial rotations on patellar tracking and patello-femoral contact areas. Journal of biomedical engineering. 1992. 14(4):329-343.
    [142]Singerman, R., D.T. Davy, and V.M. Goldberg. Effects of patella alta and patella infera on patellofemoral contact forces. Journal of Biomechanics. 1994. 27(8):1059-1065.
    [143]Mizuno, Y. Q-angle influences tibiofemoral and patellofemoral kinematics. Journal of Orthopaedic Research. 2001. 19(5):834.
    [144]Fukubayashi, T. The contact area and pressure distribution pattern of the knee: a study of normal and osteoarthrotic knee joints. Acta orthopaedica. 1980. 51(1):871.
    [145]Ihn, J.C. In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy. International orthopaedics. 1993. 17(4).
    [146]Brown, T.D. In vitro contact stress distribution on the femoral condyles. Journal of Orthopaedic Research. 1984. 2(2):190.
    [147]Butler, D.L., F.R. Noyes, and E.S. Grood. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. Journal of Bone and Joint Surgery - Series A. 1980. 62(2):259-270.
    [148]Maquet, P.G., A.J. Van de Berg, and J.C. Simonet. Femorotibial weight-bearing areas. Experimental determination. Journal of Bone and Joint Surgery; American volume. 1975. 57(6):766-771.
    [149]Thun, M. Morbidity from repetitive knee trauma in carpet and floor layers. Occupational and Environmental Medicine. 1987. 44(9):611.
    [150]Conditt MA, T.M., Wenk TJ, Holden CA, Huang E, Ismaily SK, Noble PC. Knee kinematics and medial lift-off during high flexion activities. Proc Orthopaedic Research Society. 2006. 31:Paper 0251.
    [151]Girgis, F.G., J.L. Marshall, and A. Monajem. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clinical orthopaedics and related research. 1975(106):216-231.
    [152]Powers, C.M., J.C. Lilley, and T.Q. Lee. The effects of axial and multi-plane loading of the extensor mechanism on the patellofemoral joint. Clinical Biomechanics. 1998. 13(8):616-624.
    [153]Clark, A.L., W. Herzog, and T.R. Leonard. Contact area and pressure distribution in the feline patellofemoral joint under physiologically meaningful loading conditions. Journal of Biomechanics. 2002. 35(1):53-60.
    [154]Csintalan, R., M. Schulz, J. Woo, P. McMahon, and T. Lee. Gender differences in patellofemoral joint biomechanics. Clinical orthopaedics and related research. 2002(402):260-269.
    [155]Henche, H.R., H.U. Kunzi, and E. Morscher. The areas of contact pressure in the patello-femoral joint. International Orthopaedics. 1981. 4(4):279-281.
    [156]Yildirim, G. and Yildirim. The contact locations in the knee during high flexion. The knee. 2007. 14(5):379.
    [157]Lee, T.Q., A.P. Gerken, F.E. Glaser, W.C. Kim, and S.H. Anzel. Patellofemoral joint kinematics and contact pressures in total knee arthroplasty. Clinical orthopaedics and related research. 1997(340):257-266.
    [158]Insall JN,Scott WN, Anatomy. Surgery of the Knee, ed. I. JN(3ed). 2001, New York: Churchill Livingston. 13-77.
    [159]吕厚山.人工膝关节置换术:功能解剖和生物力学,?人工关节外科学?. 1998:科学出版社. 237-256.
    [160]吴海山.膝关节解剖构要,?人工膝关节外科学?. 2005:人民军医出版社. 14-21.
    [161]Fuss, F.K. Anatomy of the cruciate ligaments and their function in extension and flexion of the human knee joint. The American journal of anatomy. 1989. 184(2):165-172.
    [162]LaPrade, R.F. The anatomy of the posterior aspect of the knee. An anatomic study. Journal of Bone and Joint Surgery; American volume. 2007. 89(4):758.
    [163]叶铭,王成焘.目标组织轮廓的三次非均匀B样条逼近.上海交通大学学报. 2003(5).
    [164]缪斌和,邓元木.,黄斐增.基于对应点匹配断层图像三维插值方法.中华医学物理学杂志. 2000. 17(1):14-16.
    [165]Mukai, S.R. and Park. Smooth surface approximation to serial cross-sections. Computer aided design. 1996. 28(12):995.
    [166]Piegl, L.A., The NURBS book. 1997, Berlin: Springer-Verlag.
    [167]Dierckx, P., Curve and surface fitting with splines. 1995: Clarendon Press, Oxford.
    [168]胡瑞安.计算机辅助几何设计. 1989:华中理工大学出版社.
    [169]Besl, P.J. A method for registration of 3-D shapes. IEEE transactions on pattern analysis and machine intelligence. 1992. 14(2):239.
    [170]Bull, A.M.J. Knee joint motion: description and measurement. Proceedings of the Institution of Mechanical Engineers; Part H; Journal of Engineering in Medicine. 1998. 212(5):357.
    [171]Hollister, A.M., S. Jatana, A.K. Singh, W.W. Sullivan, and A.G. Lupichuk. The axes of rotation of the knee. Clinical orthopaedics and related research. 1993(290):259-268.
    [172]Grood, E.S. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of biomechanical engineering. 1983. 105(2):136.
    [173]Hildebolt, C.F., M.W. Vannier, and R.H. Knapp. Validation study of skull three-dimensional computerized tomography measurements. American journal of physical anthropology. 1990. 82(3):283-294.
    [174]Huang, Y.C. and Huang. A fast error comparison method for massive STL data. Advances in engineering software. 2008. 39(12):962.
    [175]Man Yubin, S.C.-. The uncertainty assessment of measurement result of calipers. Enterprise Standardization2003. 06:26-27.
    [176]Yang Yao, Z.W. The uncertainty assessment of measurement result of protractors. Enterprise Standardization. 2006. 09:26.
    [177]Barrack, R.L. and M.W. Wolfe. Patellar resurfacing in total knee arthroplasty. The Journal of the American Academy of Orthopaedic Surgeons. 2000. 8(2):75-82.
    [178]Lee, G.-C., F. Cushner, G. Scuderi, and J. Insall. Optimizing patellofemoral tracking during total knee arthroplasty. The Journal of Knee Surgery. 2004. 17(3):144-9.
    [179]Akagi, M. Variability of extraarticular tibial rotation references for total knee arthroplasty. Clinical orthopaedics and related research. 2005. &na;(436):172.
    [180]Ikeuchi, M. Determining the rotational alignment of the tibial component at total knee replacement: a comparison of two techniques. Journal of Bone and Joint Surgery; British volume. 2007. 89-b(1):45.
    [181]Li, G., T.W. Rudy, M. Sakane, A. Kanamori, C.B. Ma, and S.L. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Journal of Biomechanics. 1999. 32(4):395-400.
    [182]Benoit, D., D. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renstrom. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait & posture. 2006. 24(2):152-164.
    [183]Cole, G.K. Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. Journal of biomechanical engineering. 1993. 115(4a):344.
    [184]Asano, T. In vivo three-dimensional patellar tracking on the femur. Clinical orthopaedics and related research. 2003. 413:222.
    [185]Trent, P.S., P.S. Walker, and B. Wolf. Ligament length patterns, strength, and rotational axes of the knee joint. Clinical Orthopaedics and Related Research. 1976(117):263-270.
    [186]Rho, J.Y., P. Zioupos, J.D. Currey, and G.M. Pharr. Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. Journal of Biomechanics. 2002. 35(2):189-198.
    [187]庄天戈, CT原理与算法. 1992:上海交通大学出版社.
    [188]Couteau, B., M.C. Hobatho, R. Darmana, J.C. Brignola, and J.Y. Arlaud. Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties. Journal of Biomechanics. 1998. 31(4):383-386.
    [189]Rho, J.Y., M.C. Hobatho, and R.B. Ashman. Relations of mechanical properties to density and CT numbers in human bone. Medical engineering & physics. 1995. 17(5):347-355.
    [190]Gross, S. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics. 2001. 34(8):995.
    [191]Armstrong, C.G., W.M. Lai, and V.C. Mow. An analysis of the unconfined compression of articular cartilage. Journal of Biomechanical Engineering. 1984. 106(2):165-173.
    [192]Donzelli, P.S., R.L. Spilker, G.A. Ateshian, and V.C. Mow. Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. Journal of Biomechanics. 1999. 32(10):1037-1047.
    [193]Weiss, J.A. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer methods in applied mechanics and engineering. 1996. 135(1-2):107.
    [194]Gardiner, J.C., J.A. Weiss, and T.D. Rosenberg. Strain in the human medial collateral ligament duringvalgus loading of the knee. Clinical Orthopaedics and Related Research. 2001(391):266-274.
    [195]Suggs, J.F. Patient function after a posterior stabilizing total knee arthroplasty: cam–post engagement and knee kinematics. Knee surgery, sports traumatology, arthroscopy. 2008. 16(3):290.
    [196]Mem, M.A.L.R.A.A. and LeRoux. Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. Journal of biomechanical engineering. 2002. 124(3):315.
    [197]赵明阶,何光春,王多垠. ,边坡工程处治技术. 2003.北京:人民交通出版社.
    [198]Stuart, M.J. Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises. The American journal of sports medicine. 1996. 24(6):792.
    [199]Klimek, L., U. Ecke, B. Lu?bben, J. Witte, and W. Mann. A passive-marker - Based optical system for computer-aided surgery in otorhinolaryngology: Development and first clinical experiences. Laryngoscope. 1999. 109(9):1509-1515.
    [200]Matsuda, S., S.E. White, V.G. Williams, D.S. McCarthy, and L.A. Whiteside. Contact stress analysis in meniscal bearing total knee arthroplasty. The Journal of arthroplasty. 1998. 13(6):699-706.
    [201]Szivek, J.A., L. Cutignola, and R.G. Volz. Tibiofemoral contact stress and stress distribution evaluation of total knee arthroplasties. The Journal of arthroplasty. 1995. 10(4):480-491.
    [202]Ateshian, G.A., S.D. Kwak, L.J. Soslowsky, and V.C. Mow. A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. Journal of Biomechanics. 1994. 27(1):111-124.
    [203]Fregly, B.J. Estimation of discretization errors in contact pressure measurements. Journal of Biomechanics. 2003. 36(4):609.
    [204]Singerman, R. Direct in vitro determination of the patellofemoral contact force for normal knees. Journal of biomechanical engineering. 1995. 117(1):8.
    [205]Hsieh, Y.F., L.F. Draganich, S.H. Ho, and B. Reider. The effects of removal and reconstruction of the anterior cruciate ligament on patellofemoral kinematics. The American journal of sports medicine. 1998. 26(2):201-209.
    [206]Kwak, S.D. Hamstrings and iliotibial band forces affect knee kinematics and contact pattern. Journal of Orthopaedic Research. 2000. 18(1):101.
    [207]MacWilliams, B.A. Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion. Journal of Orthopaedic Research. 1999. 17(6):817.
    [208]Hirokawa, S. Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. The American journal of sports medicine. 1992. 20(3):299.
    [209]Van Kampen, A. and v. Kampen. The three-dimensional tracking pattern of the human patella. Journal of Orthopaedic Research. 1990. 8(3):372.
    [210]Welsh, R.P. Knee joint structure and function. Clinical orthopaedics and related research. 1980(147):7-14.
    [211]Nakagawa, S., Y. Kadoya, S. Todo, A. Kobayashi, H. Sakamoto, M.A. Freeman, and Y. Yamano. Tibiofemoral movement 3: full flexion in the living knee studied by MRI. Journal of Bone and Joint Surgery; British volume. 2000. 82(8):1199-1200.
    [212]Shapeero, L.G., S.F. Dye, M.J. Lipton, R.G. Gould, E.G. Galvin, and H.K. Genant. Functional dynamics of the knee joint by ultrafast, cine-CT. Investigative radiology. 1988. 23(2):118-123.
    [213]Wretenberg, P. Tibiofemoral contact points relative to flexion angle measured with MRI. ClinicalBiomechanics. 2002. 17(6):477.
    [214]Ando, Y., H. Fukatsu, T. Ishigaki, I. Aoki, and T. Yamada. Analysis of knee movement with low-field MR equipment--a normal volunteer study. Radiation medicine. 1994. 12(4):153-160.
    [215]Shoemaker, S.C., D. Adams, D.M. Daniel, and S.L. Woo. Quadriceps/anterior cruciate graft interaction. An in vitro study of joint kinematics and anterior cruciate ligament graft tension. Clinical orthopaedics and related research. 1993(294):379-390.
    [216]Torzilli, P.A. Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content. Journal of biomechanical engineering. 1999. 121(5):433.
    [217]Hill, P.F. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. Journal of Bone and Joint Surgery; American volume. 2000. 82(8):1196.
    [218]Huberti, H.H. and W.C. Hayes. Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact. Journal of Bone and Joint Surgery; American volume. 1984. 66(5):715-724.
    [219]van Eijden, T.M., W. de Boer, and W.A. Weijs. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle. Journal of Biomechanics. 1985. 18(10):803-809.
    [220]Komistek, R.D. An in vivo determination of patellofemoral contact positions. Clinical Biomechanics. 2000. 15(1):29.
    [221]Farquhar, T. Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. Journal of Orthopaedic Research. 1996. 14(3):417.
    [222]Kurosaka, M. and Kurosaka. Maximizing flexion after total knee arthroplasty: the need and the pitfalls. The Journal of arthroplasty. 2002. 17(4):59.
    [223]Argenson, J.N.A. A high flexion total knee arthroplasty design replicates healthy knee motion. Clinical orthopaedics and related research. 2004. 428:174.
    [224]Pandit, H. Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement. Journal of Bone and Joint Surgery; British volume. 2005. 87-b(7):940.
    [225]Bull, A.M.J. Changes in knee kinematics reflect the articular geometry after arthroplasty. Clinical orthopaedics and related research. 2008. 466(10):2491.
    [226]Misra, A.N. The role of the posterior cruciate ligament in total knee replacement. Journal of Bone and Joint Surgery; American volume. 2003. 85(3):389.
    [227]Seedhom, B.B., T. Takeda, M. Tsubuku, and V. Wright. Mechanical factors and patellofemoral osteoarthrosis. Annals of the Rheumatic Diseases. 1979. 38(4):307-316.
    [228]Puloski, S.K., R.W. McCalden, S.J. MacDonald, C.H. Rorabeck, and R.B. Bourne. Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. Journal of Bone and Joint Surgery; American volume. 2001. 83-A(3):390-397.
    [229]Klein, R., L. Serpe, M.A. Kester, A. Edidin, Z. Fishkin, O.M. Mahoney, and T.P. Schmalzried. Rotational constraint in posterior-stabilized total knee prostheses. Clinical Orthopaedics and Related Research. 2003(410):82-89.
    [230]Huang, C.H., J.J. Liau, C.H. Huang, and C.K. Cheng. Stress analysis of the anterior tibial post in posterior stabilized knee prostheses. Journal of Orthopaedic Research. 2007. 25(4):442-449.
    [231]Casey, D., J. Cottrell, E. DiCarlo, R. Windsor, and T. Wright. PFC knee replacement: Osteolytic failures from extreme polyethylene degradation. Clinical Orthopaedics and Related Research. 2007(464):157-163.
    [232]Bayley, J.C. and R.D. Scott. Further observations on metal-backed patellar component failure. Clinicalorthopaedics and related research. 1988(236):82-87.
    [233]Figgie, H.E., V.M. Goldberg, K.G. Heiple, H.S. Moller, and N.H. Gordon. The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. Journal of Bone and Joint Surgery; American volume. 1986. 68(7):1035-1040.
    [234]Enis, J.E., R. Gardner, M.A. Robledo, L. Latta, and R. Smith. Comparison of patellar resurfacing versus nonresurfacing in bilateral total knee arthroplasty. Clinical orthopaedics and related research. 1990(260):38-42.
    [235]Healy, W.L., S.A. Wasilewski, R. Takei, and M. Oberlander. Patellofemoral complications following total knee arthroplasty. Correlation with implant design and patient risk factors. The Journal of arthroplasty. 1995. 10(2):197-201.
    [236]Boyd, A.D., F.C. Ewald, W.H. Thomas, R. Poss, and C.B. Sledge. Long-term complications after total knee arthroplasty with or without resurfacing of the patella. Journal of Bone and Joint Surgery; American volume. 1993. 75(5):674-681.
    [237]Omori, G. Contact pressure and three-dimensional tracking of unresurfaced patella in total knee arthroplasty. The knee. 1997. 4(1):15.
    [238]Heegaard, J., P.F. Leyvraz, A. Van Kampen, L. Rakotomanana, P.J. Rubin, and L. Blankevoort. Influence of soft structures on patellar three-dimensional tracking. Clinical orthopaedics and related research. 1994(299):235-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700