全球环流对东南亚边缘海环流影响的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用一个全球大洋变网格环流模式来研究东南亚边缘海环流变异。该
    模式是基于 GFDL的 MOM2 模式建立的, 模式覆盖全球大洋, 在 20 S 到 60 N。
    98 E 到 156 E 的区域模式水平分辨率为 1/6 ×1/6, 往外分辨率逐渐变粗至 2°,
    垂向分为 18 层, 模式的东西边界取循环边界, 南北边界为闭边界。 模式在合理
    模拟东南亚边缘海环流季节变化的基础上, 模拟了 1994-2000 年的环流变异。 结
    果表明, 南海上层环流存在明显的年际变化其主要特征为: 厄尔尼诺年夏季, 南
    海环流变异不明显; 拉尼娜年夏季, 南海南部的反气旋式环流被削弱, 北部的气
    旋式环流也被削弱; 厄尔尼诺年冬季, 南海南部和北部均产生反气旋式环流异常
    即南海气旋式环流被削弱; 拉尼娜年冬季, 南海气旋式环流被加强。 1998 年 8
    月南海上层环流变异非常显著, 南部的反气旋式环流几乎消失, 而北部的气旋式
    环流则被一个反气旋式环流所代替, 越南沿岸的离岸流也消失了。 越南沿岸离岸
    流的消失对 1998 年南海暖事件起到加强作用 。通过台湾-西表岛水道黑潮流量存
    在明显的年际变化, 厄尔尼诺年黑潮流量偏低, 拉尼娜年黑潮流量偏高。 吕宋海
    峡上 35m 的流量年际变化主要受吕宋海峡附近纬向风应力年际变化的影响,
    35-427.5m 流量的年际变化则受台湾-西表岛水道黑潮流量年际变化的影响。 南
    海上 58m 平均温度年际变化和南海海面风应力大小年际变化的相关系数达到
    -0.86, 说明南海上层温度的年际变化主要是受海面风应力的影响, 海面风应力
    较强时, 潜热通量大所以上层温度低, 海面风应力较弱时, 潜热通量小所以上层
    温度高。 南海 58-209m 平均温度的年际变化与上层的变化趋势相反, 主要受次表
    层垂向运动的年际变化的影响。 模拟的通过 IX1 断面以 800m 为参考面的年平均
    流量为 11.6Sv, 夏季流量较高, 冬季流量较低。 通过龙目海峡的流量明显的以
    半年为周期变化, 通过翁拜海峡的流量有明显的年周期变化和半年周期变化, 通
    过帝汶海测流量则以年变化为主, 这样的变化周期主要是季风转换期东向的南爪
    哇流在巽它岛链南侧影响的范围导致的。 通过 IX1 断面以 800m 为参考面流量的
    变化具有明显的与 ENSO 相联系的年际变化, 其流量的年际变化与 Nino3 区指
    数的相关系数为-0.75, 说明 ITF 的流量在厄尔尼诺年偏低, 拉尼娜年偏高。
A variable-grid global ocean circulation model was established to study the
    variabilities of the Southeast Asian marginal seas circulation. The model was based
    on GFDL’s MOM2 with fine grid (1°/6) covering the area from 20°S to 60°N and
    from 98°E to 156°E and coarse grid (2°) in the rest part of the world ocean. On the
    basis of well simulating the seasonal variation of the Southeast Asian marginal seas
    circulation, the model simulated the interannual variation of the circulation from 1994
    to 2000. The computation shows that the upper layer circulation of the South China
    Sea has obvious interannual variabilities. During summer of the El Ni?o year the
    variation is not remarkable. During summer of the L Ni?a year both the southern
    anti-cyclonic and the northern cyclonic gyres are weakened. During winter of the El
    Ni?o year the cyclonic gyre is weakened. During winter of the L Ni?a year the
    cyclonic gyre is enhanced. In August of 1998, the upper layer circulation remarkably
    differed from the normal years. The southern anti-cyclonic gyre vanished and the
    northern cyclonic gyre was replaced by an anti-cyclonic circulation. The off-shore
    current southeast of Vietnam vanished, resulting in intensification of the warm event
    of 1998. The mass transport through Taiwan- Iriomote Passage has obvious
    interannual variabilities with smaller transport during El Ni?o and larger transport
    during L Ni?a. The interannual variation of upper 35m transport through the Luzon
    Strait was closely related with the zonal wind stress variabilities over the Luzon Strait,
    while the mass transport between 35-427m through Luzon Strait was closely related
    with the interannual variation of mass transport through Taiwan- Iriomote Passage.
    The correlationcoefficient between the averaged temperature of the upper 58m of the
    South China Sea and the wind stress of the South China Sea is –0.86, indicating the
     II
    
    
    interannual variability of upper layer temperature was affected by the wind stress
    variability The interannual variation of averaged temperature between 58-209m is out
    of phase in relation with the upper layer. It is affected by the interannual variability of
    the vertical velocity through the subsurface layer. The annual mean mass transport
    related to 800m through IX1 section is 11.6Sv, with greater values in summer and
    smaller values in winter. Semi-annual variability of mass transport is apparent in the
    Lombok Strait and Ombai Strait, but does not extend to the Timor Sea. The mass
    transport of the Timor Sea has apparent annual variability while both semi-annual and
    annual variability are apparent in the Ombai Strait. These variabilities are associated
    with the variability in the extension area of the eastward South Java Current during
    two monsoon transition periods. The interannual variation of mass transport through
    IX1 section relative to 800m has a good relationship with ENSO. The correlation
    coefficient with the Ni?o3 index is –0.75 indicating smaller transport during El Ni?o
    and larger transport during L Ni?a.
引文
1.  方国洪 魏泽勋 崔秉昊等 中国近海域际水 热 盐输运 全球变网格模
     式结果 中国科学 32 12 969-977 2002. 
     
    2.  方文东 郭忠信 黄羽庭 南海南部海区的环流观测研究 科学通报 42 21
     2264-2271 1997. 
     
    3.  何有海,关翠华. 南海上层海洋热含量的年际和年代际变化 热带海
     洋.1997,16(1) 23-29 
     
    4.  何有海 关翠华. 南海上层海洋热力结构年际和年代际变化的研究. 地球科
     学进展, 15(4), 2000. 
     
    5.  李立 南海上层环流观测研究进展 台湾海峡 21 1 114-125 2002. 
     
    6.  李立 许金电 靖春生等 南海海面高度 动力地形和环流的周年变化――
     TOPEX/Poseidon 卫星测高应用研究 2002 32 12 978 986 
     
    7.  王东晓 秦曾灏 周发
     1997 南海年际尺度海气相互作用的初探 气象
     学报 55(1) 33-42. 
     
    8.  王东晓 谢强 杜岩 王卫强 陈举 1997 1998 年南海暖事件 2002 47
     9 科学通报 711 716 
     
    9.  王卫强 2002 南海海洋环流的建立与环流的年际变化 青岛海洋大学博士
     学位论文 166  
     
    10. 王卫强 王东晓等. 南海大尺度动力场年循环和年际变化. 热带海洋学
     报.2001,20(1) 61-68 
     
    11. 王卫强 王东晓 齐议泉 2000 南海表层水温年际变化的大尺度特征 海
     洋学报 22(4) 8-16 
     
    12. 魏凤英 现代气候统计诊断与预测技术 北京 气象出版社 1999 82-122 
     
    13. 魏泽勋 方国洪 崔秉昊等,南海海面高度和输运流函数 全球变网格模式
     结果 中国科学 32 12 987-994 2002 
     
    14. 徐锡帧 邱章 陈慧昌 南海水平环流的概述[A] 中国海洋湖沼学会水文
     气象学会学术会议论文集(1980)[C] 北京 科学出版社 1982 137 145  
     
     122
    
    
    参考文献
    15. 于克俊 方国洪 斜压海洋动力学的一种三维数值模式  .温度 盐度和垂
     直涡动粘性系数的计算. 海洋于湖沼 29(4) 381-387 1998. 
     
    16. 朱赖民 暨卫东 夏季南海水团垂直分布的聚类分析研究 海洋湖沼通报
     4 1-6 2002. 
     
    17. Chao S. Y., P.T. Shaw and S.Wu, El Ni?o modulation of the South China Sea
     circulation. Progress in Oceanolography, 38, 51-93, 1996.
    18. Chong, J.C., J. Sprintall, S. Hautala, W. Morawitz, N.A. Bray, and W. Pandoe,
     Shallow Throughflow variability in the outflow straits of Indonesia, Geophys. Res.
     Lett., 27, 125-128, 2000.
    19. Chu PC, Li RF, South China Sea Isopycnal-Surface Circulation, J. Phys.
     Oceanogr.,30(9):2419-2438,2000
    20. Cresswell, G. and J.L. Luick, Current measurements in the Halmahera Sea, J.
     Geophys. Res., 106, 13945-13952, 2001.
    21. Dale. W.L., Winds and drifter currents in the South China Sea. Malay. J. Trop,
     Geogr., 8.1-31, 1956
    22. Fang Guohong, Fang W.D., Fang Y. and Wang K., A Survey of Studies on the
     South China Sea Upper Ocean Circulation. Acta Oceanographica Taiwanica,
     37(1),1-16, 1998
    23. Fang,Y., Fang G.., and K. Yu, ADI Barotropic ocean model for simulation of
     Kuroshio intrusion into China southeastern waters, Chin. J. Oceanol. Limnol, 14,
     357-366,1996
    24. Fieux, M., C. Andrie, P. Delecluse, A.G. Ilahude, A. Kartavtseff, F. Mantisi, R.
     Molcard, and J.C. Swallow, Measurements within the Pacific-Indian Oceans
     Throughflow region, Deep Sea Res., Part I, 41, 1091-1130, 1994.
    25. Fieux, M., R. Molcard, and A.G. Ilahude, Geostrophic transport of the
     Pacific-Indian Oceans Throughflow, J. Geophys. Res., 101, 12421-12432, 1996a.
    26. Fieux, M., C. Andrie, E. Charriaud, A.G. Ilahude, N. Metzel, R. Molcard, and J.C.
     Swallow,Hydrological and chlorofluoromethanes measurements of the
     Indonesian Throughflowentering the Indian Ocean. J. Geophys. Res., 101,
     12433-12454, 1996b.
    27. Fine,R. A., 1985, Direct evidence using tritium data for the Throughflow from the
     Pacific into the Indian Ocean. Nature, 315, 478-480, 1985
     123
    
    
    全球环流对东南亚边缘海环流影响的数值研究
    28. Godfrey, J.S., The effect of the Indonesian Throughflow on ocean circulation and
     heat exchange with the atmosphere: A review. J. Geophys. Res., 101 (C5),
     12217-12,238, 1996.
    29. Godfrey, J.S., A Sverdrup model of the depth-integrated flow for the world ocean,
     allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89-112,
     1989.
    30. Gordon A.L. and McClean J.L., Thermohaline stratification of the Indonesian
     Seas: Model and Observations, J. Phys. Oceanogr. 29, 198-216, 1999.
    31. Gordon, A.L., R.D. Susanto, and A.L. Ffield, Throughflow within Makassar
     Strait, Geophys.Res. Lett., 26, 3325-3328, 1999.
    32. Kashino, Y., H. Watanabe, B. Herunadi, M. Aoyama, and D. Hartoyo, Current
     variability at the Pacific entrance of the Indonesian Throughflow, J. Geophys.
     Res., 104, 11021-11035,1999.
    33. Lebedev, K., and M. Yaremchuk, A diagnostic study of the Indonesian
     Throughflow, J. Geophys. Res., 105, 11243–11258, 2000
    34. Levitus S, Boyer T. World Ocean Atlas. Washington D C: NOAA, 1994
    35. Luick, J.L. and G.R. Cresswell, Current measurements in the Maluku Sea. J.
     Geophys. Res., 106,13953-13958, 2000.
    36. Maltrud, M. E., A. J. Semtner and R. C. Malone, Global eddy-resolving ocean
     simulation driven by 1985-1995 atmospheric winds. J. Geophys. Res., 103,
     30825-30853, 1998.
    37. Masumoto, Y. and Yamagata, T., Seasonal variations of the Indonesian
     Throughflow in a general ocean circulation model, J. Geophys. Res.101,
     12287-12293, 1996.
    38. Metzger. E. J., and Hurlburt H.E.. Coupled dynamics of the South China Sea. the
     Sulu Sea and the Pacific Ocean. J. Geophys. Res., 101,12.331-12.352, 1996
    39. Michida, Y., and H. Yoritaka, Surface currents in the area of the Indo-Pacific
     Throughflow and in the tropical Indian Ocean observed with surface drifters, J.
     Geophys. Res., 101, 12,475-12,482, 1996.
    40. Molcard, R., M. Fieux, and A.G. Ilahude, The Indo-Pacific Throughflow in the
     Timor Passage, J.Geophys. Res., 101, 12411-12420, 1996.
    41. Molcard, R., M. Fieux, and F. Syamsudin, The Throughflow within Ombai Strait,
     Deep-sea Res Part I, 48, 1237-1253, 2003.
     124
    
    
    参考文献
    42. Murray, S.P., and D. Arief, Throughflow into the Indian Ocean through Lombok
     Strait, January 1985-January 1986, Nature, 333, 444-447, 1988.
    43. Pacanowski R C, MOM2 Version2, Documentation, User’s Guide and Reference
     Manual. Princeton: Geophysical Fluid Dynamics Laboratory/NOAA, GFDL
     Ocean Tech. Rep. 1996, 32: 1~329
    44. Pohlmann T.,(1987) A three-dimensional circulation model of the South China
     Sea. In: Three-dimensional models of marine and estuarine dynamics. J.J.
     NIHOUL and B.M. JAMART, editors, Elsevier, New York, pp, 245-268
    45. Potemra, J. T., R. Lukas and G.T. Mitchum, Large scale estimation of transport
     from the Pacific to the Indian Ocean. J. Geophys. Res., 102 (C13), 27795-27812,
     1997.
    46. Qu Tangdong, 2000: Upper-Layer Circulation in the South China Sea. Journal of
     Physical Oceanography: Vol. 30, No. 6, pp. 1450–1460
    47. Qu Tangdong, H. Mitsudera, T. Yamagata, Intrusion of the North Pacific waters
     into the South China Sea. J. Geophys. Res. 105, 6415-6424, 2000
    48. Rodgers, K. B., Cane, M. A. , Naik, N. H., Schrag, D. P., The role of the
     Indonesian throughflow in equatorial Pacific thermocline ventilation J. Geophys.
     Res., 104, 20551-20570, 1999.
    49. Schneider, N. and T. P. Barnett, Indonesian Throughflow in a coupled general
     circulation model. J. Geophys. Res., 102, 12341-12358, 1997.
    50. Shaw. P.-T. and S.-Y. Chao. Surface circulation in the South China Sea, Deep Sea
     Research, J. Oceangr. Abstr., 41, 1663-1683, 1994.
    51. Toole,J. M., and B. Warren, A hydrographic section across the subtropical south
     Indian Ocean. Deep-sea Res Part I, 40, 1973-2019, 1993.
    52. Wajsowicz, R.C., The circulation of the depth-integerated flow around an island
     with application to the Indonesian Throughflow. J. Phys. Oceanogr., 23,
     1470-1484, 1993a
    53. Wajsowicz, R.C., A relationship between interannual variations in the south
     Pacific wind stress curl, the Indonesian Throughflow, and the west Pacific warm
     water pool, J. Phys. Oceanogr., 24, 2180-2187, 1993b
    54. Wajsowicz, R.C., A.L. Gordon, A. Ffield, and R.D. Susanto, Estimating transport
     in Makassar Strait, Deep Sea Res., Part II, 50, 2163–2181, 2003
     125
    
    
    全球环流对东南亚边缘海环流影响的数值研究
    55. Wyrtki, K., Indonesian Throughflow and the associated pressure gradient, J.
     Geophys. Res., 92,12941-12946, 1987.
    56. Wang, K., Fang, Y., Numerical study on the formation of the South China Sea
     warm current I. Barotropic case. Chin. J. Oceanol. Limnol., 19 1 1-9, 2001a
    57. Wang, K., Fang, G., Numerical study on the formation of the South China Sea
     warm current I. Baroclinic case. Chin. J. Oceanol. Limnol., 19 4 306-311,
     2001b
    58. Wijffels, S. E., and G. Meyers, Fifteen years of XBT measurements in the
     Indonesian Throughflow, Abstract IUGG General Assembly, Sapporo Japan,
     2003
    59. Wu Chau-Ron, Shaw Ping-Tung and Chao Sheng-Yu, Assimilating altimetry data
     into a South China Sea model, J. Geophys. Res., Vol. 104, No.C12, pp.
     29987-30005, Dec. 15, 1999
    60. Wyrtki K., Scientific results of marine investigations of the South China Sea and
     Gulf of Thailand 1959-1961. Naga rep.2, pp.164-169, Scripps Inst. Of Oceanogr.,
     Univ. of Calif., San Diego.1961.
    61. Wyrtki K., Physical oceanography of the Southeast Asian waters, Nata Report, 2,
     195pp., Scripps Inst. Of Oceanogr., La Jolla, Calif.
    62. Xie Shangping, Q. Xie, D. Wang, W. Liu, Summer upwelling in the South China
     Sea and its role in regional climate variations. J. Geophys. Res. 108, 3261, 2003
    63. Yu, K.J., and Fang, G.H., A three-dimensional numerical model for baroclinic
     ocean dynamics, Oceanologia et Limnologia Sinica, 29, 381-387, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700