基于原型的三维服装款式智能设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止,计算机辅助服装设计(CAGD)主要在绘图和计算层面上实现了对服装设计师的支持,提高了设计效率。但对于更深层次的服装设计智能思维活动的模拟则缺乏实质性的进展。随着科学技术的发展和市场需求变化的日益加快,传统服装CAD技术在服装生产应用中存在的不足日渐彰显。一方面,现今的服装款式设计软件都是针对平面款式效果图设计的,不能直接体现款式的三维效果,需要通过样板设计和样衣制作才能得到款式的三维效果;另一方面,目前服装CAD系统是以模拟传统服装设计过程而开发的,其交互式的操作过程相当烦琐,对使用人员的专业水平要求高,学习和熟练过程也很长,极大地限制了系统的推广和使用。
     对于服装设计而言,最理想的方法就是将款式设计要求与三维款式效果直接联系,实现款式设计要求驱动下的三维服装效果自动生成,但现在国内外在这方面的研究尚属空白。因此,本文从三维和智能两方面对服装款式设计展开研究,提出了基于原型的三维服装款式智能设计方法,为实现三维服装款式智能设计系统奠定了理论基础。
     本文针对三维服装款式智能设计,主要展开了如下研究工作:
     1、对服装设计思维与模型展开研究。首先探讨了服装设计思维过程和思维机理,针对服装设计过程中常用的思维方式,建立了相应的思维模型。其次,在分析了服装设计从构思到三维款式生成的全过程的基础上,提出了以原型法作为研究三维款式智能设计的理论基础。最后对该方法在整个服装生产过程中的功能和作用进行了探讨。
     2、对服装设计知识进行了提取与表达。分别从服装设计和知识属性两个角度对服装设计知识进行了研究,并根据服装设计知识的特点选择了恰当的表示方法,充分表示了各种类型的服装设计知识,为今后设计问题的求解奠定了完备的知识基础。
     3、针对三维服装模型的智能控制开展研究。在分析了各种三维建模技术的基
    
    东华大学博士学位论文
    础上,提出了有利于对模型形态变化进行可预见性控制的参数建模方法,并就如何
    运用该方法对服装各组成部件进行曲面拟合问题进行了探讨。另外,本文运用
    Matlab建立了三维人体模型及服装模型,提高了建模效率。
     4、对服装款式设计知识与三维原型参数的关系展开研究。主要研究了三维服
    装模型参数对模型形态的影响关系、模型参数彼此之间的制约关系以及三维模型参
    数与服装设计知识的关系,并将这些关系运用产生式规则和算法进行了表达。以衣
    领和裙装为实例,实现了服装设计知识对三维款式形态的控制。
     5、鉴于三维服装款式智能设计是对服装设计知识、三维模型控制知识以及彼
    此之间的关系知识融合的过程,本文构建了三维服装款式智能设计系统结构,分析
    了智能设计的过程和关键技术问题,研究了如何对各种知识进行有效地组织、管理
    和运用,实现多知识融合的三维服装款式的智能生成,并对三维服装款式智能设计
    进行了仿真。
     本文研究工作的创新点主要体现在以下几个方面:
     1、鉴于国内外针对服装设计思维的相关研究很少,从而使得服装智能设计系统
    由于缺乏理论基础而难以实现的现状,本文针对服装设计思维过程和机理开展了深
    入研究。首次提出了基于约束满足的服装设计思维模型、基于借鉴的服装设计思维
    模型、基于类比综合的服装设计思维模型和基于原型的服装设计思维模型。并在基
    于原型的服装设计思维模型基础上,提出了基于原型的三维服装款式智能设计方
    法,为将计算机辅助服装设计从对款式图形的辅助绘制引向深层次的对服装设计思
    维的智能模拟奠定了基础。
     2、服装设计知识往往以经验性知识的形式存在于设计师的头脑中,缺乏系统
    的提取和表示。为了实现计算机辅助服装款式智能设计,本文首次运用了多种方法
    对服装设计知识进行表示:运用框架法对服装设计知识的整体结构和层次进行表
    示,建立了服装设计知识模型;运用产生式规则对变化丰富、经验性强的款式设计
    知识进行了表示;针对服装款式设计中的模糊性知识,特别提出了通过建立模糊设
    计知识与三维服装款式形态要素的关系列表的方法对其加以表示。
     3、国内外针对三维服装辅助设计的研究一般只注重实现三维款式图形的交互
    式控制,而没有涉及对三维服装款式图形的智能控制,本文针对这一空白开展研究,
    
    摘要
    运用参数三次样条曲线和双三次曲面建立了三维服装模型,为实现三维服装款式的
    智能变化奠定了基础。
     4、本文首次对服装款式设计知识与三维模型控制知识之间的关系进行研究,
    建立了一种新的关系知识模型,并将这种知识表达为产生式规则和求解算法,从而
    使款式设计知识延伸到对三维模型参数的控制,为实现款式设计知识控制的三维服
    装模型智能变化奠定了基础。
     5、本文提出的三维服装款式智能设计是一个多知识融合的过程。本文提出以
    服装部件为对象单位,运用面向对象技术,建立了服装款式设计知识库,对各种知
    识进行了有效的组织与管理。并提出了基于框架表示的款式设计知识的模糊匹配算
    法,以及按照匹配度进行冲突消解的策略。同时指出了三维服装款式智能设计是对
    多目标节点的求解过程。通过研究问
Conventional computer aided garment design (CAGD) system improves the pattern design and style design efficiency greatly with the excellent function of calculating and drawing, but it is incapable of simulating the creative design thinking of fashion design. With the development of technology, the disadvantages of the conventional CAGD system become noticeable. The first disadvantage of the conventional CAGD system is that it is developed for designing two-dimensional garment style, and the designer can't see the three-dimensional style effect of their design unless the pattern are made and the sample dress are sewed. The second disadvantage of the conventional CAGD system is that it is aimed at copying the conventional garment design process and realizing interactive operation (which means the user has to tell the computer what to do step by step), so the system has to be used by the professionals and takes them a long time to master it. These disadvantages holdback the application and popularization of the
     system.
    The most effective way for quick response of fashion design is to enter the requirements of design and see the effect of 3D style on computer screen directly. This is what we called intelligent design process of 3D garment, and it is a new direction the conventional CAGD may head for. However there are few researches done in this field. In this article, we dedicate to researching on the intelligent design of 3D garment for the first time, and bring forward the prototype-based method of 3D garment intelligent design.
    The main content of this thesis are as follows:
    1. We researched on the fashion design thinking and model. Analyzed the process and mechanism of fashion design thinking, and set up the model of several common used methods of thinking in fashion design. Based on the analysis of the whole process through the conceiving of fashion style to the producing of 3D garment effect, we brought forward the prototype-based method of 3D garment intelligent design, and introduced the procedure as well as the function of the new method during the whole process of garment manufacture.
    2. We extracted and expressed the knowledge of fashion design. First, we analyzed the attribute of the knowledge of fashion design from the point of view of the process of fashion design and the property of knowledge. Based on this, we chose the fit expressing method of knowledge to express the different style of fashion knowledge. Thus the
    
    
    fashion knowledge can be expressed well, and a maturity knowledge foundation for solving the fashion design problem can be established.
    3. In order to control the deformation of the prototype of 3D garment automatically, we brought forward a method to set up the 3D garment prototype by using the technique of cubic spline and bicubic surface patch, and discussed detailedly about how to apply the method to set up the 3D prototype of different parts of the garment. In addition, we chose the Matlab as the modeling tools in our research work and improved the modeling efficiency greatly.
    4. We researched the relationships between the knowledge of fashion design and the value of the parameters of 3D prototype. First, we studied the relations between the shape of the 3D model and the parameters of the 3D model, as well as the relations between the parameters themselves. Then we expressed these relationships into algorithms and generated rules. At last, we chose collar and skirt as the examples to demonstrate the influence of the changing of values of the parameters on the style of the 3D garment.
    5. The process of 3D garment intelligent design is the process of fusing all the knowledge gained above. First, we built up the structure of the system of 3D garment intelligent design, and analyzed the key technology and procedure of the intelligent design. Then we studied how to organize, manage and utilize these knowledge. At last we simulated the intelligent design of 3D garment.
    The innovative works of this thesis are as follows:
    1. There are few researches done on the thinking activity
引文
1. S Paquette. 3D scanning in Apparel Design and Human Engineering. IEEE Computer Graphics and Applications, 1996,16(5):11-15
    2. R P Pargas, N J Staples, J S Davis. Automatic extraction for apparel from a three-dimensional body scan. Optics and Lasers in Engineering, 1997, 28(2): 157-172
    3. C.K. Au, M.M.F. Yuen, Feature-based reverse engineering of mannequin for garment design, CAD Computer Aided Design, 1999, 31(12): 751-759
    4. D. E. Breen. Computer graphics in textiles and apparel modeling. IEEE Computer Graphics and Applications, 1996, 16(5):26-27
    5. Paouri A. rhalmann N M. rhalmann D. Creating Realistic Three-Dimensional Human Shape Characters for Computer-Generated Films. Computer Animation' 91. Heidelberg: Springer Verlag, 1991:89-99.
    6. Thalmann N K. Miinh H T. De Angelis M. et al. Design Transformation and Animation of Human Faces. Visual Computer. 1989(5):32-39
    7. Biman Das, Aruit K. Sengupta, Computer aided human modeling programs for work station design. Ergonomics, 1995(9):1958-1972.
    8. Kayis B, Iskander PA. Three-dimensional human model for the IBM/CATIA system. Applied Ergonomics, 1994(6):395-397
    9. W Tiller. Knot-removal algorithms for NURBS curves and surfaces. Computer-Aided Design, 1992, 24(8):445-449
    10.付世波等,基于B-样条曲面的人体模型的建立。计算机学报,1998(12):1131-1135
    11. Piegl L. Curve and surface constructions using relational B-splines. Computer Aided Disign, 1987,19(9):485-497
    12. Milory M J.G~1 continuing of B-spline patches in reverse engineering. Computer Aided Design, 1995,27(6):471-478
    13. Les Piegl. On NURBS: A Survey, IEEE Computer Graphics & Application, 1991:55-70
    14. Zhang Mingjie, Hou Dongyu, Zhou Aiying, Yoshio Shimizu. Three-dimensional Simulation and pattern making of collar using geometric model[J]. Journal of Don Hua University, 2000,18(3):53-57
    15.朱辉,杨建国,张瑞云.电脑服装设计.上海:复旦大学出版社,1996
    16. X. M. Huang. Surface reconstruction from 3D dense scattered data[ Ph D Dissertation]. Wuhan: Huazhong University of Science and Technology, 1999(in Chinese)
    17.樊劲.基于物理的建模研究以及在服装CAD中的应用[博士学位论文].华中理工大学机械科学与工程学院,1997
    18. J. Fan, Q. F. Wang, M. H. Yuan, et al. A new feature-based mannequin modeling method. CADDM, 1997, (1):43
    19. H. M. Shi, J. H. Chert, et al. Artificial neural net work and it's application in the field of mechanical engineering. China Mechianical Engineering, 1997, 8(2):5-10(in Chinese)
    
    
    20. Y. J. Wang, J. Tu. Neural Network Control. Beijing: Mechanical Industry Publisher, 1998(in Chinese)
    21. R. Wang, C. M. Zhang. The neural network algorithm of freeform surface reconstruction. Journal of Computer -Aided Design and Computer Graphics, 1998,10(3): 193-199(in Chinese)
    22. P. Gu, X. Yah. Neural network approach to the reconstruction of freeform surface for reverse engineering. Computer-Aided Design, 1995,27(1):59-64
    23.邓春梅,陈吉红,师汉民.径向基神经网络重建自由曲面的探讨.计算机辅助设计与图形学学报,Oct.,2000,782-788
    24. Ito Ikuo, Kawauchi Keisuke, Odagaki Chiaki. Three-dimensional computer system for automatic pattern making and simulation, Journal of the Textile Machinery Society of Japan. 38(3), 68-77(1992)
    25. Okabe Hidehiko, Imaoka Haruki, Tomiha rakako, Niwaya Haruo. Three dimensional apparel CAD system, Computer Graphics (Proc. Siggraph). 26(2), 105-110(1992)
    26. B.K. Hinds and J. McCartney, Computer Aided Design of Garments Using Digitized 3D Surfaces, J. Engineering Manufacture: Part B, 1992, 206:199-206.
    27. T. J. Rang, S. M. Kim. Development of three-dimensional apparel CAD system. Part Ⅰ: flat garment pattern drafting system, International journal of clothing science and technology. 12(1), 26-38 (2000)
    28. T. J. Rang, S. M. Rim. Development of three-dimensional apparel CAD system. Part Ⅱ: prediction of garment drape shape, International journal of clothing science and technology. 12(1), 39-49 (2000)
    29. Fan, J.: Newton, E.; Au, R.; Chan, S.C.F.. Predicting garment drape with a fuzzy-neural network, Textile Research Journal. 71(7), 605-608 (2001)
    30.樊劲,周济,王启付,袁铭辉,基于弹簧质点模型的两维/三维映射算法,软件学报,Vol.10,No.2,Feb,1999
    31. H. Imaoka et al., Prediction of 3D Shapes of Garment from 2D Paper Patterns, Sen-i Gakkaishi, 1989,45(i0):420-426. (In Japanese.)
    32. Ying Yang, N M Thalmann, et al. Three-dimensional garment design and animation, a new design tool for the garment industry. Computers in Industry, 1992, 19:185-191
    33. Y. Yang, N. Magnenat Thalmann, D. Thalmann. Three-dimensional garment design and animation -- A new design tool for the garment industry, Computers in industry. 19(2), 185-200 (1992)
    34. J. McCartney, B. K. Hinds, B. L. Seow, D. Gong. Dedicated 3D CAD for garment modeling, Journal of Materials Processing Technology. 107(1-3), 31-36 (2000)
    35. M. J. Zhang, D. Y. Hou, A.Y. Zhou, Yoshio Shimizu. Three-dimensional Simulation and pattern making of collar using geometric model, Journal of Dong Hua University. 18(3), 53-57 (2000)
    36. Hinds, B.K.; McCartney, J.. Three-dimensional garment computer aided design - a new approach, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 214(7), 619-623 (2000)
    37. McCartney J, Hinds BK. Computer-aided garment design. Textile Asis, 1989, 20(8):
    
    92-94
    38. Hinds B K, McCartney J. Interactive garment design. Visual Computer, 1990,6(2):53-61
    39. B. K. Hinds, J McCartney, et al. Pattern development for 3D surfaces. Computer-Aided Design, 1991, 23(8):583-592
    40. S.G.. Dhande et al., Geometric Modeling of Draped Fabric Surface, Proc. IFIP Int' 1 Conf. On Computer Graphics, North Holland, Amsterdam, 1993,349-356.
    41. B. chen and M. Govindaraj, A Physically Based Model of Fabric Drape Using Flexible Shell Theory, Textile Research J., 1995,65(6):324-330
    42. H.N. Ng, R. L. Grimsdale, Computer graphics techniques for modeling colth. IEEE Computer Graphics and Applications, 1996,16(5):28-41
    43. B Eberhardt, i Weber, W Strasser. A fast, flexible, particle-system model for cloth draping. IEEE Computer Graphics and Applications, 1996,16(5):52-59
    44. David E. Breen, Donald H. House, "A Particle-based Model for Simulating the Draping Behavior of Woven Cloth", Textile Research Journal, Nov. 1994,663-685
    45. Plath Jan, Realistic modelling of textiles using interacting particle systems, Computers and Graphics (Pergamon), 2000, 24 (6): 897-905
    46. J. W. Eishen, S Deng, T G Clapp. Finite-element modeling and control of flexible fabric parts. IEEE Computer Graphics and Applications, 1996,16(5):71-80
    47. J. Ascough, H.E. Bez, and A.M. Bricis, A Simple Beam Element, Large Displacement Model for the Finite Element Simulation of Cloth Drape, J. of the Textile Institute, 1996, 87(1):152-165.
    48. T. J. Kang and W.R. Yu, Drape Simulation of Woven Fabric by Using the Finite-Element Method, J. of the Textile Institute, 1995,86(4):635-648.
    49. P. Volino and N. Magnenat Thalmann, Efficient Self-collision Detection on Smoothly Discretized Surface Animations using Geometrical Shape Regularity, Proc. Eurographics, Blackwell, UK, 1994:155-166.
    50. Y. Yang and N. Magnenat Thalmann, An Improved Algorithm for Collision Detection in Cloth Animation with Human Body, Proc. of Pacific Graphics, World Scientific Press, Singapore, 1993:237-251.
    51. M. Zyda, D. Pratt, W. Osborne, J. Monahan, Real-Time Collision Detection and Response, The journal of visualization and Computer Animation, 1993,4(1):13-24.
    52. S. Gray. In virtual fashion, IEEE Spectrum. 35(2), 18-25(1998)
    53. M. Carignan, Y. Yang, N.M. Thalmann, et al. Dressing animated synthetic actors with complex deformable clothes. Computer Graphics, 1992, 26(2):99-104
    54. P. rolAnD, N.M. Thalmann, et at. An Evolving System for Simulating Clothes on Virtual Actors. Computer Graphics in Textiles and ipparel(IEEE Computer Graphics and Applications), 1996,16(5):42-51
    55. Y.Sakaguchi, M. Minoh, and K.Ikeda, PARTY: Physical Environment of Artificial Reality for Dress Simulation (Ⅰ)-A Dynamicaly Deformable Model of Dress, Trans. Soc. Of Electronics, Information and Communications, 1991,12:25-32. (In Japanese.)
    56. N.M. Thalmann and Y.Yang, Techniques for Cloth Animation, in New Trends in
    
    Animation and Visualization, N.M. Thalmann and D. Thalmann, eds., John Wiley & Sons, UK, 1991:243-256.
    57. P. Volino, M. Courchesne, and N. Magnenat Thalmann, Versatile and Efficient Techniques for Simulating Cloth and Other Deformable Objects, Computer Graphics, 1995, 29 (137-144)
    58. H.M. Werner, N.M. Thalmann, and D. Thalmann, User Interface for Fashion Design, IFIP Trans. Graphics Design and Visualization, North-Holland, Amsterdam, 1993,197-204
    59. N.M. Thalmann, Tailoring Clothes for Virtual Actors, in Interactive with Virtual Environments, L. MacConald and J. Vince, eds., John Wiley & Sons, UK, 1994:205-216
    60. D.R. Forsey, A Surface Model for Skeleton-Based Character Animation, Proc. Second Eurographics Workshop on Animation and Simulation, Springer, New York, 1991: 55-71
    61. L. Li, M. Damodaran, R.K.L. Gay, A Quasi-Steady Force Model for Animating Cloth Motion, Proc. IFIP Int'1 Conf. On Computer Graphics, North-Holland, Amsterdam, 1993:357-363.
    62. L. Li, M. Damodaran, and R.K.L. Gay, Aerodynamic Force Models for Animating Cloth Motion in Air Flow, Visual Computer, 1996,12:84-104
    63. L. Li, M. Damodaran, and R.K.L. Gay, Physical Modeling for Animating Cloth Motion, in Computer Graphics: Developments in Virtual Environments (Proc.CGI), R. Earnshaw and J. Vince, eds., Academic Press, UK, 1995:461-474.
    64. L. Shirman. Fast and Accurate Texture Placement. IEEE Computer Graphics and Application, 1997,17(1):60-66
    65. Gardner G. Simulation of natural scenes using textured quadric surfaces. Computer Graphics, 1988,19(3):15-21
    66.王进,潘志庚,叶澄清.一种实现自然纹理映射的算法.计算机辅助设计与图形学学报.2000,12(3):161-165
    67. X.X. Hu. The Algorithms for Region Mapping and Their Applications. Chinese Journal of Advanced Software Research, 1992,5(2):87-95
    68. A. Witkin, M. Kass. Reactions-diffusion textures. Computer Graphics (SIGGRAPHICS' 91 Proceedings), 1991,25(4):299-308
    69. B. J. Collier, R. Collier. CAD/CAM Application on Textile And Garment Industry. Clothing Textile Research Journal, 1990, (1):7-13
    70. Z. P. Zhang, X.H. Guo, et al. Intelligence apparel CAD System and CIM. Journal of Beijing Institute of Light Industry, 1991,9(1):78-86
    71. Harland C. Supply Chain Operational Performance Roles. Integrated Manufacturing Systems, 1997,8(2):70-78.
    72. Y.T. Chai, F.Y. Li. Design of agile supply chain management system for garment industry, Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 1999,5(5):17-21
    73. Majid Hashemipour, Sinan Kayaligil, Identifying integration types for requirement analysis in CIM development, Integrated Manufacturing Systems, 1999,10(3-4):170-178
    
    
    74. Nicholas Bilalis, Nicholas Alatsas, Franco Soppera, Alexandros Xanthas, Technical and qualitative information sharing between fabric finishing and garment manufacturer, Computers in Industry, 1999, 38(2): 201-206
    75. A.I. Kokkinaki, M.J. Morse, Industrial communications architectures and their application in a garment computer integrated manufacturing cell, Computer Communications, 1997, 20 (10): 912-922
    76. B.J. Zhang. The Algorithm Principle and Implementation of Computer Aided Pattern Design. Journal of China Textile University, 1991,17(3):38-46
    77. M. Slater. A Top Down Method for Interactive Drawing. Computer Graphics Forum, 1988, 7(4):324-329
    78. A. Mangen, N. Lasudry. Search for the Intersection Polygon of any Two Polygons: Application to the Garment Industry. Computer Graphics Forum, 1991, 10(3): 195-208
    79. Y. Cao, H.P. Iu, et al. The Mathematical Model of Grading System of Garment CAD. Journal of Fudan University(Natural Science Edition), 1992,31(3):330-334(in Chinese)
    80. W. L. Huang, Y. Wang, et al. An interactive sliding Algorithm for Clothing Parts Automatic Arrangement in Garment CAD. Journal of Huazhong University of Science & Technology, 1994,22(6):76-79(in Chinese)
    81. Nakanishi, Y., 1996a, Applying evolutionary systems to design aid system. Proceedings of Artificial Life V(Poster Presentation).pp. 147-154.
    82. Nakanishi, Y., 1996b, Capturing. preference into a function using interactions with a manual evolutionary design aid system. Genetic Programming 1996 Late-Breaking Papers:133-138.
    83. Lee, J.-Y., Cho, S.-B., 1998. Interactive genetic algorithm for content-based image retrieval. Proceedings of Asia Fuzzy Systems Symposium, pp. 479-484.
    84. Ohsaki, M., Takagi, H., Ingu, T., 1998. Methods to reduce the human burden of interactive evolutionary computation. Proceedings of Asia Fuaay Systems Symposium, pp. 495-500.
    85. Hee-Su Kim, Sung-Bae Cho, Application of interactive genetic algorithm to fashion design, Engineering Application of Artificial Intelligence", 13(2000) 635-644
    86. T. Sano, H. Yamamoto, Intelligent design support system for Japanese kimono, IEEE International Symposium on Industrial Electronics, (Puebla, Mexico), 2000(2):747-751
    87. T. Kirstein, S. Krzywinski, H. Roedel, Pattern construction for close-fitting garments made of knitted fabrics, Melliand Textilberichte/International Textile Reports, 1999, 80(3):46-48
    88. A. Elomri, P. Morel, N.E. Radhy, How to satisfy the customer order in the clothing industry, Systems Analysis Modelling Simulation, 2000, 38 (1):1-18
    89. G.C. Han, S.J. Na. Two-stage approach for nesting in two-dimensional cutting problems using neural network and simulated annealing. Journal of Engineering Manufacture, 1996,210(B6),509-519
    90. Z. Liu and S.C. Harlock. A Computer-Aided Grading System for Both Basic Block
    
    and Adapted clothing Patterns. Part Ⅱ: The Grading Algorithms. Textile Research Journal, 1995,65(2):95-100
    91. Z. Liu and S.C. Harlock. A Computer-Aided Grading System for Both Basic Block and Adapted clothing Patterns. PartⅢ: The AutoGrader System. Textile Research Journal, 1995,65(3):157-162
    92. W. K. Wong, C. K. Chan, W. H. Ip, Optimization of spreading and cutting sequencing model in garment manufacturing. Computer in Industry, 2000, 43:1-10
    93. Majid Hashemipour, Sinan Kayaligil, Labor shifting and lot sizing in garment manufacture: a simulation study, International Journal of Industrial Engineering: Theory Applications and Practice, 1999, 6(3): 224-233
    94. Wang, Yuntao; Bao, Qingshan; Wang, Shuguo; Wu, Lin, Laser garment cut robot system: design and realization, Proceedings-IEEE International Conference on Robotics and Automation, (Detroit, MI, USA), 1999, (2):1084-1089
    95. C. Czarnecki, A Design and off-line programming of a dual robot workcell for garment manufacture. Microprocessors and Microsystems, 1999, 23:225-234
    96. C. Czarnecki, Automated stripping: A robotic handling cell for garment manufacture,IEEE Robotics & Automation Magazine, 1995, 2(2):4-8
    97. A. Paterson, N. Kirby, G. Hallberg, Automated stripping - a missing link in computer integrated manufacture for the clothing industry, 3rd International Conference on Competitive Performance Through Advanced Technology, (London): 1992, 246-251
    98. S. M. Shenoy, C. D. Rahn, Neural adaptive control for positioning fabric on a frictional surface. Journal of Manufacturing Science and Engineering, 1999, 2:121-127
    99. M. Halasz, P. Tamas, Z. Kiss, B. Toth, Computer aided process planning systems for apparel industry: CAT for windows and CIM for tailor-making, Proceedings of the Conference on Mechanical Engineering, (Budapest, Hungary) 1998, (2): 825-829
    100. Spragg J.E., Fozzard G, Tyler D J. FLEAS: a flowline environment for automated supervision. Integrated Manufacturing Systems, 1999, (10/6): 322-327
    101. C. Chen, R. Racine, F. Swift, A practical approach to the apparel production-planning and scheduling problem. International Journal of Clothing Science and Technology, 1998, 4(3): 9-17
    102. Chan K C C, Hui P C L, Yeung K W, et al. Handling the assembly line balancing problem in the clothing industry using a genetic algorithm. International Journal of Clothing Science and Technology, 1998, 10(1): 21-37
    103. Takeda & Tomiyama, et al. Logical Formalization of Design Processes for Intelligent CAD Systems, Intelligent CAD, 1990 (1):37-43
    104. Johnson-Laird, et al., Mental Models, Intllignent CAD, 1990, (1):51-58
    105. G. Stiny, Introduction to Shape and Shape Grammars, Environment and Planning, 1980, (7):343-351
    106. H.A. Simon. Search of Resaoning in Problem Solving, AI, 1983, (21):7-13
    107. V. Goel, P. Pirolli, The Structure of Design Problem Spaces, Cognitive Science, 1992, (16): 395-429
    
    
    108. Z.Q. Lao, Y.H. Pan, Model-based approach to human animation, Ruan Jian Xue Bao/Journal of Software, 2000, 11(4): 435~440
    109. Y.T. Zhuang, Y.H. Pan, Z.J. He, An Object-Oriented Design Model for Advertising CAD System, Journal of Computer Science and Technology, 1996,11(5):443-451
    110.陆玮琳,潘云鹤,美术图案智能CAD系统中的图案构成,第五届全国CAD/CAu学术会议,中国CAD/CAM研究新进展,1993
    111. M.A. Boden, The Creative Mind: Myths and Mechanisms, Basic Books, New York, 1991
    112. S.R. Turner, The Creative Mind, Artificial Intelligence, 1995, 79:145-159
    113. M.A. Boden, The Creativity and Artificial Intelligence. Artificial Intelligence, 1998,103(1/2): 47-356
    114. J.s. Gero, Design Prototypes: A Knowledge Representation Schema for Design, AI Magazine, 1990,11(4): 26-36
    115. R.C. Schank, et al, The engineering of" creativity: a review of Boden' s the creative mind. Artificial Intelligent, 1995, (79):129-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700