一维光子晶体的理论计算及三维反蛋白石结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体由于具有独特的调节光子传播状态的功能,是光电集成和光通信的基础材料,有关光子晶体的研究是目前信息功能材料研究的前沿领域。本论文理论部分以一维光子晶体为研究对象,计算模拟了不同结构光子晶体的光学特性;实验部分围绕以三维胶体晶体为模板制备得到的有序大孔材料展开,系统研究了其形成机理、微观结构、带隙性质及应用。主要内容包括以下几个方面:
     1.针对普通光子晶体全反射镜的两大缺点,设计了宽频带一维三元光子晶体异质结构全方向反射镜,异质结构有效的增大了全反镜的工作带宽,三元结构可以降低对制备精度的要求。基于一维光子晶体超晶格的多通道滤波器中,通过改变晶格的结构参数即可以很方便的调节光子禁带中透射带的数目以及透射带中透射峰的数目。讨论了分别由Al、Ag、Au、Cu四种金属和SiO2构成的金属/电介质型光子晶体的透射和吸收光谱以及这两者之间的关系,结果表明光子晶体中金属的吸收行为并不只是跟光子晶体的带隙结构有关,而更多的是取决于晶体中电场的空间分布情况。
     2.采用改进的垂直沉积法制备了各种不同粒径微球的聚苯乙烯胶体晶体模板并对它们进行了表征。针对目前TiO2反蛋白石结构制备中的填充率低、易塌陷、表面平整度差、成品率低、尺寸微小等缺陷,使用优化调整的溶胶-凝胶技术结合模板技术、高温煅烧技术制备得到了大面积周期有序的TiO2多孔结构。扫描电镜照片显示,其结构表面平整,塌陷和缺陷极少。以稀土Tb3+作为探针,研究了TiO2反蛋白石结构的光子带隙对其自发发射光谱的调制,观察到了光子带隙对处于其禁带中心的光发射的抑制和处于其短波带边的光发射的增强。
     3.以SiO2胶体晶体为模板,使用单体填充而后加热聚合的方法制备了PMMA反蛋白石结构光子晶体,其大孔结构有序性非常良好,在数百平方微米范围内单晶连续无裂纹。利用聚合物PMMA透明、柔韧性高的特点,制备得到了平方厘米量级的柔性可卷曲的反蛋白石结构光子晶体薄膜,这种薄膜可以像卷纸一样被卷曲数圈而不破裂。研究了PMMA反蛋白结构光子晶体对置于其中的有机发光小分子Alq3的自发发射光谱的影响,Alq3的发射光谱在光子带隙处出现了一个凹陷,从而导致了466nm处另一发射峰的出现。二次模板法制备得到了PMMA微球的有序阵列,可以预测,通过往二次模板ZnO反蛋白石结构的孔隙中填充入不同的材料即可得到具有各种功能的微球的周期有序阵列。
Photonic crystals (PCs) have attracted much attention because of their ability to manipulate, confine and control light, and the investigation of the PCs are the frontier of functional materials. This dissertation composed of two parts:theoretical calculations and experimental preparation. The first part focuses on the one-dimensional PCs。The optical properties of PCs with different structures are analyzed numerically. In the second part, we prepared macroporous materials by using opal template and form mechanism, microstructures, band structure and applications of the macroporous structures were studied systematically. The important results are given as followings:
     1、Using transfer matrix method (TMM), we have studied the band structure, electric field distribution, dispersion relation, defect propagation characteristics of one-dimensional dielectric-dielectric photonic crystals. The transmission and absorbent properties of one-dimensional metal-dielectric photonic crystals composed of different metals (Al、Ag、Au、Cu) were discussed. The results showed that the electric filed distribution played a more decisive role than the photo states distribution in the metallic absorption characteristics.
     2、High-quality polystyrene (PS) colloidal crystals were prepared by a improved vertical deposition technique. Centimeter-sized surface-smooth thin film TiO2 inverse opals were obtained by a sot-gel process using the polystyrene colloidal crystal template. From the SEM photograph, we can see that the macroporous structures of the inverse opals are orderly and non-dilapidated. The photonic bandgap effect on the spontaneous emission of Tb3+ was investigated. The suppression at 540nm and enhancement at 484nm in the fluorescence spectrum were interpreted in terms of redistribution of the photon density of states in the photonic crystal.
     3、Ordered macroporous polymers have been prepared by replication of SiO2 colloidal crystals. The air between the silica spheres was filled by the monomer of poly(methyl methacrylate) (PMMA) that can be subsequently polymerized at 80℃. We obtained the flexible and free-standing PMMA inverse opal polymers films with large area using of the formation of an overlayer of PMMA. The film is enough tough to be curled to various shape. These flexible polymers films can extend the usage of macroporous structures and have potential applications. The spontaneous decay of emitting species can be modified by changing its environment. We have fabricated
     inverse opal embedded with Alq3 to investingate the photonic bandgap effects on the spontaneous emission. The dip appeared in the fluorescence spectrum was interpreted in terms of redistribution of the photon density of states in the photonic crystal. The results indicated that the suitable combination of fluorescence materials and the photonic crystals can provide a promising route to design and fabricate the light-emitting diodes, low-threshold lasers and other highly efficient optical apparatus. PMMA microsphere arrays are fabricated by a double replicating method. High quality ZnO inverse opals prepared without extra defects formed by electrodeposition. After the subsequently in-situ polymerization of MMA in the voids of ZnO inverse opals, the ZnO is removed by hydrochloric acid solution.
引文
[1]刘思科,朱秉升,罗晋生等,半导体物理学,电子工业出版社,2003
    [2]黄昆著,韩汝琦改编,固体物理学,高等教育出版社,1998
    [3]E.Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett.,1987,58(20):2059-2061.
    [4]S.John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett.,1987,58(23):2486-2489.
    [5]J.B.Pendry, A.Mackinnon, "Calulation of photo dispersion relations," Phys.Rev.Lett.,1992, 69(19):2772-2775.
    [6]S.John, Localization of light, Physics Today.1991,32:33
    [7]P.Shen, "Scattering and localization of classical waves in random media," Wrold Scientific, Singapore,1990
    [8]J.M.Drake and A.Z.Genack, "Observation of nonclassical optical diffusion," Phys Rev.Lett., 1989,63(3):259-262
    [9]R.Dalichaouch, J.P.Armstrong, S.Schultz, P.M.Platzman and S.L.McCall, "Micro-wave localization by two-dimensional random scattering," Nature.,1991,354:53-55
    [10]D.S.Wiersma, P.Bartolini, A.Lagendijk and R.Righini, "Localization of light in a disordered medium," Nature.,1997,390:671-673
    [11]S.Guo, S.Albin, "Simple plane wave implementation for photonic crystal calculations," Optical Express.,2003,11 (2):167-175
    [12]K.M.Ho, C.T.Chan and C.M.Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett.,1990,65(25):3152-3155
    [13]K.M.Leung and Y.F.Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett.,1990,65(21):2646-2649
    [14]E.Yablonovitch, T.J.Gmitter, K.M.Leung, "Photonic band structure:The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett.,1991,67(17):2295-2298
    [15]C.I.Hsieh, H.L.Chen, et al, "Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry," Microelectronic Engineering.,2004,73(1):920-926
    [16]Ming-Yang Chen and Rongjin Yu, "Square-structured photonic bandgap fibers," Optics Communications.,2004,235(1-3):63-67
    [17]Shangping Guo, "Photonic crystals:Modeling and simulation."[Dissertation], Old Dominion
    University,2003
    [18]J.D.Joannopoulos, R.D.Mead, J.N.Winn. "Photonic crystals:Molding the flow of light," Princeton, Princeton University Press,1995
    [19]K.M.Ho, C.T.Chan, C.M.Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys.Rev. lett.,1990,65:3152-3155.
    [20]王辉,李永平,“用特征矩阵法计算光子晶体的带隙结构,”物理学报,2001,50(11):2172-2178
    [21]Xin Wang, Xinhua Hu, et al, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystalsby using photonic heterostructures,"Appl. Phys. Lett.,2002,80(23):4291-4293
    [22]Jian Zi, Jun Wang, Chun Zhang, "Large frequency range of negligible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett,1998,73 (15):2084-2086
    [23]Feng Qiao, Chun Zhang, Jun Wang, et al, "Photonic quantum-well structures:Multiple channeled filtering phenomena," Appl. Phys. Lett.,2000,77 (23):3698-3700
    [24]Xiaochuang Xu, Yonggang Xi, et al, "Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals," Appl. Phys. Lett.,2005,86 (28):091112-091114
    [25]J. B. Pendry, et al, "Calculation of photon dispersion relations," Phys. Rev. Lett.,1992, 69(19):2772-2775
    [26]J. B. Pendry, et al, "photonic band gaps and localization," New York, Plenum Press,1993
    [27]L.F. Shen, Z.Ye, S.L.He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B.,2003,68:035109-5
    [28]Sanshui Xiao and Sailing He, "FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals," Physica B: Condensed Matter.,2002,324(1-4):403-408
    [29]L.F.Marsal, T.Trifonov, et al, "Larger absolute photonic band gap in two-dimensional air-silicon structures," Physica E:Low-dimensional Systems and Nanostructures.,2003, 16(3-4):580-585
    [30]Xavier Checoury, et al, "Fine structural adjustment of lasing wavelengths in photonic crystal waveguide laser arrays," Photonics and Nanostructures-Fundamentals and Applications., 2003, 1(1):63-68
    [31]Min Qiu and Marcin Swillo, "Contra-directional coupling between two-dimensional photonic crystal waveguides," Photonics and Nanostructures-Fundamentals and Applications,2003, 1(1):23-30
    [32]S. Fasquel, X. Melique, et al, "Three-dimensional calculation of propagation losses in photonic crystal waveguides," Optics Communications.,2005,246 (1-3):91-96
    [33]P. F. Xing, P.I. Borel, et al, "Optimization of bandwidth in 60° photonic crystal waveguide bends," Optics Communications.,2005,248(1-3):179-184
    [34]Qin Chen, Yong-Zhen Huang, et al, "Calculation of propagation loss in photonic crystal waveguides by FDTD technique and Pade approximation," Optics Communications.,2005, 248(4-6):309-315
    [35]W.R.Frei, H.T.Jolmson. "Finite-element analysis of order effects in photonic crystals," Phys.Rev. B.,2004,63(70):165116-165125
    [36]K.Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans Antennas Propag.,1966,14(1):302-307
    [37]E.Yablonovitch, T.J.Gmitter, R.D.Meade, et al, Phys.Rev. Lett.1991,67(24):3380-3383.
    [38]M.Sigalas, C.M.Soukoulis, E.N.Economous, et al, Phys.Rev.B.1993,48:14121-14126.
    [39]K.M.Leung, "Defect modes in photonic band structures:a Green's function approach using vector Wannier functions," J.Opt.Soc.Am.B.,1993,10:303-306.
    [40]A.Maradudin, A.R.McGum. J.Opt.Soc.Am.B.,1993,10:307-313.
    [41]I.Abram and G.Bourdon, "Photonic-well microcavities for spontaneous emission control," Phys. Rev. A.,1996,54(8):3476-3479
    [42]G.S.Agrwal and S.D.Gupta, "Microcavity-induced modification of the dipole-dipole interaction," Phys.Rev.A.,1998,57:667-670
    [43]S.Y.Lin, V.M.Hietala and S.K.Lyo, "Photonic band gap quantum well and quantum box structure:A high-Q resonant cavity," Appl. Phys. Lett.,1996,68:3233-3235
    [44]J.S.Foresi, P.R.Villeneuve, J.Ferrera and E.P. Ippen, "Photonic bandgap microcavities in optical waveguides," Nature.,1997,390:143-145
    [45]M.Nomura, S.Iwamoto, T.Nakaoka, S. Ishida and Y.Arakawa, "Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity," Appl. Phys. Lett., 2006,88:141108-1-141108-4
    [46]M.Nomura, S.Iwamoto, M.Nishioka, S.Ishida and Y.Arakawa, "Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation," Appl. Phys. Lett.,2006,89:161111
    [47]Y.Fink, J.N.Winn, S.Fan, C.Chen, J.Michel and J.D.Joannopoulos, "A dielectric omnidirectional reflector," Science.,1998,282:1679-1682.
    [48]A.Mekis, J.C.Chen, I.Kurland, F.Shanhui, P.R.Villeneuve and J.D.Joannopoulis, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett.,1996, 77(18):3789-3790
    [49]J.D.Joannopoulis, P.R.Villeneuve and S.Fan, "Photonic crystals:putting a new twist on light,"
    Nature.,1997,386(6621):143-149
    [50]A.Chutiana and S.John, "Diffractionless flow of light in two-and three-dimensional photonic band gap hererostructures:Theory, design rules, and simulations," Phys. Rev. E.,2005,71: 026605
    [51]V.Lousse, J.Shin and S.Fan, "Conditions for designing single-mode air-core waveguides in three-dimensional photonic crystals," Appl. Phys. Lett.,2006,89:161103
    [52]V.I.Kopp, B.Fan, H.K.M.Vithana and A.Z.Genack, Opt.Lett.,1998,23 (21):1707-1709.
    [53]O.Painter, P.K.Lee, A.Scherer, A.Yariv, J.D.Obrien, P.D.Dapkus and I.Kim, "Two dimensional photonic band gap defect mode laser," Science.,1999,284:1819-1821
    [54]W.D.Zhou, J.Sabarinathan, B Kochman, E.Berg, O.Oasaimeh, S.Pang and P.Bhattacharya, "Electrically injected single-defect photonic band gap surface-emitting laser at room temperature," Elec.Lett.,2000,36:1541-1546
    [55]欧阳征标,李景镇,光子晶体的研究进展,激光杂志,2000,21(2):4-6.
    [56]E.R.Brown and O.B.McMahon, "High zenithal directivity from a dipole antenna on a photonic crystal," Appl. Phys. Lett.,1996,68:1300-1302
    [57]J.C.Knight, J.Broeng, T.A.Birks and P.J.Russell, "Photonic band gap guidance in optical fibers," Science.,1998,282:1476-1478
    [58]C.Zhang, J.Wan and J.Zi, IEEE Trans. Microw. Theo. Tech., special issue.
    [59]S.Gupta, G.Tuttle, M.Sigalas and K.M.Ho, "Infrared filters using metallic photonic band gap structures in flexible substrates," Appl. Phys. Lett.,1997,71(17):2412-2414
    [60]X.Y.Lei, H.Li, F.Ding, W.Zhang and N.B.Ming, "Novel application of a perturbed photonic crystal:High-quality filter," Appl. Phys. Lett.,1997,71(20):2889-2891
    [61]S.Y.Zhu. N.H.Liu, H.Zheng and H.Chen, "Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures," Opt. Commun.2000,174(2): 139-143
    [62]J.E.G.J.Wijnhoven and W.L.Vos, "Preparation of photonic crystals made of air spheres in titania," Science," 1998,281:802-804
    [63]S.John and T.Quang, "Photo-hopping conducion and collectively induced transparency in a photonic band gap," Phys. Rhys. Rev. A.,1995,52(5):4083-4088
    [64]S.John and T.Quang, "Resonant nonlinear dielectric response in a photonic band gap material," Phys. Rev. Lett.,1996,76(14):2484-2487
    [65]S.John and T.Quang, "Collective switching and inversion without fluctuation of two level atoms in confined photonic systems," Phys. Rev. Lett.,1997,75:1888-1891
    [66]S.Y. Zhu. H.Chen and H.Huang, "Quantum interference effects in spontaneous emission from
    an atom embedded in a photonic band gap structure, Phys. Rev. Lett.,1997,79(2):205-208
    [67]G.Kurizki and A.A.Genack, "Suppression of molecular interaction in periodic dielectric structures, Phys. Rev. Lett.,1998,61(19):2267-2271
    [68]S.John and J.Wang, "Quantum electrodynamics near a photonic band gap:photon bound states and dressed atoms," Phys. Rev. Lett.,1990,64:2418-2421
    [69]C.A.Condat and T.R.Kirpatrick, "Acoustic localization and resonant scattering," Phys. Rev. B., 1987,36:6782-6793
    [70]J.Martorell and N.M.Lawandy, "Observation of inhibited spontanesous emission in a periodic dielectric structure," Phys. Rev. Lett.,1990,65(16):1877-1880
    [71]G.Kurizki, B.Sherman and A.Kadyshevitch, "Quantum electrodynamics in photonic band gaps: atomic-beam interaction with a defect mode," J. Opt. Soc. Am. B.,1993,10:346-352
    [72]H.Yan, C.Gu, G.Jin, J.Liu, C.Yang, J.Zhang, L.Hou and Y.Yao, "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett.,2006,89:204109
    [73]M.B.Moshe, V.L.Alexeev and S.A.Asher, "Fast responsive crystalline colloidal array photonic crystal glucose sensors," Anal.Chem.,2006,78:5149-5157
    [74]S.Smolka, M.Barth and O.Beuson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett.,2007,90:111101
    [75]P.M.Przemyslaw, T.Hanifi, et al, "Dramatic enhancement of third-harmonic generation in three-dimensional photonic crystal," Phys Rev Lett.,2004(92):083903
    [76]A.A.Fedyanin, O.A.Aktsipetrov, D.Kobayashi, et al, "Enhanced faraday and nonlinear magneto-optical kerr effects in magnetophotonic crystals," J. Magn. Mater.,2004(282): 256-259
    [77]L.M.Zhao, B.Y.Gu, G.Z.Yang, "Ehanced of second harmonic generation in one-dimensional ferroelectric-matallic photonic crystals," Modern. Phys. Lett. B.,2007(21):1599-1604
    [78]D.Coquillat, G.Vecchi, C.Comaschi, et al, "Ehanced second-and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystals," Appl. Phys. Lett., 2005(87):101106
    [79]M.Roussey, M.P.Bernal, N.Courjal, et al, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," APPL. Phys. Lett.,2006(89):241110
    [80]P.Bermel, C.Luo, L.Zeng, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express.,2007,15(25):16986
    [81]A.Mihi, M.E.Calvo, J.A.Anta, et al, "Spectral response of opal-based dye-sensitized solar cells," J. Phys. Chem. C.,2008,112(1):13-17
    [82]Y.Z.Zhang, J.X.Wang, Y.Zhao, et al, "Photonic crystal concentrator for efficient output of
    dye-sensitized solar cells," J. Mater. Chem.,2008,18(23):2650-2652
    [83]S.Colodrero, A.Mihi, L.Haggman, et al, "Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells," Adv. Mater.,2009,21(7): 764-770
    [84]J.F.McMillan, X.D.Yang, N.C. Panoiu, et al, "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett.,2006,31(9):1235-1237
    [85]J.F.MCmillan, M.B.Yu, D.L.Kwong, et al, "Observation of spontaneous Raman scattering in slow-light photonic crystal waveguides," Appl. Phys. Lett.,2008.93:251105
    [86]V.S.Gorelik, A.D.Dudryavtseva, N.V.Tcherniega, "Stimulated Raman scattering in three-dimensional photonic crystals," J. Russian. Laser. Research.,2008,29(6):551-557
    [87]C.Weisbuch, M.Nishioka, A.Ishikawa, and Y.Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett., 1992,69:3314
    [88]E.P.Petrov, V.N.Bogomolov, I.I.Kalosha, "Spontaneous emission of organic molecules embedded in a photonic crystals," Phys. Rev. Lett.,1998,81(1):77-80
    [89]Megens, J.E.G.J.Wijnhoven, A.Lagendijk, et al, "Light sources inside photonic crystals," J. Opt. Am. B.,1999,16:1403-1408
    [90]Y.A.Vlasov, K.Luterova, I.Pelant, et al, "Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals," Appl. Phys. Lett.,1997,71:1616-1618
    [91]A.G.Kofman, G.Kurizki and B.Sheman, "Spontaneous and induced atomic decay in photonic band structures," J. Mod. Opt.,1994,41:353-384
    [92]S.Bay, P.Lambropoulos and K.Molmer, "Fluorescence into flat and structured equation," Phys. Rev. Lett.,1997,79:2654
    [93]T.Okubo, "Giant colloidal single crystals of polystyrene and silica spheres in deionized suspension," Langmuir.,1994(10):1695-1702
    [94]T.Okubo, "Colloidal single crystals of silica spheres in alcoholic organic solvents and their aqueous mixtures," Langmuir.,1994(10):3529-3535
    [95]H.B.Sunkara, J.M.Jehmalani and W.T.Ford, "Composite of colloidal crystals of silica in poly(methyl methacrylate)," Chem. Mater.,1994(6):362-364
    [96]M.Weissman, H.B.Sunkara, A.S.Tse and S.A.Asher, "Thermally switchable periodicities and diffraction from mesoscopically ordered materials," Science.,1996(274):959-960
    [97]T.B.Mitchell, J.J.Bollinger, D.H.E.Dubin, X.P.Huang and W.M.Itano, "Direct observations of structural phase transitions in planar crystallized ion plasmas," Science.,1998(282):1290-1293
    [98]T.M.Oneil,"Trapped plasmas with a single sign of charge," Phys. Today.,1999, February,24
    [99]W.L.Vos, M.Megens, C.M.van Kats and P.Bosecke, "X-ray diffraction of photonic colloidal single crystals," Langmuir.,1997(13):6004-6008
    [100]H.Miguez, F.Messguer, C.Lo'pez, A.Mifsud, and J.S.Moya, "Evidence of FCC crystallization of SiO2 nanospheres," Langmuir.,1997(13):6009-6011
    [101]U.Jeong, Y.L.Wang, and M.Ibisate, "Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres," Adv Func Mater,2005,15: 1907-1921.
    [102]K.P.Velikov, G.E.Zegers and A.V.Blaaderen, "Synthesis and Characterization of Large Colloidal Silver Particles," Langmuir.,2003,14:1384-1389.
    [103]X.Juan and D.Hong, "Photonic crystals fabricated from ZnO colloidal spheres. Journal of Sichuan University," 2005,42:183-186.
    [104]C.Graf and A.V.Blaaderen, "Metallodielectric Colloidal Core-Shell Particles for Photonic Applications. Langmuir," 2002,18:524-534.
    [105]F.Garci'a-Santamar(?)a, V.N.S.o-Maceira and C.Lo'pez, "Synthetic Opals Based on Silica-Coated Gold Nanoparticles," Langmuir.,2002,18:4519-4522.
    [106]Z.Chen, P.Zhan and Z.L.Wang, "Two-and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating," Adv Mater.,2004,16:417-422.
    [107]V N.Bogomolov, S.V.Gaponenko, I.N.Germanenko and A.M.Kapitonov, "Photonic band gap phenomenon and properties of artificial opals," Phys. Rev. E.,1997(77):7619-7625
    [108]H.Miguez, F.Meseguer and C.Lo'pez, "Evidence of FCC crystallization of SiO2Nanospheres," Langmuir.,1997,13:6009-6011.
    [109]X.L.Xu, G.Friedman and K.D.Humfeld, "Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals," Chem Mater.,2002,14:1249-1256.
    [110]K.E.Davis, W.B.Russel and W.J.Glantschnig, "Disorder-to-order settling suspensions of colloidal silica:X-ray measurements," Science.,1989(245):507-510
    [111]P.N.Pusey and W.van.Megen, "Phase behavior of concentrated suspensions of nearly hard colloidal spheres," Nature.,1986(320):340-342
    [112]L.V.Woodcock, "Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures," Nature.,1997(385):141-143
    [113]P.G.Bolhuis, D.Frenkel and D.A.Huse, "Entropy difference between crystal phase," Nature.,1997(388):235-236
    [114]R.C.Salvarezza, L.Va'zquez, H.Miguez, R.Mayoral, C.Lo'pez and F.Meseguer, "Edward-wilkinson behavior of crystal surfaces grown by sedimentation of SiO2 nanospheres,"
    Phys. Rev. Lett.,1996(77):4572-4575
    [115]O.Vickreva, O.Kalinina and E.Kumacheva, "Colloid crystal growth under oscillatory shear," Adv. Mater.,2000(12):110-112
    [116]Z.Z.Gu, A.Fujishima and O.Sato, "Fabrication of high-quality opal films with controllableThickness," Chem Mater.,2002,14:760-765.
    [117]Y.A.Vlasov, X.Z.Bo and J.C.Sturm, "On-chip natural assembly of silicon photonic bandgap crystals," Nature.,2001,414:289-293.
    [118]G.I.N.Waterhouse and M.R, "Waterland Opal and inverse opal photonic crystals:Fabrication and characterization," Polyhedron,2007,26:356-368.
    [119]R.G.Shimmin, A.J.DiMauro and P.V.Braun, "Slow vertical deposition of colloidal crystals:A Langmuir-Blodgett process?," Langmuir.,2006,22:6507-6513.
    [120]Z.C.Zhou, Q.Li and X.S.Zhao, "Evolution of interparticle capillary forces during drying of colloidal crystals," Langmuir.,2006,22:3692-3697.
    [121]H.L.Li and F.Marlow, "Solvent effects in colloidal crystal deposition," Chem Mater.,2006,18: 1803-1810.
    [122]Z.C.Zhou and X.S.Zhao, "Opal and inverse opal fabricated with a flow-controlled verticaldeposition method," Langmuir.,2005,21:4717-4723.
    [123]Y.Tan, K. J.Yang and Y.X.Cao, "Fabrication of polystyrene and its sensing application toa photonic structure," Acta Chim Sinica.,2004,62:2089-2092.
    [124]S.L.Kuai, X.F.Hu and A.Hache, "High-quality colloidal photonic crystals obtained byoptimizing growth parameters in a vertical deposition technique," J Cryst Growth.,2004,267: 317-324.
    [125]D.Jing, J.N.Gao and F.Q.Tang, "Fabrication of colloidal crystal array by self-assemblyMethods," Prog Chem.,2004,16:321-326.
    [126]Y.H.Ye, F.LeBlanc and A.Hache, "Self-assembling three-dimensional colloidal photoniccrystal structure with high crystalline quality," Appl Phys Lett.,2001,78:52-54.
    [127]D.J.Norris, E.G.Arlinghaus and L.L.Meng, "Opaline photonic crystals:How doesself-assembly work?," Adv Mater.,2004,16:1393-1399.
    [128]Z.C. Zhou and X.S.Zhao, "Flow-controlled vertical deposition method for the fabricationof photonic crystals," Langmuir.,2004,20:1524-1526.
    [129]O.D.Velev and A.M.Lenhoff, "Colloidal crystals as templates for porous materials," CurrOpin Colloid In,2000,5:56-63
    [130]Y.N.Xia, B.Gates, and Y.D.Yin, " Monodispersed colloidal spheres:Old materials withnew applications," Adv Mater.,2000,12:693-713.
    [131]S H.Park and Y.Xia, "Assembly of Mesoscale Particles over Large Areas and ItsApplication in Fabricating Tunable Optical Filters," Langmuir.,1999,15:266-273.
    [132]A.Winkleman, B.D.Gates and L.S.McCarty, "Directed self-assembly of spherical particles on patterned electrodes by an applied electric field," Adv Mater.,2005,17:1507-1511.
    [133]M.Allard, E.H.Sargent and P.C.Lewis, "Colloidal crystals grown on patterned surfaces," Adv Mater.,2004,16:1360-1364.
    [134]S.H.Park and Y.N.Xia, "Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters," Langmuir.,1999,15:266-273.
    [135]B.Griesebock, M.Egen and R.Zentel, "Large photonic films by crystallization on fluid substrate," Chemistry of Materials.,2002(14):4023-4025
    [136]F.G.Santanria, H.T.Miyazaki, A.Urquia, et al, "Nanorobotic manipulation of microspheres for on-chip diamond architecture," Adv. Matt.,2002(14):1144-1147
    [137]O.D.Velev, T.A.Jede, R.F.Lobo and A.M.Lenhoff, Nature.,1997,387:447-450
    [138]K.Busch and S.John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E.,1998(58):3896-3908
    [139]R.Viswas, M.M.Sigalas, G.Subramania and K.M.Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B.,1998(57):3701-3704
    [140]B.Li, J.Zhou, X.J.Wang, et al, " Ferroelectric inverse opals with electrically tunable photonic band gap," Appl. Phys.Lett.,2003(83):4704-4706
    [141]B.Li, J.Zhou, R.L.Zong and L.T.Li, "Photoluminescence properties of Zn2SiO4:Mn2+ inverse opals," High-Performance Ceramics Iii, Pts 1 and 2,2005,280-283,541-544
    [142]Q.B.Meng, Z.Z.Gu, O.Sato and A.Fujishima, "Fabrication of highly ordered porous structures," Appl. Phys.Lett,2000(77):4313-4315
    [143]Z.Z.Gu, S.Kubo, W.P.Qian, et al, "Varying the optical stop band of a three-dimensional photonic crystal by refractive index control," Langmuir.,2001(17):6751-6753
    [144]R.B.Wehrspohn and J.Schilling, "Electrochemically prepared pore arrays for photonic-crystal applications," Mrs Bulletin.,2001(26):623-626
    [145]P.V.Vraun and P.Wiltzius, "Electrochemically grown photonic crystals," Nature.,1999(402): 603-604
    [146]P.V.Braun and P.Wiltzius, "Electrochemically fabrication of 3D microperiodic porous materials," Adv. Mater.,2001(13):482-485
    [147]T.Sumida, Y.Wada, T.Kitamura and S.Yanagida, "Macroporous ZnO films electrochemically prepared by templateing of opal films," Chem. Lett.,2001:38-39
    [148]Y.A.Vlasov, X.Z.Bo, J.C.Sturm and D.J.Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature.,2001(414):289-293
    [149]A.Blanco, W.Chomski, S.Grabtchak, et al, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature.,2000(405): 437-440
    [150]C.H.Tan, G.H.Fan, T.M.Zhou, et al, "Preparation of InP-SiO23D photonic crystals," Physica B-Condensed Matter.,2005(363):1-6
    [151]A.A.Zakhidov, R.H.Baughman, Z.Iqbal, et al., "Carbon structures with three dimensional periodicity at optical wavelengths," Science.,1998(282):897-901
    [152]V.G.Golubev. V.Y.Davydov, N.F.Kartenko, et al, "Phase transition-govermed opal-VO2 photonic crystal," Appl. Phys. Lett..,2001(79):2127-2129
    [153]R.Torrecillas, A.Blanco, M.E.Brito, et al, "Microstructural study of CdS/opal composites," Acta Materialia.,2000(48):4653-4657
    [154]Blanco, C.Lo'pez, R.Mayoral, et al, "CdS photoluminescence inhibition by a photonic structure," Appl. Phys. Lett.,1998(73):1781-1783
    [155]M.Scharrer, X.Wu, A.Yamilov, H.Cao, and R.P.H.Chang, "Fabrication of inverted opel ZnO photonic crystals by atomic layer deposition," Appl. Phys. Lett.,2005,86,151113-151115
    [156]J.S. King, D.Heineman, E.Graugnard and C.J.Summers, "Atomic layer deposition in porous structures:3D photonic crystals," Appled Surface Science.,2005(244):511-516
    [157]A.Rugge, J.S.Park, R.G.Gordon and S.H.Tolbert, "Tantalum(V) nitride inverse opal as photonic structures for visible wavelengths," J. Phys. Chem. B.,2005(109):3764-3771
    [158]J.S.King, E.Graugnard and C.J.Summers, "TiO2 inverse opals fabricated using low-temperature atomic layer deposition," Adv. Matt.,2005(17):1010-1013
    [159]J.S.King, C.W.Neff, S.Blomquist, et al, "ZnS-based photonic crystal phosphors fabricated using atomic layer deposition," Physica Status Solid-Basic Research.,2004(241):763-766
    [160]K.K.Mendu, J.Shi, Y.F.Lu, at el, "Fabrication of multi-layered inverse opals using laser-assisted imprinting," Nanotechnology.,2005(16):1965-1968
    [161]A.A.Zakhidov, R.H.Baughman, Z.Iqbal, et al., "Carbon structures with three dimensional periodicity at optical wavelengths," Science.,1998(282):897-901
    [162]B.T.Holland, C.F.Blanford, T.Do and A.Stein, Chem. Mater.,1999(11):795
    [163]A.Rugge, J.S.Park, R.G.Gordon and S.H.Tolbert, "Tantalum(V) nitride inverse opals as photonic structures for visible wavelengths," J. Phys. Chem. B.,2005(109):3764-3771
    [164]A. Imhof and Y. A. Vlasov, Adv. Mater.,2001(13):371
    [165]H.Yang, C.F.Blanford, B.T.Holland, at el, "Chemical synthesis of periodic macroporous NiO and metallic Ni," Adv. Mater.,1999(11):1003-1006
    [166]H.Miguez, F.Meseguer, C.Lo'pez, at et, "Germanium FCC structure from a colloidal crystal template," Langmuir.,2000(10):4405-4408
    [167]P.Jiang, J.Cizeron, J.F.Bertone and V.L.Colvin, "Preparation of macroporous metal films from colloidal crystals," J. Am. Chem. Soc.,1999(121):7957
    [168]R.W.J.Scott, S.M.Yang, G.Chabanis, et al, "Tin dioxide opals and inverted opals:near-ideal microstructures for gas sensors," Adv. Mater.,2001,13:1468-1472
    [169]A.Stein and R.C.Schroden, "Current opinion in solid state and materials," Science.,2001,5: 553-564
    [170]J.S.Sakamoto, B.Dunn, "Hierarchical battery electrodes based on inverted opal structures," J. Mater. Chem.,2002,12:2859-2861
    [171]Born M, Wolf E. Optical Principles(光学原理)[M].Beijing:Science Press,1978. (in Chinese)
    [172]Y.Fink, J.N.Winn, Shanhui Fan, et al, "A Dielectric Omnidirectional Reflector," Science.,1998,282(27):1679-1682
    [173]E.Yablonovitch, "Inhibited spontaneous emission in solid-states physics and electronic," Phys.Rev.Lett.,1987,58 (20):2059-2061.
    [174]S.John, "Strong localization of photons in certain disordered dielectric superlattices," Phys.Rev.Lett.,1987,58 (23):2486-2489.
    [175]X.Wang, X.Hu. Y.Z.Li, et al, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett.,2002,80 (23):42914-4293
    [176]J.B.Pendry, A.J.B.MacKinnon and A. MacKinnon, "Calculation of Photon Dispersion Relations," Phys. Rev. Lett.,1992,69 (19) 2772-2775
    [177]Hongqiang Li, [J] Physica,2002, B279:164-167
    [178]F.Qiao, C.Zhang, and J.Wan, "Photonic quantum-well structures:Multiple channeled filtering phenomena," Appl. Phys. Lett.,2000,77(23):3698-3700
    [179]Q.Qin, H.Lu, and S.N.Zhu, "Resonance transmission modes in dual-periodical dielectric multilayer films," Appl. Phys. Lett.,2003,82(26):4654-4656
    [180]A.A.Maradudin and A.R.McGurn, "Photonic band structure of a truncated, two-… dimensional periodic metal or semiconductor arrays," Physics Review B.,1993,48(23): 17576-17579,
    [181]A.J.Ward, J.B.Pendre, W.J.Setwart, "Photon dispersion surfaces," J. Phys.:Condens. Matter, 1995,72217-2224
    [182]M.Scalora, M.J.Bloemer, A.S.Pethel, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures," Journal of Applied Physics.,1998,83(5):2377~2383
    [183]Junfei Yu, Yifeng Shen, et al, "Absorption in one-dimensional metallic-dielectric photonic crystal" J. Phys:Condense Matter.,2004,16:L51-L56
    [184]Palik E D(ed), "Handbook of optical constants of solids," New York, Academic,1985
    [185]T.Tokizaki, A.Nakamura, S.Kaneko, K.Uchida, S.Ohmi, et al. Appl. Phys. Lett.,1994,65: 941
    [186]F.Hache, D.Ricard, C.Flytzanis, and U.Kreibig, "The Optical Kerr Effect in Small Metal Particles and Metal Colloids-the Case of Gold," Appl. Phys. A.,1998,47:347-357
    [187]V.M.Shalaev, "Nonlinear Optics of Random Media," Berlin:Springer-Verlag.,2000.
    [188]R.S.Bennink, Y.K.Yoon, R.W.Boyd, J.E.Sipe, "Accessing the transparent of metal-dielectric photonic bandgap structures," Opt. Lett.,1999,24:1416-1418
    [189]N.N.Lepeshkin, A.Schweinsberg, G.Piredda, R.S.Bennink, and R.W.Boyd, " Transmission of one-dimensional metal dielectric photonic crystals." Phys. Rev. Lett.,2004,93(12): 123902_1-123905_4
    [190]S.Baglio, M.Bloemer, N.Savalli and M.Scalora, "Development of novel optoelectromechanical systems based on 'transparent metals' PBG structures," IEEE Sens., 2001,1(4):288-295
    [191]Y.K.Choi, Y.K.Hs, J.E.Kim, et al. "Antireflection film in one-dimensional metallo-dilectric photonic crystals," Optics Communications.,2004,230:239-243
    [192]E.G.Judith, J.Wijnhoven, et al, "Preparation of Photonic Crystals Made of Air Spheres in Titania," Science.,1998,281:802-804
    [193]Peigen Ni, Bingying Cheng, and Daozhong Zhang, "The formation processs of TiO2 inverse opal," Chin. Phys. Lett.,2002,19:511-514
    [194]M.A.McLachlan, N.P.Johnson, et al, "Domain size and thickness control of thin film photonic crystals," Journal of Materials Chemistry.,2005,15:369-371
    [195]S.L.Kuai, X.F.Hu. V.V.Truong, "Synthesis of thin film titania photonic crystals through a dip-infiltrating sol-gel process," Journal of Crystal Growth.,2003,259(4):404-410
    [196]M.A.McLachlan, C.C.A.Barron, et al, "Preparation of large area three-dimensionally ordered macroporous thin films by confined infiltration and crystallisation," 2008,310;2644-2648
    [197]A.S.Dimitrov and K.Nagayama, "Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces," Langmuir.,1996,12:1303-1311
    [198]N.D.Denkov, O.D.Velev, et al, "Two-dimensional crystallization," Nature.,1993,361:26-28
    [199]J.D.Joannopoulos, "Self-assembly lights up," Nature.,2001,414:257-258
    [200]快素兰,“光子晶体的胶体晶体模板法制备及其性能研究,”博士论文,2002
    [201]富鸣,“胶体晶体调制下材料的二维/三维生长与性质,”博士论文,2007
    [202]A.Koichi, X.Wang, M.Fujimaki, et al, "Fabrication of two-and three-dimensional photonic crystals of titania with submicrometer resolution by deep x-ray lithography," J. Vac. Sci. B., 2005,23:934
    [203]A.Richel, N.P.Johnson and D.W.McComb, "Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix," Appl. Phys. Lett.,2000,76:1816
    [204]M.Sawangphruk and J.S. Foord, "Fabrication of TiO2 and Ag wires and arrays using opal polystyrene crystal templates," J. Vac. Sci. B.,2009,27:1484
    [205]N.Vinothan, Manoharan, et al, "Ordered macroporous rutile titanium dioxide by emulsion templating," Proc. SPIE.,2000,44:3937
    [206]S.S.Alexander, V.A.Vera, D.T.Yuri, "Structural and optical properties of titania photonic crystal films prepared by a sol-gel method", Mendeleev Communications.,2007,17(1):1-3
    [207]Su-Lan Kuai, Geroges Bader, Alain Hache, et al, "High quality ordered macroporous titania films with large filling fraction," 2005,483:136-139
    [208]B. T. Holland, C. F. Blanford and A. Stein, "Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids," Science.,1998,281:538-540
    [209]H. Yan, C. F. Blanford, et al, "Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating," Chem. Comm.,2000,1477-1478
    [210]W.W.So, S.B.Park, S.J.Moon, "The crystalline phase of titania particles prepared at room temperature via sol-gel method," J. Master. Sci. Lett.,1998,17:1219-1222
    [211]D.Vorkapic, T.Matsoukas, "Effect of temperature and alcohols in the preparation of titania nanopaticles from alkoxides," J. Am. Ceram. Soc,1998,81(11):2815-2820
    [212]贺蕴秋,王德平,林健,“溶胶-凝胶TiO2的晶相转变温度,”功能材料,2000,31(2):149-151
    [213]尹荔松,周歧发,唐新桂,等,“溶胶-凝胶法制备纳米TiO2的胶凝过程机理研究,”功能材料,1999,30(4):407-409
    [214]唐郁生,夏金虹,“TiO2粉体光催化降解四种可溶性燃料的研究,”华工技术与开发,2004,33(6):45-47
    [215]葛伟杰,周保学,等,“燃料敏华太阳能电池纳米TiO2制备及多孔电极膜研究进展,”环境化学,2005,24(6):726-730
    [216]徐志兵,郭畅,等,“三维大孔TiO2光催化剂的制备及其催化性能,”催化学报,2006,27(8):732-736
    [217]A. S. Dimitrov, K. Nagayama, "Steady-State Unidirectional Convective Assembling of Fine Particles into Two-Dimensional Arrays," Chem. Phys. Lett.,1995,243:462
    [218]K.D.Keefer, "Better ceramics through chemistry Ⅱ," Mat. Res. Soc., Pittsburgh,1986:585
    [219]E.Yablonovitch, T.Gmmer, and M.K.Leung, "Donor and acceptor modes in photonic band structure", Phys. Rev. Lett.,1991,67:20295
    [220]L.Bechger, P.Lodahl, and L.W.Vos, "Directional Fluorescence Spectra of Laser Dye in Opal and Inverse Opal Photonic Crystals", J. Phys. Chem. B.,2005,109:9980
    [221]F.K.Saveliy, F.K.Nelli, A.K.Dmitry, et al, "Electroluminesent three-dimensional photonic crystals based on opal-phosphor composites," Appl. Phys. Lett.,2005,86:071108-0711010
    [222]X.S.Xu, T.Yamada, R.Ueda, et al, "Dynamics of spontaneous emission from SiN with two-dimensional photonic crystal," Opt. Lett.,2008,33(15):1768-1770
    [223]Stacy A. Johnson, Patricia J. Ollivier, and Thomas E. Mallouk, "Ordered mesoporous polymers of tunable pore size from colloidal silica templates," Science.,1999,283:963
    [224]P.Jiang, K.S.Hwang, D.M.Mittleman, et al, "Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids," J. Am. Chem. Soc,1999,121:11630
    [225]H.Miguez, F.M eseguer, C.Lopez, et al, "Synthesis and photonic bandgap characterization of polymer inverse opals," Adv.Mater.,2001,13:393
    [226]Y.Chen, W.T.Ford, N.F.Materer, et al, "Conversion of colloidal crystals to ordered porous polymer nets," J. Am. Chem. Soc.,20001 22:10472
    [227]K.Sumioka, H.Kayashima, T.Tsutsui, et al, "Properties of inverse opal photonic crystal by deformation," Adv.Mater.,2002,14:1284
    [228]Y.Koike, S.Matsuoka, and H.E.Bair, "Origin of excess light scattering in poly(methyl methacrylate) glasses", Macromolecules.,1992,25,4807-4815
    [229]R.Mayoral, J.Requena, J.S.Moya, et al, "3D long-rang ordering in an SiO2 submicrometer-sphere sintered superstructure" Adv. Mater.,1997,9:257-259
    [230]M.Doosje, B.J.Hoenders, and J.Knoester, "Photonic bandgap optimization in inverted fcc photonic crystals", J. Opt. Soc. Am. B.,2000,17 (4):600-606
    [231]Y.Z.Zhu, H.B.Chen, Y.P.Wang, et al, "Mesoscopic photonic crystals made of TiO2 hollow spheres connected by cylindrical tubes", Chem. Letter.,2006,35:756
    [232]F.Fudouzi, Y.Xia, "Photonic papers and inks:color writing with colorless materials," 2003, 15(11):829
    [233]廖险峰,林晓琴,李松军,等,“用于高通量药物筛选的PMMA-Alq3荧光微球的制备,”合成化学,2004,12:273
    [234]M.Megens, et al, "Fluorescence lifetimes and linewidths of dye in photonic crystals," Phys. Rev. Lett.,2001,78(1):52-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700