早期负重状态下三种种植体形态对骨结合的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种植体-基台系统能够替代失去的天然牙为全冠提供良好的支持作用,使患者的美观和功能得以恢复。种植体目前已在很多国家普及应用,广受好评。但也有不少患者因为种植疗程过长而放弃了这种治疗方式。要推进种植治疗在临床上的应用,使更多牙列缺失缺损患者受益于种植治疗,优化方案缩短疗程刻不容缓。
     自从上世纪60年代Branemark提出现代口腔种植技术,传统的种植体延期负重方案被广泛应用于临床。直到1986年Babbush首先提出了即刻负重的概念,许多学者才相继对种植体即刻负重和早期负重进行了研究。到目前为止,种植体即刻负重和早期负重仍然是种植学领域的研究热点。
     即刻负重是指种植体植入后2-3天内负重,而早期负重介于即刻负重和传统的延期负重之间,是指种植体植入2天后或3个月内对种植体进行加载。一系列关于种植体早期负重的临床研究得到了与延期负重近似甚至更高的种植体存留率以及更少的种植体周围骨吸收。
     虽然有关种植体早期负重的研究很多,但这些研究都集中于螺纹种植体,并无观察鳍型种植体在早期负重状态下骨结合的基础研究,也并无基础研究比较鳍型和螺纹种植体的骨愈合情况。鳍型种植体与螺纹种植体最大的区别就是在鳍型种植体的骨内部分有一系列独立的环状翼。种植体植入后会在相邻的环状翼之间留下大量的空间,为血痂和编织骨的形成提供场所。研究证实在鳍型种植体提供的这种空间里形成血管和编织骨能获得较快的骨愈合和较好的种植体生物力学方面的稳定性。
     本研究的目的即观察鳍型种植体与螺纹种植体在种植体-骨界面上应力分布的区别,考察鳍型种植体在早期负重状态下的骨愈合情况,并与螺纹种植体进行比较。本课题的研究内容分为以下三个部分:
     第一部分三种形态种植体周围应力分布的三维有限元分析
     [目的]本实验的研究目的是比较鳍型种植体与螺纹种植体在种植体-骨界面上应力分布情况。
     [材料与方法]本实验设三个实验组:柱状螺纹(CT)种植体(种植体为柱状,外径3.3mm)、柱状鳍型(CP)种植体(种植体为柱状,外径3.0mm,环状翼厚度0.2mm,间距0.8mm)和锥状鳍型(TP)种植体(种植体为锥状,外径3.0mm,环状翼厚度0.2mm,间距0.8mm)。三种种植体均为一段式,长度均为14mm,骨内长度为8mm,穿龈高度为2mm。参考下颌骨皮质骨和松质骨的弹性模量,应用大型3D造型软件PRO/E中建立各实验组种植体和周围软硬组织的三维有限元几何模型。应用ANSYS Workbench有限元分析程序自动对模型划分节点和单元。设计了3种负荷加载方式:①垂直向负荷100N,方向与种植体长轴一致,由(?)方指向龈方,载荷部位为胎面中央;②水平向负荷100N,方向与种植体长轴垂直,由颊侧指向舌侧,载荷部位为(?)1/3与中1/3交界处;③斜向负荷100N,方向与种植体长轴呈45°,由(?)颊侧指向龈舌侧,载荷部位为(?)1/3与中1/3交界处。利用三维有限元分析法计算不同负荷条件下各实验组种植体内部和周围粘膜、皮质骨和松质骨的等效应力峰值。
     [结果]应力分布云图显示:垂直加载条件下,种植体内部应力分布较为均匀,CT和CP组应力较高点位于种植体末端,TP组位于种植体颈部;各实验组种植体颈部皮质骨应力集中出现在种植体顶部周围皮质骨中;各组松质骨应力集中均位于种植体末端;各组粘膜组织应力集中于基台穿龈部位顶端。水平加载条件下,CT组种植体内部应力集中位于种植体颈部,而CP和TP组在种植体内部的应力分布均匀;各实验组皮质骨应力均集中于顶部;CT组种植体周围松质骨的应力集中于种植体末端,而CP和TP组在松质骨中的应力分布均匀;各组在粘膜组织中的应力集中位于基台穿龈部位的顶部。斜向加载条件下,CT组种植体内部的应力集中于种植体颈部,而CP和TP种植体内部应力分布均匀;各组在皮质骨中的应力集中均位于顶部皮质骨中;CT组在松质骨中的应力集中于种植体末端,而CP和TP组种植体周围松质骨应力分布均匀;各实验组粘膜组织中的应力均集中于基台穿龈部位的顶端。不同加载条件下,各实验组种植体等效应力峰值的比较结果表明:①同一实验组相同部位的等效应力峰值比较:垂直载荷<斜向载荷<水平载荷;②相同加载方式下相同部位,不同实验组的等效应力峰值比较:CT种植体组在种植体内部分布的MVMS较其它实验组大;CT种植体组在种植体颈部皮质骨中的MVMS较其它组小;CP种植体组在松质骨中的MVMS较其它组小;粘膜中CT组MVMS最大,CP组MVMS最小,但各组MVMS均较小。③除了CT组在垂直载荷下种植体颈部皮质骨的应力峰值略低于松质骨,其它所有情况下种植体颈部周围皮质骨的应力峰值均高于松质骨,种植体内部的应力峰值均最大,粘膜中的应力峰值均最小。
     [结论]垂直载荷下,三种形态种植体周围组织的应力均较小且分布情况相似;非垂直载荷下,三种形态种植体周围组织的应力均较大,柱状螺纹种植体在松质骨中的应力集中于种植体末端处,而柱状鳍型和锥状鳍型种植体周围松质骨中的应力分布均匀。三种载荷作用下,不同形态种植体颈部皮质骨中的应力均集中位于皮质骨包绕种植体界面的顶端。柱状螺纹种植体在三种加载方式下将较大的应力分布于种植体内部,将较小的应力分布于种植体颈部皮质骨中,有利于抵抗皮质骨吸收。
     第二部分三种形态种植体在早期功能性负重下的成骨情况比较
     [目的]本实验的目的是为了探讨种植体外形和相应的植入技术在早期功能性负重状态下对成骨过程的影响。
     [材料与方法]本实验设计加工制作了三种形态的种植体:柱状螺纹(CT)种植体(种植体为柱状,外径3.3mm)、柱状鳍型(CP)种植体(种植体为柱状,外径3.0mm,环状翼厚度0.2mm,间距0.8mm)和锥状鳍型(TP)种植体(种植体为锥状,外径3.0mm,环状翼厚度0.2mm,间距0.8mm)。三种种植体均为两段式,种植体长度均为8mm。在基台与种植体连接部分设计了1.5°锥度。拔除比格犬下颌骨双侧第2、3、4前磨牙,10周后将三种形态的种植体随机植入比格犬双侧下颌骨缺牙区的牙槽骨中,每侧下颌骨3-4枚种植体,保证在每侧下颌骨内每种形态的种植体至少有一枚,1周后行二期手术安装基台并粘固自凝塑料义齿。使用Periotest稳定性测试仪动态监测所有种植体加载时以及加载后2、4、6周的稳定性。6只比格犬在种植体负重后3周和6周分批处死。获取的埋植有种植体的下颌骨标本用来进行显微CT和组织形态计量学的分析。
     [结果]CT种植体的稳定性在负重初期显著高于CP和TP种植体,负重6周后,CT和CP种植体的稳定性无显著性差异,且此二者的稳定性明显高于TP种植体。显微CT和组织计量学分析的结果显示:负重3周后,CT种植体的骨-种植体结合率和骨量百分比均显著高于CP和TP种植体;而负重6周后,CT和CP种植体的骨-种植体结合率显著高于TP种植体。另外,负重6周后CT和CP种植体的骨量百分比无统计学差异。
     [结论]在种植体植入后1周开始功能性负重可能会促进柱状种植体的骨愈合但阻碍锥状鳍型种植体的骨愈合。不论是螺纹还是鳍型,柱状种植体可能比锥状种植体更适合在早期(种植体植入后1周)负重情况下使用。
     第三部分早期负重对鳍型种植体骨结合的影响
     [目的]本实验的目的是为了比较鳍型种植体在早期负重和延期负重下的成骨情况。
     [材料与方法]本实验设置了三个实验组,即早期负重(early loading, EL)组、不负重的对照组以及延期负重(delayed loading, DL)组。拔除6只比格犬双侧下颌第2、3、4前磨牙,伤口愈合10周后,将柱状鳍型种植体植入比格犬下颌缺牙区的牙槽骨中,每侧下颌骨植入3枚种植体。将6只比格犬随机分配至三个实验组,每组2只犬。早期负重组种植体在植入1周后即进行二期手术,安装基台及自凝塑料义齿;不负重的对照组种植体在种植体植入1周后也将牙槽嵴顶粘膜切开翻瓣缝合,但不安装基台;延期负重组种植体在种植体植入后10周安装基台和上部义齿。使用Periotest稳定性测试仪动态监测所有种植体安装基台后第0、2、4和6周的稳定性。所有动物处死前3周注射钙黄绿素,处死前1周注射茜素红。6只比格犬在种植体负重后3周和6周分批处死。获取的埋植有种植体的下颌骨标本用来进行荧光观察以及显微CT和组织形态计量学的分析。
     [结果]早期负重种植体在安装基台时稳定性较低,但是在负重后第2周和第4周的稳定性高于延期负重种植体。在负重后的0-2周和3-5周两个时间段,早期负重种植体和未负重对照组种植的矿化沉积速率均无统计学差异。在负重后3-5周,早期负重种植体的矿化沉积速率显著高于延期负重组。负重后3周时,早期负重种植体的骨-种植体结合率显著低于延期负重组,而到负重后第6周时,早期负重组和延期负重组的所有组织学参数均未见统计学差异。并且,负重6周后早期负重种植体的骨-种植体结合率已经高于未负重的对照组。
     [结论]在早期负重状态下,种植体愈合时间缩短到1周即开始加载对柱状鳍型种植体周围骨组织的改建有积极影响。
     综上所述,由于提前加载对种植体周骨愈合的促进,柱状鳍型种植体在早期负重(种植体植入后1周)下能够获得良好的骨结合,与柱状螺纹种植体一样适用于该种早期负重方案。而锥状鳍型种植体在早期负重情况下的应用还有待进一步的长期考察。
The implant-abutment system can replace the lost natural teeth as the support for crown, restorating the aesthetics and function of patients. Although the implants have been widely used in many countries currently, some patients choose to give up the implant therapy due to the long schedule. Thus, the conventional implant therapy should be improved immediately to shorten the course of treatment, so as to make more patients benefit from the implant treatment.
     Since the introduction of modern dental implant techanique by Branemark in1960s, the conventional delayed loading protocol has been widely used in clinical practice. Many researchers began to study the immediate and early loading protocol until the development of immediate loading by Babbush in1986. The immediate and early loading are still the the hot area of research until now.
     Typically, the delayed loading protocol was used to ensure successful and predictable placement of dental implants. However a number of clinical and experimental studies regarding early loading directly challenged this notion with convincing outcomes. The early loading protocol refers to load applied to implants between2days and3months post surgery (between immediate loading and conventional loading). Comparable or even better survival rates and less peri-implant bone loss for early loaded implants were achieved in a series of clinical trials.
     Although many studies were conducted to determine the outcomes of early loading applied to threaded implants, few experimental studies exist that investigate peri-implant bone reactions under early loading applied to plateaued implants. The cylinder plateaued implant has a series of separate circumferential fins existing along the intra-osseous portion of the implant, and a large space between the fins which have previously been described for blood clot formation and woven bone development. It has been suggested that a relatively rapid bone healing and thus biomechanical stabilization of the implant could result from the vascularization and woven bone filling in this space.
     The aim of this PhD thesis was to evaluate the effect of implant configuration on bone-implant osseointegration under early loading. Three parts were included:
     1. The effects of implant configurations on stress distribution:a3D finite element analysis
     Materiala and Methods:Three experimental groups were designed according to the implant configurations:cylindrical threaded (CT) implant, cylindrical plateaued (CP) implant and tapered plateaued (TP) implant. The CT dental implants used in this study were3.3mm in diameter. The CP dental implants were3mm in diameter with a1.0mm plateau pitch and0.2mm thickness of each plateau. The TP implants were of the same plateau pitch, thickness of plateau and diameter in the coronal part as the CP implants. The only difference between CP and TP implants was that the latter had a tapered implant body. The3D one-stage implants with various configurations and the peri-implant tissure were modeled by means of the PRO/E program. The100-N static axial, horizongtal and oblique (45°) load were applied to the top of one-stage implant. The3D finite element analysis (FEA) was run at the ANSYS Workbench program. The images showing the distribution of von Mises stresses were abtained to locate the stress concentration in implants and different tissues under load of different directions. In addition, the maximum von Mises stresses (MVMS) at implants of various configurations and different tissues under load of varous directions were quantitatively compared.
     Results:The images showing the distribution of von Mises stresses under axial load revealed that no stress concentration was observed within the implant, and high stress values were detected at the end of implants for CT and CP groups and at the cervical part of implant for TP group. The stress concentratons at cervical cortical bone and cancellous bone were lacated at the top regions arround the implants and the end of implants respectively for all groups. Under horizontal load, the stress concentrations within implant were located at the cervical region for CT group, while the stress distributed equally within CP and TP implants. The stress concentrations in the cortical bone were also located at the cervical region for all groups. The stress concentrations in the cancellous bone were located at the end of implant for CT group, while the stress distributed equally in cancellous bone adjacent to CP and TP implants. Under oblique load, the stress concentrations within the implant were lacated at the cervical region for CT group, while no stress concentration was observed within the CP and TP implants. The stress concentrations in cortical bone were still located in cervical regions for all groups. The stress concentrations in cancellous bone were lacated at the end of CT implants, while the stress distributed equally again in cancellous bone for CP and TP implants. In addition, the stress concentrations in mucosa existed at gingival margin for all groups under load of varous directions. The quantitative comparison of MVMS between implants of different configurations indicated that①The MVMS at the same tissue of the same group were compared: axial load> oblique load> horizontal load.②For MVMS at the same tissue under load of the same direction:The CT group had a higher MVMS within the implants and a lower MVMS at the cervical cortical bone than the CP and TP groups. The MVMS at cancellous bone adjacent to the CP implants was lower than others. The MVMS existed in mucosa adjacent to the CT implants was the highest of all groups, while the MVMS existed in the CP implants was the lowest.③The MVMS existed in different tissues for the same group under the load of the same direction were compared:implant> cortical bone> cancellous bone> mucosa.
     Conclusions:Higher stress existed within the implant and lower stress distributed in the cervical cortical bone for cylindrical threaded implant, which favours the resistance of cervical bone loss. Under non-axial load, the stress concentrations in cancellous bone were located at the end of implant for cylindrical threaded group, while the stress distributed equally in cancellous bone for both plateated implants. The configuration of implants did not affect the stress distribution in vertical cortical bone, as the stress concentration always existed in the top region of interface between implant and cortical bone.
     2. Bone formation adjacent to implants of various configurations under early functional loading in a dog model
     Materials and Methods:This study was designed to evaluate the effect of combining implant configuration and surgical technique on bone formation under early functional loading in a dog model. Bone formation adjacent to customized cylindrical threaded, cylindrical plateaued, and tapered plateaued dental implants were compared post-early loading. The Periotest values were monitored dynamically for6weeks. Peri-implant bone healing was evaluated by bone-to-implant contact, and bone volumes fraction analysis after3and6weeks of loading.
     Results:The cylindrical threaded implants showed the highest stability when load began, while both the cylindrical threaded and cylindrical plateaued implants had higher stability than tapered plateaued implants after6weeks of loading. No difference in stability was found between cylindrical threaded and cylindrical plateaued implants after6weeks of loading. The data from both micro-focus computed tomography and histomorphometric analysis showed that the cylindrical threaded implants had significantly higher bone-to-implant contact and bone volumes fraction compared to cylindrical plateaued and tapered plateaued implants after3weeks of loading, and the tapered plateaued implant had a lower bone-to-implant contact than the cylindrical threaded and cylindrical plateaued implants after6weeks. In addition, no significant difference was detected for bone volumes fraction between cylindrical threaded and cylindrical plateaued implants after6weeks of loading.
     Conclusions:Based on these results, we concluded that the cylindrical implant, whether threaded or plateaued, might be more suitable for early loading (1week) when compared to the tapered implant.
     3. Effect of decreased implant healing time on bone (re)modelling adjacent to plateaued implants under functional loading in a dog model
     Materials and Methods:The purpose of this study was to evaluate the effect of early functional loading to plateaued implants on bone formation and implant stability in a dog model. Early loading (EL), non-loading control and delayed loading (DL) groups were compared using6Beagle dogs under functional loading. The Periotest values (PTV) were measured dynamically for6weeks. Peri-implant bone architecture was evaluated qualitatively by micro-computed tomography (μCT) and analyzed quantitatively by mineral apposition rates (MAR), bone-to-implant contact (BIC) and bone volumes (BV/TV) after the euthanasia at3and6weeks after loading.
     Results:The EL implants showed poor stability at1week, but greater stability at2and4weeks after loading compared to DL implants. There was no significant difference between MAR of EL and unloaded implants at both time intervals. The EL implants displayed a significantly higher MAR when compared to DL implants at3-5weeks. A significantly higher BIC for the DL group was observed when compared to the EL group at3weeks following loading, however at6weeks, no significant difference between these groups was observed. The EL group gained a higher BIC than the no-treatment control group at6weeks.
     Conclusions:For plateaued implant, the decreased healing time (1week) displays a positive effect on peri-implant bone (re)modelling under functional loading during the early phase.
     Based on the three studies above, we concluded:Favourable osseointegration can be obtained for the cylindrical plateaued implants under early loading (1week after the implant installation) due to the positive effect of decreased healing time. The early application of functional loading on cylintrical plateaued implants could be used clinically to shorten the course of treatment and improve aesthetics.
引文
1. Andersson B, Odman P, Lindvall AM, Lithner B. Single-tooth restorations supported by osseointegrated implants:results and experiences from a prospective study after 2 to 3 years. Int J Oral Maxiilofac Implants 1995;10(6):702-11.
    2.夏海斌.种植体支持式单冠的固位方式及其影响因素.国外医学:口腔医学分册1999;26(3):155-57.
    3. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3(2):81-100.
    4.肖慧娟,杨云东,施斌,柳忠豪,韩晓鹏,郭毅.1种植体即刻负重或早期负重与延期负重相比对种植体成功率影响的Meta分析.中国循证医学杂志2008;8(2):120-26.
    5. Babbush CA, Kent JN, Misiek DJ. Titanium plasma-sprayed (TPS) screw implants for the reconstruction of the edentulous mandible. J Oral Maxillofac Surg 1986;44(4):274-82.
    6. Esposito M, Worthington HV, Coulthard P. Interventions for replacing missing teeth:treatment of perimplantitis. Cochrane Database Syst Rev 2004(4):CD004970.
    7.王兴,刘宝林.我国口腔种植学的进展.中华口腔医学杂志2001;36(5):321-23.
    8. Attard NJ, Zarb GA. Immediate and early implant loading protocols:a literature review of clinical studies. J Prosthet Dent 2005;94(3):242-58.
    9. Cochran DL, Morton D, Weber HP. Consensus statements and recommended clinical procedures regarding loading protocols for endosseous dental implants. Int J Oral Maxillofac Implants 2004;19 Suppl:109-13.
    10. Alsabeeha NH, Payne AG, De Silva RK, Thomson WM.Mandibular single-implant overdentures: preliminary results of a randomised-control trial on early loading with different implant diameters and attachment systems. Clin Oral Implants Res 2011;22(3):330-7.
    11. Bornstein MM, Hart CN, Halbritter SA, Morton D, Buser D. Early loading of nonsubmerged titanium implants with a chemically modified sand-blasted and acid-etched surface:6-month results of a prospective case series study in the posterior mandible focusing on peri-implant crestal bone changes and implant stability quotient (ISQ) values. Clin Implant Dent Relat Res 2009;11(4):338-47.
    12. Engquist B, Astrand P, Anzen B, Dahlgren S, Engquist E, Feldmann H, et al. Simplified methods of implant treatment in the edentulous lower jaw. Part Ⅱ:Early loading. Clin Implant Dent Relat Res 2004;6(2):90-100.
    13. Engquist B, Astrand P, Anzen B, Dahlgren S, Engquist E, Feldmann H, et al. Simplified methods of implant treatment in the edentulous lower jaw:a 3-year follow-up report of a controlled prospective study of one-stage versus two-stage surgery and early loading. Clin Implant Dent Relat Res 2005;7(2):95-104.
    14. Mazor Z, Cohen DK. Preliminary 3-dimensional surface texture measurement and early loading results with a microtextured implant surface. Int J Oral Maxillofac Implants 2003;18(5):729-38.
    15. Ko CC, Douglas WH, DeLong R, Rohrer MD, Swift JQ, Hodges JS, et al. Effects of implant healing time on crestal bone loss of a controlled-load dental implant. J Dent Res 2003;82(8):585-91.
    16. De Smet E, Jaecques S, Vandamme K, Vander Sloten J, Naert I. Positive effect of early loading on implant stability in the bi-cortical guinea-pig model. Clin Oral Implants Res 2005; 16(4):402-7.
    17. De Smet E, Jaecques SV, Wevers M, Jansen JA, Jacobs R, Sloten JV, et al. Effect of controlled early implant loading on bone healing and bone mass in guinea pigs, as assessed by micro-CT and histology. Eur J Oral Sci 2006;114(3):232-42.
    18. De Smet E, Jaecques SV, Jansen JJ, Walboomers F, Vander Sloten J, Naert IE. Effect of constant strain rate, composed of varying amplitude and frequency, of early loading on peri-implant bone (re)modelling. J Clin Periodontol 2007;34(7):618-24.
    19. De Smet E, Jaecques SV, Jansen JJ, Walboomers F, Vander Sloten J, Naert IE. Effect of strain at low-frequency loading on peri-implant bone (re)modelling:a guinea-pig experimental study. Clin Oral Implants Res 2008;19(8):733-9.
    20. Leonard G, Coelho P, Polyzois I, Stassen L, Claffey N. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants. Clin Oral Implants Res 2009;20(3):232-9.
    21. Lemons JE. Biomaterials, biomechanics, tissue healing, and immediate-function dental implants. J Oral Implantol 2004;30(5):318-24.
    22.罗志宾,曾融生,陈卓凡.牙种植体周软组织的处理.国际口腔医学杂志ISTIC2009;36(5).
    23. Mombelli A, van Oosten MA, Schurch E, Jr., Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987;2(4):145-51.
    24. Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L. A modified gingival index for use in clinical trials. Clin Prev Dent 1986;8(1):3-6.
    25. Kozlovsky A, Tal H, Laufer BZ, Leshem R, Rohrer MD, Weinreb M, et al. Impact of implant overloading on the peri-implant bone in inflamed and non-inflamed peri-implant mucosa. Clin Oral Implants Res 2007;18(5):601-10.
    26. Chung SH, Heo SJ, Koak JY, Kim SK, Lee JB, Han JS, et al. Effects of implant geometry and surface treatment on osseointegration after functional loading:a dog study. J Oral Rehabil 2008;35(3):229-36.
    27. Sennerby L, Persson LG, Berglundh T, Wennerberg A, Lindhe J. Implant stability during initiation and resolution of experimental periimplantitis:an experimental study in the dog. Clin Implant Dent Relat Res 2005;7(3):136-40.
    28. Deppe H, Wagenpfeil S, Donath K. Comparative value of attachment measurements in implant dentistry. IntJ Oral Maxillofac Implants 2004;19(2):208-15.
    29. Orsini E, Salgarello S, Bubalo M, Lazic Z, Trire A, Martini D, et al. Histomorphometric evaluation of implant design as a key factor in peri-implant bone response:a preliminary study in a dog model. Minerva Stomatol 2009;58(6):263-75.
    30. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants:a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1(1):11-25.
    31. Alsaadi G, Quirynen M, Michiels K, Jacobs R, van Steenberghe D. A biomechanical assessment of the relation between the oral implant stability at insertion and subjective bone quality assessment. J Clin Periodontol 2007;34(4):359-66.
    32. Meredith N, Friberg B, Sennerby L, Aparicio C. Relationship between contact time measurements and PTV values when using the Periotest to measure implant stability. Int J Prosthodont 1998;11(3):269-75.
    33. Teerlinck J, Quirynen M, Darius P, van Steenberghe D. Periotest:an objective clinical diagnosis of bone apposition toward implants. IntJ Oral Maxillofac Implants 1991;6(1):55-61.
    34. Derhami K, Wolfaardt JF, Faulkner G, Grace M. Assessment of the periotest device in baseline mobility measurements of craniofacial implants. Int J Oral Maxillofac Implants 1995;10(2):221-9.
    35. Faulkner MG, Wolfaardt JF, Chan A. Measuring abutment/implant joint integrity with the Periotest instrument. Int J Oral Maxillofac Implants 1999;14(5):681-8.
    36. Verhoeven JW, Cune MS, de Putter C. Reliability of some clinical parameters of evaluation in implant dentistry. J Oral Rehabil 2000;27(3):211-6.
    37. Chavez H, Ortman LF, DeFranco RL, Medige J. Assessment of oral implant mobility. J Prosthet Dent 1993;70(5):421-6.
    38.孙璐,段瑞平,李涛.测量种植体稳定性方法的研究进展.遵义医学院学报2012;35(1):88-90.
    39. Karayazgan-Saracoglu B, Atay A, Zulfikar H, Erperdo Y. Assessment of implant stability on patients with and without radiotherapy using resonance frequency analysis. J Oral Implanto! 2012.
    40. Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration:Ⅱ. Implant surface modifications and implant diameter. Clin Oral Implants Res 2010;21(6):605-11.
    41.于惠,许胜,柳忠豪.动物实验中种植体-骨结合评价方法的研究进展.中国口腔种植学杂志2011;16(2):144-47.
    42. Huang HM, Chiu CL, Yeb CY, Lee SY. Factors influencing the resonance frequency of dental implants. Journal of Oral and Maxillofacial Surgery 2003;61(10):1184-88.
    43. Lachmann S, Jager B, Axmann D, Gomez-Roman G, Groten M, Weber H. Resonance frequency analysis and damping capacity assessment. Part I:an in vitro study on measurement reliability and a method of comparison in the determination of primary dental implant stability. Clin Oral Implants Res 2006;17(1):75-9.
    44. Lachmann S, Laval JY, Jager B, Axmann D, Gomez-Roman G, Groten M, et al. Resonance frequency analysis and damping capacity assessment. Part 2:peri-implant bone loss follow-up. An in vitro study with the Periotest and Osstell instruments. Clin Oral Implants Res 2006;17(1):80-4.
    45. Aparicio C, Lang NP, Rangert B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin Oral Implants Res 2006;17 Suppl 2:2-7.
    46. Oh JS, Kim SG, Lim SC, Ong JL. A comparative study of two noninvasive techniques to evaluate implant stability:Periotest and Osstell Mentor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107(4):513-8.
    47. Hunter J. A treatise on the natural history and diseases of the human teeth. Complete Works of John Hunter, Philadelphia 1778.
    48. Hall B. Historical overview of studies on bone growth and repair. Bone 1992;6(1).
    49. Cooke ME, Kalscheur VL, Wilson DG, Zdeblick TA. Preparation of large calcified bone sections for fluorescence histomorphometry. Journal of histotechnology 1999;22(2):93-96.
    50. Rahn BA, Perren SM. Xylenol orange, a fluorochrome useful in polychrome sequential labeling of calcifying tissues. Biotechnic & Histochemistry 1971;46(3):125-29.
    51. Malouvier A, Martin F, Orus L, De Pollak C, Marie P, Holy X, et al. Comparative use of calcein and oxytetracycline for the analysis of bone mineralisation in Rhesus monkeys. Medical science research 1993;21(11):423-25.
    52. Erben RG. Bone-labeling techniques. Handbook of Histology Methods for Bone and Cartilage. Humana Press, Totowa, NJ 2003:99-117.
    53. Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcified Tissue International 1969;3(1):211-37.
    54. Savage C, Jeffcott L, Melsfn F,(?)Stblom L. Bone Biopsy in the Horse:1. Method Using the Wing of Ilium. Journal of Veterinary Medicine Series A 1991;38(1-10):776-83.
    55. Simmons D, Teitelbaum S, Rosenberg G. Altered metabolic rhythm of rabbit osteoblasts by tetracycline. Metabolic Bone Disease and Related Research 1981;3(1):51-54.
    56. van Gaalen SM, Kruyt MC, Geuze RE, de Bruijn JD, Alblas J, Dhert WJ. Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng Part B Rev 2010;16(2):209-17.
    57. Kruyt MC, Wilson CE, de Bruijn JD, van Blitterswijk CA, Oner CF, Verbout AJ, et al. The effect of cell-based bone tissue engineering in a goat transverse process model. Biomaterials 2006;27(29):5099-106.
    58. Kruyt MC, Dhert WJ, Oner C, van Blitterswijk CA, Verbout AJ, de Bruijn JD. Osteogenicity of autologous bone transplants in the goat. Transplantation 2004;77(4):504-09.
    59. Wilson CE, Kruyt MC, de Bruijn JD, van Blitterswijk CA, Oner FC, Verbout AJ, et al. A new in vivo screening model for posterior spinal bone formation:comparison of ten calcium phosphate ceramic material treatments. Biomaterials 2006;27(3):302-14.
    60. Kruyt MC, Persson C, Johansson G, Dhert WJ, Bruijn JDD. Towards injectable cell-based tissue-engineered bone:the effect of different calcium phosphate microparticles and pre-culturing. Tissue engineering 2006;12(2):309-17.
    61. Parfitt A, Foldes J, Villanueva A, Shih M. Difference in label length between demethylchlortetracycline and oxytetracycline:Implications for the interpretation of bone histomorphometric data. Calcified Tissue International 1991;48(2):74-77.
    62. Aaron JE, Makins NB, Francis RM, Peacock M. Staining of the calcification front in human bone using contrasting fluorochromes in vitro. Journal of Histochemistry & Cytochemistry 1984;32(12):1251-61.
    63.潘中允.临床核医学:原子能出版社;1994.
    64. Zhou Y, Jiang T, Qian M, Zhang X, Wang J, Shi B, et al. Roles of bone scintigraphy and resonance frequency analysis in evaluating osseointegration of endosseous implant. Biomaterials 2008;29(4):461-74.
    65.陈滨,裴国献,王珂,范义湘,金丹,魏宽海.山羊胫骨大段骨缺损的组织工程骨修复及放射性核素显像监测.第一军医大学学报2002;22(11):966-69.
    66. Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. Journal of bone and mineral research 1989;4(1):3-11.
    67. Kuhn J, Goldstein S, Feldkamp L, Goulet R, Jesion G. Evaluation of a microcomputed tomography system to study trabecular bone structure. Journal of Orthopaedic Research 1990;8(6):833-42.
    68. Park YS, Yi KY, Lee IS, Jung YC. Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clinical Oral Implants Research 2005;16(2):156-60.
    69. Butz F, Ogawa T, Chang T-L, Nishimura I. Three-dimensional bone-implant integration profiling using micro-computed tomography. The International journal of oral & maxillofacial implants 2006;21(5):687.
    70. Schicho K, Kastner J, Klingesberger R, Seemann R, Enislidis G, Undt G, et al. Surface area analysis of dental implants using micro-computed tomography. Clinical Oral Implants Research 2007;18(4):459-64.
    71. Van Oosterwyck H, Duyck J, Sloten JV, Perre GV, Jansen J, Wevers M, et al. The use of microfocus computerized tomography as a new technique for characterizing bone tissue around oral implants. Journal of Oral Implantology 2000;26(1):5-12.
    72. Sennerby L, Wennerberg A, Pasop F. A new microtomographic technique for non-invasive evaluation of the bone structure around implants. Clinical Oral Implants Research 2001;12(1):91-94.
    73. Morinaga K, Kido H, Sato A, Watazu A, Matsuura M. Chronological Changes in the Ultrastructure of Titanium-Bone Interfaces:Analysis by Light Microscopy, Transmission Electron Microscopy, and Micro-Computed Tomography. Clinical Implant Dentistry and Related Research 2009;11(1):59-68.
    74. Rebaudi A, Koller B, Laib A, Trisi P. Microcomputed tomographic analysis of the peri-implant bone.International Journal of Periodontics and Restorative Dentistry 2004;24(4):316-25.
    75. Kim S-H, Choi B-H, Li J, Kim H-S, Ko C-Y, Jeong S-M, et al. Peri-implant bone reactions at delayed and immediately loaded implants:An experimental study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008; 105(2):144-48.
    76. Yoo J-H, Choi B-H, Li J, Kim H-S, Ko C-Y, Xuan F, et al. Influence of premature exposure of implants on early crestal bone loss:an experimental study in dogs. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008;105(6):702-06.
    77. Freilich M, Shafer D, Wei M, Kompalli R, Adams D, Kuhn L. Implant system for guiding a new layer of bone. Computed microtomography and histomorphometric analysis in the rabbit mandible. Clinical Oral Implants Research 2009;20(2):201-07.
    78. Geng J-P, Tan K, Liu G-R. Application of finite element analysis in implant dentistry:a review of the literature. The Journal of prosthetic dentistry 2001;85(6):585.
    79. Weinstein AM, Klawitter JJ, Anand SC, Schuessler R. Stress analysis of porous rooted dental implants. Journal of dental research 1976;55(5):772-77.
    80. Hansson S, Werke M. The implant thread as a retention element in cortical bone:the effect of thread size and thread profile:a finite element study. Journal of biomechanics 2003;36(9):1247-58.
    81. Eraslan 0, Inan O. The effect of thread design on stress distribution in a solid screw implant:a 3D finite element analysis. Clinical oral investigations 2010;14(4):411-16.
    82. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of oral rehabilitation 2002;29(6):565-74.
    83. Akca K, Iplikcioglu H. Finite element stress analysis of the effect of short implant usage in place of cantilever extensions in mandibular posterior edentulism. Journal of oral rehabilitation 2002;29(4):350-56.
    84. Ibrahim MM, Thulasingam C, Nasser K, Balaji V, Rajakumar M, Rupkumar P. Evaluation of Design Parameters of Dental Implant Shape, Diameter and Length on Stress Distribution:A Finite Element Analysis. The Journal of Indian Prosthodontic Society 2011;11(3):165-71.
    85. Hasan I, Heinemann F, Aitlahrach M, Bourauel C. Biomechanical finite element analysis of small diameter and short dental implant. Biomedizinische Technik/Biomedical Engineering 2010;55(6):341-50.
    86. Anitua E, Tapia R, Luzuriaga F, Orive G. Influence of implant length, diameter, and geometry on stress distribution:a finite element analysis. The International journal of periodontics & restorative dentistry 2010;30(1):89.
    87. Ebadian B, Farzin M, Talebi S, Khodaeian N. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces:A finite element analysis. Dental Research Journal 2013;9(6).
    88. Khraisat A. Two implant/abutment joint designs:a comparative finite element analysis. The International journal of oral & maxillofacial implants 2012;28(2):e83-7.
    89. Bijjargi S, Chowdhary R. Stress dissipation in the bone through various crown materials of dental implant restoration:a 2-D finite element analysis. Journal of investigative and clinical dentistry 2012.
    90. Korioth T, Versluis A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Critical Reviews in Oral Biology & Medicine 1997;8(1):90-104.
    91. Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Coomans M, Lieven S, et al. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clinical Oral Implants Research 1998;9(6):407-18.
    92. Pegoretti A, Fambri L, Zappini G, Bianchetti M. Finite element analysis of a glass fibre reinforced composite endodontic post. Biomaterials 2002;23(13):2667-82.
    93. Pierrisnard L, Bohin F, Renault P, Barquins M. Corono-radicular reconstruction of pulpless teeth: a mechanical study using finite element analysis. The Journal of prosthetic dentistry 2002;88(4):442-48.
    94. Doneth K, Breuner G. method for the study of undecadcified bones and teeth with attached tissues-The sige-Schliff technique. J Oral Pathol 1982;11:318-26.
    95.王东胜,路正刚.种植体骨界面组织形态学研究方法探讨.中华老年口腔医学杂志2005;3(3):142-44.
    96.章魁华,于世凤.实验口腔病理学:人民卫生出版社;2002.
    97.范芹,徐世同,刘建国,吕聪.3种特殊染色法显示种植体骨磨片组织学效果比较.广东牙病防治2012;20(006):285-87.
    98.丁熙,朱形好,廖胜辉,童若锋,张秀华,张林.不同直径种植体对即刻负载种植体骨界面应力分布的影响[J].医用生物力学2007;22(2):146-50.
    99. Seong WJ, Grami S, Jeong SC, Conrad HJ, Hodges JS. Comparison of Push-In versus Pull-Out Tests on Bone-Implant Interfaces of Rabbit Tibia Dental Implant Healing Model. Clinical Implant Dentistry and Related Research 2012.
    100. Ogawa T, Ozawa S, Shih J-H, Ryu K, Sukotjo C, Yang J-M, et al. Biomechanical evaluation of osseous implants having different surface topographies in rats. Journal of dental research 2000;79(11):1857-63.
    101. Brosh T, Persovski Z, Binderman I. Mechanical properties of bone-implant interface:an in vitro comparison of the parameters at placement and at 3 months. The International journal of oral & maxillofacial implants 1995;10(6):729.
    102. Huja SS, Litsky AS, Beck FM, Johnson KA, Larsen PE. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. American journal of orthodontics and dentofacial orthopedics 2005;127(3):307-13.
    103. Gan L, Wang J, Tache A, Valiquette N, Deporter D, Pilliar R. Calcium phosphate sol-gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part II:short-term in vivo studies. Biomaterials 2004;25(22):5313-21.
    104. Baker D, London RM, O'Neal R. Rate of pull-out strength gain of dual-etched titanium implants: a comparative study in rabbits. The International journal of oral & maxillofacial implants 1999;14(5):722.
    105. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. American Journal of Orthodontics 1984;86(2):95-111.
    106. Johansson C, Albrektsson T. Integration of screw implants in the rabbit:a 1-year follow-up of removal torque of titanium implants. The International journal of oral & maxillofacial implants 1987;2(2):69.
    107. Johansson C, Albrektsson T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clinical Oral Implants Research 1991;2(1):24-29.
    108. Johansson CB, Sennerby L, Albrektsson T. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and Vitallium implants. Int J Oral Maxillofac Implants 1991;6(4):437-41.
    109. Sullivan DY, Sherwood RL, Collins TA, Krogh P. The reverse-torque test:a clinical report. The International journal of oral & maxillofacial implants 1996;11(2):179.
    110. Meredith N. Assessment of implant stability as a prognostic determinant. The International journal of prosthodontics 1998;11(5):491.
    111. Bra-nemark P-I, Zarb GA, Albrektsson T, Rosen HM. Tissue-integrated prostheses. osseointegration in clinical dentistry. Plastic and Reconstructive Surgery 1986;77(3):496-97.
    112.鲍利红,陶庭亮,边华琴,张志宏.平台转换种植体周围应力分布的三维有限元分析.临床口腔医学杂志2012;28(7):396-99.
    113. Hou SM, Hsu CC, Wang JL, Chao CK, Lin J. Mechanical tests and finite element models for bone holding power of tibial locking screws. Clin Biomech (Bristol, Avon) 2004;19(7):738-45.
    114.赵静辉,周延民,赵云亮,李春艳.不同螺距种植体集中载荷的有限元分析.实用口腔医学杂志2009;25(006):820-23.
    115.孔亮,刘宝林,李德华,宋应亮,胡开进,马攀,et al.不同螺纹形态种植体对颌骨应力影响的三维有限元比较研究.口腔医学研究2006;2.
    116. Hansson S, Werke M. The implant thread as a retention element in cortical bone:the effect of thread size and thread profile:a finite element study. J Biomech 2003;36(9):1247-58.
    117. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 2004;92(6):523-30.
    118. Weinstein AM, Klawitter JJ, Cook SD. Implant-bone interface characteristics of bioglass dental implants. J Biomed Mater Res 1980;14(1):23-9.
    119. van Zyl PP, Grundling NL, Jooste CH, Terblanche E. Three-dimensional finite element model of a human mandible incorporating six osseointegrated implants for stress analysis of mandibular cantilever prostheses. Int J Oral Maxillofac Implants 1995;10(1):51-7.
    120. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants.J Oral Implantol 1997;23(3):104-11.
    121. Holmes DC, Diaz-Arnold AM, Leary JM. Influence of post dimension on stress distribution in dentin. J Prosthet Dent 1996;75(2):140-7.
    122. van Rossen IP, Braak LH, de Putter C, de Groot K. Stress-absorbing elements in dental implants. J Prosthet Dent 1990;64(2):198-205.
    123. Sevimay M, Usumez A, Eskitascioglu G. The influence of various occlusal materials on stresses transferred to implant-supported prostheses and supporting bone:A three-dimensional finite-element study. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2005;73B(1):140-47.
    124. Frost HM. Bone's mechanostat:a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275(2):1081-101.
    125. Ishigaki S, Nakano T, Yamada S, Nakamura T, Takashima F. Biomechanical stress in bone surrounding an implant under simulated chewing. Clin Oral Implants Res 2003;14(1):97-102.
    126. Tepper G, Haas R, Zechner W, Krach W, Watzek G. Three-dimensional finite element analysis of implant stability in the atrophic posterior maxilla:a mathematical study of the sinus floor augmentation. Clin Oral Implants Res 2002;13(6):657-65.
    127. Lan TH, Huang HL, Wu JH, Lee HE, Wang CH. Stress analysis of different angulations of implant installation:the finite element method. Kaohsiung J Med Sci 2008;24(3):138-43.
    128. Bevilacqua M, Tealdo T, Pera F, Menini M, Mossolov A, Drago C, et al. Three-dimensional finite element analysis of load transmission using different implant inclinations and cantilever lengths. Int J Prosthodont 2008;21(6):539-42.
    129. Sennerby L, Gottlow J. Clinical outcomes of immediate/early loading of dental implants. A literature review of recent controlled prospective clinical studies. Aust Dent J 2008;53 Suppl 1:S82-8.
    130. Mangano C, Mangano F, Piattelli A, lezzi G, Mangano A, La Colla L. Prospective clinical evaluation of 1920 Morse taper connection implants:results after 4 years of functional loading. Clin Oral Implants Res 2009;20(3):254-61.
    131. Bortolini S, Natali A, Franchi M, Coggiola A, Consolo U. Implant-retained removable partial dentures:an 8-year retrospective study. J Prosthodont 2011;20(3):168-72.
    132. Albrektsson T. A multicenter report on osseointegrated oral implants. J Prosthet Dent 1988;60(1):75-84.
    133. Chuang SK, Tian L, Wei U, Dodson TB. Predicting dental implant survival by use of the marginal approach of the semi-parametric survival methods for clustered observations. Journal of Dental Research 2002;81(12):851-55.
    134. Chuang SK, Wei U, Douglass CW, Dodson TB. Risk factors for dental implant failure:a strategy for the analysis of clustered failure-time observations. J Dent Res 2002;81(8):572-7.
    135. Akeredolu PA, Adeyemo WL, Omololu OB, Karunwi O. Implant restoration of partially edentulous ridges:a review of 121 Nigerian patients. Implant Dent 2010;19(1):65-72.
    136. Coelho PG, Suzuki M, Guimaraes MV, Marin C, Granato R, Gil JN, et al. Early bone healing around different implant bulk designs and surgical techniques:A study in dogs. Clin Implant Dent Relat Res 2010;12(3):202-8.
    137. Marin C, Granato R, Suzuki M, Gil JN, Janal MN, Coelho PG. Histomorphologic and histomorphometric evaluation of various endosseous implant healing chamber configurations at early implantation times:a study in dogs. Clin Oral Implants Res 2010;21(6):577-83.
    138. Jiang T, Zhang Z, Zhou Y, Liu Y, Wang Z, Tong H, et al. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition:characterization and cell behavior. Biomacromolecules 2010;11(5):1254-60.
    139. Zhou Y, Jiang T, Qian M, Zhang X, Wang J, Shi B, et al. Roles of bone scintigraphy and resonance frequency analysis in evaluating osseointegration of endosseous implant. Biomaterials 2008;29(4):461-74.
    140. Sul YT, Johansson CB, Roser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 2002;23(8):1809-17.
    141. Verstraete FJ. Instrumentation and technique of removal of permanent teeth in the dog. J S Afr Vet Assoc 1983;54(4):231-8.
    142. Cardaropoli G, Wennstrom JL, Lekholm U. Peri-implant bone alterations in relation to inter-unit distances. A 3-year retrospective study. Clin Oral Implants Res 2003;14(4):430-6.
    143. Roberts WE. Bone tissue interface. J Dent Educ 1988;52(12):804-9.
    144. Amor N, Geris L, Vander Sloten J, Van Oosterwyck H. Modelling the early phases of bone regeneration around an endosseous oral implant. Comput Methods Biomech Biomed Engin 2009;12(4):459-68.
    145. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 2003;14(3):251-62.
    146. Berglundh T, Abrahamsson I, Albouy JP, Lindhe J. Bone healing at implants with a fluoride-modified surface:an experimental study in dogs. Clin Oral Implants Res 2007;18(2):147-52.
    147. Caneva M, Salata LA, de Souza SS, Bressan E, Botticelli D, Lang NP. Hard tissue formation adjacent to implants of various size and configuration immediately placed into extraction sockets:an experimental study in dogs. Clin Oral Implants Res 2010;21(9):885-90.
    148. Olate S, Chaves Netto HD, Kluppel LE, Mazzonetto R, de Albergaria-Barbosa JR. Mineralized tissue formation associated with 2 different dental implant designs:histomorphometric analyses performed in dogs. J Oral Implantol 2011;37(3):319-24.
    149. Schouten C, Meijer GJ, van den Beucken JJ, Spauwen PH, Jansen JA. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography. Biomaterials 2009;30(27):4539-49.
    150. Stoppie N, van der Waerden JP, Jansen JA, Duyck J, Wevers M, Naert IE. Validation of microfocus computed tomography in the evaluation of bone implant specimens. Clin Implant Dent Relat Res 2005;7(2):87-94.
    151. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52(2):155-70.
    152. Albrektsson T, Wennerberg A. Oral implant surfaces:Part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17(5):536-43.
    153. Albrektsson T, Wennerberg A. Oral implant surfaces:Part 2-review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17(5):544-64.
    154. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83(7):529-33.
    155. Coelho PG, Cardaropoli G, Suzuki M, Lemons JE. Early healing of nanothickness bioceramic coatings on dental implants. An experimental study in dogs. J Biomed Mater Res B Appl Biomater 2009;88(2):387-93.
    156. Olive J, Aparicio C. Periotest method as a measure of osseointegrated oral implant stability. Int J Oral Maxillofac Implants 1990;5(4):390-400.
    157. Schulte W, Lukas D, Ernst E. [Periotest values and mobility of periodontally diseased teeth--comparative study]. Quintessenz 1991;42(8):1255-63.
    158. van Steenberghe D, Tricio J, Naert I, Nys M. Damping characteristics of bone-to-implant interfaces. A clinical study with the Periotest device. Clin Oral Implants Res 1995;6(1):31-9.
    159. Nkenke E, Lehner B, Weinzierl K, Thams U, Neugebauer J, Steveling H, et al. Bone contact, growth, and density around immediately loaded implants in the mandible of mini pigs. Clin Oral Implants Res 2003;14(3):312-21.
    160. Piattelli A, Corigliano M, Scarano A, Quaranta M. Bone reactions to early occlusal loading of two-stage titanium plasma-sprayed implants:a pilot study in monkeys. Int J Periodontics Restorative Dent 1997;17(2):162-9.
    161. Zubery Y, Bichacho N, Moses O, Tal H. Immediate loading of modular transitional implants:a histologic and histomorphometric study in dogs. Int J Periodontics Restorative Dent 1999;19(4):343-53.
    162. Vandamme K, Naert I, Geris L, Vander Sloten J, Puers R, Duyck J. The effect of micro-motion on the tissue response around immediately loaded roughened titanium implants in the rabbit. Eur J Oral Sci 2007;115(1):21-9.
    163. Lian Z, Guan H, Ivanovski S, Loo YC, Johnson NW, Zhang H. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg 2010;39(7):690-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700