河网、河口及海岸整体联解数值模式及其在珠江口咸潮上溯研究的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珠江河口水系以“河网如织,八口入海”为特征,其河网、河口和近海水域构成了一个相互贯通的多河道、多河口的水流系统,上游径流、外海潮汐等因素在这个系统内相互作用、相互影响,形成了极为复杂的水动力环境。本文研究目的是要实现对河网-河口-近海这一连续水体的整体数值模拟,以期更真实的反映河网与河口、河口与近海及河口各口门间的相互影响和耦合作用,并在此基础上对珠江河口咸潮上溯问题进行相应的数值模拟研究。
     为此,本文首先建立了适用于复杂河网的一维水流、盐度数值模式,并在数值模式的求解过程中引入了节点水位法,有效提高了计算效率;其次,引入了基于无结构三角形网格、有限体积法和三维海洋原始方程组的海洋河口模式FVCOM,充分利用其网格布置灵活的特点,对计算网格进行了优化布置,实现了珠江河口大范围高分辨率的三维数值模拟;基于守恒定律,推导了两种适用于一、三维模式联解的算法,与以往算法不同,河网模式的水动力部分直接与FVCOM的二维外模联解,有效提高了计算效率;最后,基于联解算法成功实现上述两模式的整体联解。利用丰富的实测、遥感资料分别对模式进行了率定和验证,计算结果和实测、遥感数据吻合较好,模式能较好的模拟相应的水动力和盐、淡水混合与扩散过程,具有较好的精度,证明本文所发展的模式是可以应用于珠江河口咸潮上溯问题研究的。
     将模式应用于珠江河口,利用整体联解模式,创造性的实现了珠江河口水系河网-河口-近海的整体数值模拟,且计算网格具有较高的分辨率,能够准确拟合曲折岸线和多变的水下地形,使得模式能够充分体现河网与河口,河口与近海及河口各口门间的相互影响和耦合作用,计算精度得到了一定程度的提高;利用计算结果,对珠江河口水系咸潮上溯过程和机理进行了详细、深入的分析,提出了珠江河口盐、淡水输移“盐水东进,淡水西飘,深入浅出”的基本动力机制;开展了基于机理研究的(Process oriented)数值模拟试验,依据计算结果分析了径流、潮汐、地形、风、人类活动等各影响因素对珠江河口咸潮上溯的影响。
River, estuary and shallow sea composes a consecutive and integral water system, in which multiple forces (river discharge, tide, wave, wind, etc.) and different natures (temperature, density, salinity, etc.)coexist and interact with each other. Its dynamic is rather comprehensive. Further more, the Pearl River Estuary (PRE) is a multiple river/estuarine system with complex coastal geometry and abruptly varying bathymetry. These pose a great challenge for researchers to develop a computationally efficient and accurate numerical modeling system for the synchronous simulation of this integral and consecutive water system of PRE, especially its application on seawater intrusion.
     In order to study the physical mechanism and spatial/temporal structure of the seawater intrusion at PRE, A river network-estuary coupled numrical modeling system has been developed in this paper. For gaining computational efficiency, the river network is treated as one-dimensional and a one-dimensioanl river network model has been developed firstly. For keeping the vertically stratified nature of the estuarine hydrodynamics, and computational efficiency as well, a three-dimensional unstructured-grid Finite-Volume Coastal Ocean Model (FVCOM) is introduced and utilized.These two individual models are coupled through the principle of the conservation of mass, and that of momentum, at their interfaces. By doing so, a good balance between accuracy of large-scale simulation and computational efficiency has been properly achieved. The newly developed modeling system is then tested for the Pearl River and its estuary. Good agreements between calculated results and field data indicate that employing this coupled modeling system is highly efficient and capable of capturing dynamic processes of the entire water system correctly.
     Then, the developed numerical modeling system has been successfully applied to the simulation of seawater intrusion in PRE.According to calculated results, the basic mechanism of seawater intrusion in PRE has been indicated that the diluted water drifts westward following the ebb tidal current and seawater mainly intrudes upward into estuarine bays from east-south. In addtion, several process-oriented model runs has been conducted to study the effect of river discharge, bathymetry and wind on seawater intrusion.
引文
[1]《澳门供水安全专题研究报告》,珠江水利科学研究院,2006
    [2]包芸,来志刚,刘欢.珠江河口一维河网、三维河口湾水动力连接计算.热带海洋学报,24(4):67-72
    [3]包芸,任杰.采用改进的盐度场数值格式模拟珠江口盐度高度分层现象.热带海洋学报,2001,20(4):28-34
    [4]包芸,任杰.伶仃洋盐度高度层化现象及盐度锋面的研究.水动力学研究与进展,2005,20(6):689-693
    [5]陈宝冲.长江口北支河势的变化与水、沙、盐的输移.地球科学,1993,13(4):346-352
    [6]陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社,2004
    [7]逢勇,黄智华.珠江三角洲河网与伶仃洋一、三维水动力学模型联解研究.河海大学学报(自然科学版),2004,Vol.32:10-13
    [8]龚政.长江口三维斜压流场及盐度场数值模拟:[博士学位论文].南京:河海大学,2002
    [9]顾伟浩.长江口南北槽咸水入侵—兼谈开挖北槽为深水航槽.水运工程,1985,(2):1-3
    [10]顾玉亮,乐勤.长江口陈行水源地盐水入侵分析及预报.城市给排水,2004,18(2):19-20
    [11]韩乃斌.长江口南支河段氯度变化分析.水利水运科学研究,1983,(1):74-81
    [12]韩乃斌,卢中一.长江口分汊水道盐水入侵的特性.长江口综合治理研究,第四集,1988,72-92
    [13]韩乃斌.南水北调对长江口盐水入侵影响预测.地理研究,1983,2(2):99-106
    [14]韩曾萃等.钱塘江河口含盐度预报方法.水利学报,1981,(6):9-13
    [15]韩曾萃等.人类活动对盐水入侵的影响.水科学进展,2002,(3):333-339
    [16]金忠青.N-S方程的数值解和紊流模型.南京:河海大学出版社,1989
    [17]贺松林,丁兴平,孔亚珍.长江口南支河段枯季盐度变异与北支咸水倒灌.自然科学进展,2006,16(6):77-82
    [18]胡方西,胡辉,谷国传等.长江河口盐度锋.海洋与湖沼增刊,1995,26(5):23-31
    [19]黄方,也春池,温学良.黄茅海盐度特征及其盐水楔活动范围.海洋通报,1994,13(2):33-39
    [20]孔亚珍,贺松林,丁兴平,胡克林.长江口盐度的时空编号特征及其指示意义.海洋学报,2004,26(4):9-18
    [21]李忠.海洋表层盐度遥感反演机理及应用研究:[博士学位论文].青岛:中国海洋大学,2008
    [22]罗小峰.长江口水流盐度数值模拟:[博士学位论文].南京:南京水利科学研究院,2003
    [23]倪浩清等.深度平均的κ-ε紊流全场模型及其验证,水利学报,1994(11):8-17
    [24]茅志昌.长江河口盐水入侵锋研究.海洋与湖沼,1995,26(6):643-649
    [25]茅志昌,沈焕庭.长江径流变化对南港盐水入侵影响分析.海洋科学,1994,(2):60-63
    [26]茅志昌,沈焕庭.潮汐分汊河口盐水入侵类型探讨一以长江口河口为例.华东师范大学学报(自然科学版),1995,(3):77-85
    [27]茅志昌,沈焕庭,黄清辉.长江口淡水资源利用与避咸蓄淡水库.长江流域资源与环境(学报),2001,10(1):34-42
    [28]茅志昌,沈焕庭,徐彭令.长江河口咸水入侵规律及淡水资源利用.地理学报,2000,55(2)243-250
    [29]茅志昌,沈焕庭,姚运达.长江口南支南岸水域盐水入侵来源分析.海洋通报,1993,12(1):15-17
    [30]茅志昌,周纪芗,沈焕庭.黄浦江口氯化物预报公式的初步探讨.华东师范大学学报(自然科学版),1987,(1):73-78
    [31]潘定安,沈焕庭.闽江口的盐淡水混合.海洋与湖沼,1993,24(6):599-608
    [32]沈焕庭,茅志昌,谷国传等.长江口盐水入侵的初步研究一兼谈南水北调.人民长江,1980,3:20-26
    [33]沈焕庭,茅志昌,朱建荣.长江河口盐水入侵.北京:海军出版社,2003.1-175
    [34]陶学为.长江口盐水入侵研究.水利学报,1991,(9):36-41
    [35]陶建峰.河口、海岸三维斜压水流数值模式研究:[博士学位论文].南京:河海大学,2006
    [36]魏炳乾,夏双喜,内岛邦秀等.感潮河段弯道水流的水里特性.水动力学研究与进展,2007,22(1):68-75
    [37]吴辉.长江河口盐水入侵研究—北支倒灌、深水航道工程和冬季季风的影响:[博士学位论文].上海:华东师范大学,2006
    [38]肖成酞,沈焕庭.长江河口盐水入侵影响因子分析.华东师范大学学报(自然科学版),1998,(3):74-80
    [39]徐峰俊,黄胜伟,刘俊勇.珠江三角洲河口区潮流泥沙及含盐度耦合联解数学模型研究报告.水利部珠江水利委员会科学研究所,2003
    [40]徐建益,袁建忠.长江口南支河段盐水入侵的研究.水文,1994,83(5):1-6
    [41]杨莉玲.河口盐水入侵的数值模拟研究:[博士学位论文].上海:上海交通大学,2007
    [42]应轶甫,陈世光.珠江口伶仃洋咸淡水混合特征.海洋学报,1983,5(1):1-10
    [43]张蔚.河网与河口地区耦合模型得研究及应用:[博士学位论文].南京:河海大学,2006
    [44]赵保仁.长江口外的上升流现象.海洋学报,1993,15(2):108-114
    [45]赵焕庭.珠江河口咸淡水混合.珠江河口演变,北京:海洋出版社,1990
    [46]郑金海等.长江河口盐淡水混合的数值模拟计算.海洋通报,2001,(4):1-10
    [47]周光垌,严宗毅,许世雄,章克本.流体力学.北京:高等教育出版社,2002
    [48]周济福.河口混合过程的研究.中国科学(A辑),1999,(9):36-43
    [49]朱建荣.海洋数值计算方法和数值模式.北京:海军出版社,2003.
    [50]朱建荣,胡松.河口形状对河口环流河盐水入侵的影响.华东师范大学学报(自然科学版),2003,2:68-73
    [51]A. D. Nguyen and H. H. G.Savenije. Salt intrusion in multi-channel estuaries:a case study in the Mekong Delta, Vietnam. Hydrol. Earth Syst. Sci.,200610:743-754
    [52]Abood, K. A. Circulation in the Hudson River estuary. New York Academy of Sciences, 1974,250:38-111
    [53]Adlul Islam, N. S. Raghuwanshi, R., Singh, D. J. Sen. Comparison of Gradually Varied Flow Computation Algorithms for Open-Channel Network. Journal of Irrigation and Drainage Engineering,2005,457-465
    [54]Andresa D P. Comparison of Numerical Tidal Models for Practical Applications. ICCE, 2004.
    [55]Andress Wurpts. Numerical Simulation of Combined Flow-, Density-and Tide-effects. Third Chinese-German Joint Symposium on Coastal and Ocean Engineering National Cheng Kung University, Tainan,2006.
    [56]Austria P M,Aldama A A.Adaptive mesh scheme for free surface flows with moving boundaries. Computational Methods in Surface Hydrology, Springer-Verlag,1990,456-460
    [57]Blumberg A F. An Estuarine and Coastal Ocean Version of POM. Proceeding of the Princeton Ocean Model Users Meeting, Princeton,1996
    [58]Blumberg A F. Aprimer for Ecom-si. Technical Report of Hydro Qual, Inc.,1994,6
    [59]Blumberg A F, Mellor G. L. A description of a three-dimensional coastal ocean circulation model. In:Three-Dimensional Coastal Model. Amer. Georphys.1987,1-46
    [60]Bowers DG,Brett HL. The relationship between CDOM and salinity in estuaries:An analytical and graphical solution. Journal of Maring Systems,2008, Vol.73 (No.1-2)
    [61]Bowden K F, Hamilton P. Some experiments with a numerical model of circulation and mixing in a tidal estuary. Estuarine and Coastal Sci,1975,(3):281-301
    [62]C.S. Chen and H.D. Liu. An unstructured Grid,Finite-Volume,Three-Dimensional, Primitive Equatioms Ocean Model:Application to Coastal Ocean and Estuaries. Journal of Atmospherical ans Oceanic Technology,2002, Vol.20
    [63]C.S.Chen, etal.A model-dye comparison experiment in the tidal mixing front zone on the southern flank of Georges Bank. Journal of Geophysical Research,2008,Vol.113:159-186
    [64]C.S.Chen, etal.Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea. Journal of Geophysical Research,2008,Vol.113
    [65]C.S. Chen, H.S.Huang, Robert C. B.,H.D. Liu, Q.C.X, and Geoffrey Cowles. A finite volume numerical approach for coastal ocean circulation studies:Comparison with finite difference models. Journal of Geophysical Research,2007, Vol112:1-34
    [66]C.S.Chen, Robert C.Beardsley and Geoffrey Cowles. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User manual(Second Edition).School for Marine Science and Technology University of Massachusetts-Dartmouth, New Nedford, MA 02744,2006
    [67]Casulli V, Cattani E. Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow-water flow. Computers and mathematics with Applications, 1994,24:99-112
    [68]Casulli V, Cheng R T. Semi-implicit finite-difference methods for three-dimensional shallow-water flow. International Journal for Numerical Methods in Fluids, 1992,15:629-648
    [69]Catherine Johnson, James Pringle, Changseng Chen. Transport and retention of dormant copepods in the Gulf of Maine. Deep-Sea Research Ⅱ,2006,53:2520-2536
    [70]Chen, C.,H.Liu, and R.C.Beardsley. An unstructured, finite-volume, three-dimensional, primitive equation ocean model:Application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology,2003,Vol20:159-196
    [71]Chen,C.,J.Qi, R. C.Beardsley, H. Liu, H. Lin, and G. Cowles. A 3-dimensional, unstructured grid, finite-volume wet/dry point treatment method for FVCOM. Ocean Modeling,2006,
    [72]Chen C, Zhu J, Ralph E, et al.Prognostic modeling studies of the Keweenaw Current in Lake Sperior. Part I:Formation and evolution. J Phys Oceanogr,2001,31:379-395
    [73]Chen R T, Casulli V, Gartner J W. Tidal, residual, intertidal mudflat (TRIM) model and its applications to San Francisco Bay, California. Estuarine, Coastal and Shelf Science, 1993,36:235-280
    [74]Chunyan Li and Jack Blanton. Mapping of tide and tidal flow fields along a tidal channel with vessel-based observations. Journal of Geophysical Research.2004 Vol.109
    [75]Cockburn B, Hou S, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. the multidimensional case. Math Comp, 1990,54:545-581
    [76]Daniel J.Twight-Erik D. De Goede-Firmijn Zijl-Dirk Schwanenberg-Alex Y. W. Chiu. Coupled 1D-3D hydrodynamic modeling, with application to the Pearl River Delta. Ocean Dynamics,2009,59:1077-1093
    [77]Davies A M, Jones J E, Xing J.Review of recent developments in tidal hydrodynamic modeling, I:Spectral models.Journal of Hydraulic Engineering,1997,123:278-292
    [78]Dick E. Introduction to finite-volume techniques in computational fluid dynamics. Computational Fluid Dynamics,1997,271-297
    [79]Edward C.Monnahan, Miriam J.Pybus. Colour, ultraviolet absorbance and salinity of the surface waters off the west coast of Ireland. Nature,1978,274:782-784
    [80]Galperin B L, Kantha H, Hassid S, et al.A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci,198845:55-62
    [81]George L. Mellor.Users Guide for a Three-dimensional, Primitive Equation, Numerical Ocean Model.Tech report, Princeton University, Princeton,2004
    [82]Grigg N. J., Ivey G.N.. A laboratory investigation into shear-generated mixing in a salt wedge estuary. Geophysical and Astrophysical Fluid Dynamics,1997,85/(1-2):65-95
    [83]Haidvogel D, Wilkin J, Young R. A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J Comput Phys,1991,94:151-184
    [84]Haidvogel, D. B.,H. G.Arango, K. Hedstrom, A.Beckmann, P. M. Rizzoli, and A. F. Schepetkin. Model evaluation experiments in the North Atlantic Basin:Simulation in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans,2000, Vol 32:239-281
    [85]Hansen D V, Rattrary M. New dimension in estuary classification. Limnology and Oceanography,1966,11(3)
    [86]Hervouet J M, janin J M. Finiet-element algorithms for modeling flood propagation. New York:ASCE,1994,102-113
    [87]Ippen A T, Harleman. One-dimensional analysis of salinity intrusion in estuaries. Technical Bulletin No.5,1961
    [88]James A.Lerczak and W. Rockwell Geyer. Modeling the lateral Circulation in straight, Stratified Estuaries. Journal of Physical Oceanography,2004, Vol34:1410-1428
    [89]John C.Warner, W. Rockwell Geyer, James A.Lerzak. Numerical modeling of an estuary:a comprehensive skill assessment.2005
    [90]Johns B, Dube S K, Sinha P C, et al.The simulation of a continuously deforming lateral boundary in problems involving the shallow water equations. Computers and Fluids, 1982,10:105-116
    [91]Jone W.P. and Launder B.E. The calculation of low Reynolds number phenomina with a two-equation turbulcence model, Int. J. Heat Mass Transfer,1973(16)
    [92]Li WeiFeng, Chen QiuWen, and Mao JingQiao. Development of 1D and 2D coupled model to simulate urban inundation:An application to Beijing Olympic Village. Chinese Scinece Bulletin,2009,54(9):1613-1621
    [93]Lynch, D R, and C E Naimie. The M2 tide and its residual on the outer banks of the gulf of Maine. J. Phys. Oceanogr.,1993,Vol23:2222-2253
    [94]Lynch D R, Gray W G. Finite element simulation of flow in deforming regions. Journal of Computational Physics,1980,36:135-153
    [95]M. S.Horritt, P. D. Bates.Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology,2002,268:87-99
    [96]M. S.Wong, J.E. Nichol, K.H.Lee, N. Emerson. Modeling water quality using TERRA/MODIS 500m satellite images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing,2008, Vol.ⅩⅩⅩⅦ. Part B8:679-684
    [97]M. S.Wong, Kwon Ho Lee, Young Joon Kim, et al. Modeling of Suspended Solids and Sea Surface Salinity in Hong Kong Using Aqua/MODIS Satellite Images. Korean Journal of Remote Sensing, Vol.23,No.3,2007, PP:161-169
    [98]Madsy Y, Patera A T. Spectral element method for the incompressible Navier-Stokes equations. Noor A K, ed. State-of-the Art Surveys in Computational Mechanics. New York: ASME,1988
    [99]Marshall J, Adcroft A, Hill C, et al. A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers (a). J Geophys Res,1997,5753-5766
    [100]Marshall J, Hill C, Perelman L, et al. Hydrostatic, quasi-hydrostatic and non-hydrostatic ocean modeling (b). J Geophys Res,1997,5733-5752
    [101]Mellor G L and T Yamada. Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys. Space. PHYS.,1982, Vol.20, No.4:851-879
    [102]Monismith, S.G.,W. Kimmerer, J. R. Buraru, and M. T. Stacey. Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay. J. Phys. Oceanogr., 2002,32:3003-3018
    [103]Noat, D. and Rodi, W. Numerical simulations of secondary currents in channel flow. Proc. ASCE (J. Hydr. Div.),1982(108):948-968
    [104]Onyx W. H.Wai, Qimiao Lu. Gradient-Adaptive-Sigma (GAS) Grid for 3D Mass-Transport Modeling. J. of Hydraulic Engineering,1999
    [105]Parker M. C. Estuarine Adjustment. American Meteorological society,2007, 10.1175:2133-2145
    [106]Parker M. C.,Neil S.Bnas, Barbara M. Hickey, Edward P. Dever, Yonggang Liu. A model study of tide-and wind-induced mixing in the Columbia River Estuary and plume. Continental Shelf Research,2009,29:278-291
    [107]Phillips, N A.A coordinate system having some special advantages for numerical forecasting. Journal of Meteorol.,1957,14:184-185
    [108]Prichard D W. Estuary hydrography. Advan Geophys,1952,1:243-280
    [109]Prichard D W. Salinity distribution and circulation in the Chesapeake Bay estuarine system. Marine Res.,1952,(11):106-123
    [110]R. G. Kamp, and H.H. G. Savenije. Hydrological model coupling with ANNs. Hydrol. Earth Syst. Sci.,2007,11:1869-1881
    [111]Reed W H, Hill T R. Triangular and methods for the neutron transport equation. Tech Report LA-UR-73-49, Los Alamos Scientific Laboratory,1973
    [112]Rodi W and Spalding D.B.A two-parameter model of turbulence and its application to free jiets, In:Warmeund Stoffubertragung, Springer Verlag,1970:85-95
    [113]Rubao Ji etal.The impact of Scotian Shelf Water "corss-over" on the plankton dynamics on Georges Bank:A 3-D experiment for the 1999 spring bloom. Deep-Sea Research Ⅱ,2006, 53:2684-2707
    [114]Rucheng Tian, Changsheng Chen. Influence of model geometrical fitting and turbulence parameterization on phytoplankton simulation in the Gulf of Maine. Deep-Sea Research Ⅱ, 2006,53:2808-2832
    [115]S.Grass and Savenije H. H. G.Salt intrusion in the Pungue estuary, Mozambique:effect of sand banks as natural temporary salt intrusion barrier. Hydrol. Earth Syst. Sci. Discuss., 2008,5:2523-2542
    [116]Savenije H. H. G.A one-dimensional model for salinity intrusion in alluvial estuaries. J. Hydrol.,1986,85:87-109
    [117]Savenije, H.H. G. and Veling, E. J. M. Relation between tidal damping and wave celerity in estuaries. J. Geophys. Res.,2005,110,C04007:1-10
    [118]Savenije, H. H. G.Predictive model for salt intrusion in estuaries. J. Hydrol.,1993, 148:203-218
    [119]Savenije H. H. G.Rapid assessment technique for salt intrusion in alluvial estuaries. Report Series of the Institute for Infrastructural, Hydraulics and Environmental Engineering, Delft, 1992
    [120]Savenije, H. H.. G. Salt intrusion model for high-water slack, low-water slack and mean tide on spreadsheet. J. Hydrol.,1989,107:9-18
    [121]Schigf J, Schonfeld J. Theoretical consideration on the motion of salt and fresh water. Proc Minnesota Int Hydraul Conf, Minnesota,1953,321-333
    [122]Siden G L D, Lynch D R. Wave equation hydrodynamics on deforming elements. International Journal for Numerical Methods in Fluids,1988,8:1071-1093
    [123]Simmons H B. Some effects of Upland discharge on estuarine hydraulics. Proceedings ASCE,1955,81(792)
    [124]Tetra Tech, Inc. User's Manual for Environmental Fluid Dynamics Code Hydro Version (EFDC-Hydro). U. S.Environmental Protection Agency, Atlanta, GA, USA,2002
    [125]Valle-Levinson A.,A.C.Reyes and R. Sanay. Effects of bathymetry, friction, and rotation on estuary-ocean exchange. Journal of Physical Oceanography,2003,33:2375-2393
    [126]Valle-Levinson A.and K.M.M. Lwiza. Bathymetric influences on the lower Chesapeake Bay hydrography. Journal of Marine System,1997,12:221-236
    [127]Vincenzo Casulli, Paola Zanolli.High resolution methods for multidimensional advection-diffusion problems in free-surface hydrodynamics. Ocean Modeling,2005, 10:137-151
    [128]W. Czernuszenko, A. A.Rylov. A generalisation of Prandtl's model for 3D open channel flows. Journal of Hydraulic Research,2000,38, NO.2
    [129]W. R. Geyer, M.E. Scully, D. K. Ralston. Quantifying vertical mixing in estuaries. Environ Fluid Mech.,2008,8:495-509
    [130]X. Guo and Arnoldo V-L. Tidal effects on estuarine circulation in the Chesapeake Bay.
    [131]XU Zu-xin, YIN Hai-long. Development of Coupled 1D-2D Mathematical Models for Tidal Rivers. Journal of Hydrodynamic, Ser. B,2004,16(6):767-776

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700