3D角连锁织物结构参数对其复合材料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维织物复合材料作为一种先进材料各国在先进技术发展方面都对它给予了高度重视,角联锁织物复合材料是三维复合材料的一种。多重纬角连锁织物有重叠的纬纱及与纬纱角连锁状交织的经纱两个系统纱构成,此种三维织物可以在普通织机上织造,其结构改变灵活能够满足多种力学性能的需要,易于批量生产,有很大的应用和发展前景。
     本文设计出了不同组织结构的角连锁织物,利用Y200S电子小样织布机进行织造,通过真空辅助成型(VARTM)工艺制成复合材料板,对实际织物及其复合材料的结构参数进行采集,依据这些参数在UG中做成三维实体模型,运用MD Patran/Nastran有限元软件对其进行准静态下的拉伸模拟实验,对模拟结果进行了分析。得出:在长度方向拉伸时,经纬纱等效应力的大小在45度及65度附近发生转变,这也成为它们成为主次载荷承担者的分界点;经纱应变随经纱倾斜角增大而逐渐减小,纬纱应力应变基本不变;在纬向拉伸时,由于角联锁结构中纬纱是伸直平行的所以经纬纱应力应变基本没有变化,只有改变纬纱纱线支数,才能影响复合材料纬向模量的大小以及复合材料中纬纱体积含量;在厚度方向拉伸时,经纱等效应力随着经纱倾角的增大而不断增大,纬纱等效应力曲线总体波动较小中间呈拱起的鞍型,经纬纱等效应力在45度附近有交叉点,经纱应变随倾角的增大而不断减小,纬纱应变较为平直;研究结果显示相同层数的角联锁结构其经纱结构参数的改变对其纤维体积含量的影响较小。本论文以织物单个组织循环为模型进行有限元模拟,保证了模拟结果的正确性和整体性,测试出了实物试验不易测得的织物内部应力应变结果,该方法成本低效率高。通过研究,对三维角联锁织物复合材料结构参数对其性能的影响作了定性评价,探讨了结构参数对经纬纱应力应变的影响,经纬纱应力应变之间的相互影响,为继续研究和实际生产提供参考。
Three-dimensional fabric composite materials as an advanced technology development in advanced countries have attached great importance to it, interlock fabric composite material is one of three-dimensional composite materials. Multi-weft interlock 3D fabric is made by multi-weft and chain-like cutting angle warp yarn, such three-dimensional fabric can be weaved in the ordinary looms, flexible and can change its structure designed to meet the needs of a variety of mechanical properties, easy-to-volume production, have great application and development prospects.
     In this paper, the different weave structures of multi-weft interlock 3D fabric has been designed, be practically weaved the different weave structures of multi-weft interlock 3D fabric on Y200S electronic sample weaving loom, through vacuum-assisted molding (VARTM) process system for a composite sheet. Actual fabrics and composite materials on the structural parameters of the collection, based on the data made in the three-dimensional solid model in UG, its quasi-static was finite element simulated by MD Patran/Nastran, the results of simulation are analyzed. Tension in the length direction, warp and weft yarn the size of effective stress at 45 degrees and 65 degrees near the transition point, the two points is that they become the bearers of the primary and secondary load cut-off point, warp strain with increasing tilt angle decreases, weft strain is essentially the same. Tension in the weft, the angle interlock structure is a straight parallel to the weft so that only changes in the number of weft yarn. Tension in the thickness direction, the yarn with the warp stress increases with increasing inclination, and weft equivalent stress near the intersection of 45 degrees, weft equivalent stress curves showed overall less volatile middle arch of the saddle, warp strain increases with increasing angle and weft strain is more flat; study shows the same layers of the angle interlock structure and its structural parameters of changes of fiber volume fraction was less affected. In this thesis, a single organization through the fabric loop finite element simulation for the model to ensure the accuracy and integrity of the simulation results, test out the real test is not easy measured stress-strain results of the internal fabric, the method of cheaply and efficiently. Through research, three-dimensional angle interlock fabric composite structure parameters on the properties of the qualitative evaluation were to explore the structural parameters of the relationship between stress and strain of warp and weft, warp and weft the relationship between stress and strain, in order to continue research and practical production for the reference.
引文
[1].魏铭森,陈蓉娟三维纺织复合材料的制造技术和力学性能研究现状,南通工学院学报,2000,09
    [2].黄新乐,林富生,孟光,三维纺织复合材料力学性能研究进展,武汉科技学院学报,2005,04
    [3]. Chuyang Zhang.“Characterization and Modeling of 3D Woven Com2posites.”Ph. D. thesis , North Carolina State University,2003.
    [4]. Ruzand JM, Guenot G.Multiaxial three-dimensional fabric and process for its manufacture. International Patent WO 94/ 20658 ,15 September 1994
    [5]. Farley GL. Method and apparatus for weaving a woven angle ply fabric.US Patent 5224519 ,1993
    [6]. Bilisik A , Mohamed MH. Multiaxial 3 - D weaving machine and properties of multiaxial 3 - D woven carbon/ epoxy composites. Proceedings of American Society of Composites , 11,14 April ,1994 :868
    [7]. Yasui Y, Anahara M, Omori H. Three - dimensional fabric and method for making the same. United States Patent 5091246 , 25 February 1992
    [8]. Mohamed , M. H. Three - demiestional Textiles : Mcachines that build complex fiber architectures are rehaping our two - dimensional view of textiles. American Scientist 1990 ;78 (6) :530 - 541
    [9]. Mohamed , M. H. , A. E. Bogdanovich , L. C. Dickinson , J . N. Sin2gletary , and R. B. Lienhart . A New Generation of 3d Woven Fabric Preforms and Composites. Sampe Journal ,2001 ,37 (3) :8 - 17
    [10]. Yamamoto T.,S.Nishiyama and M.Shinya, Study on Weaving method for three dimensional textile structural composites,Proc.Of the 4th Japan Int. SAMPE Symp.SeP,1995, 25~28,655~660.
    [11].易洪雷,丁辛,三维板状机织预成形件的设计与试织,棉纺织技术,2003,5,31卷,第5期
    [12].顾平,多重纬角联锁三维机织物结构设计[J],上海纺织科技,2002,8,30卷第4期
    [13].杨彩云,李嘉禄.复合材料用3D角联锁结构预制件的结构设计及新型织造技术[J].东华大学学报(自然科学版),2005,10(5)
    [14].魏铭森,陈蓉娟,三维纺织复合材料的制造技术和力学性能研究现状,南通工学院学报,2000,09(3)
    [15]. Brookstein D.S., Comparison of multilayer interlocked braided composites with other 3D braided composites, Proc. of the 36th Int. SAMPE Symposium,1991, 8,141~150.
    [16]. Brookstein D.S., Evolution of fabric performs for fiber composites, Journal of Applied Polymer Science: Applied Polymer Symposium, 1991b (47) 487~500.
    [17]. Brookstein D.S., Three-dimensional braids for reinforcing composites, Tech. Text. Int., 1993, 3, 12~14.
    [18]. Brookstein D.S., T. Preller and J. Brandt J, On the mechanical properties of three-dimensional multilayer interlock braided composites, Proc. of the Techtextil Symposium 93 for Technical Textiles and Textile-Reinforced Materials, Frankfurt am Main, Germany, 1993, 6,28.
    [19].魏铭森,陈蓉娟,三维纺织复合材料的制造技术和力学性能研究现状,南通工学院学报,2000,09(3)。
    [20]. Khokar N. 3D Fabric - Forming Process : Distinguishing between 2D - Weaving , 3D - Weaving and an unspecified Non Interlacing process[J ] . Journal of Textile Institute , 1996 ,87 (1) :97 - 106.
    [21]. Lee S.,A. Rudov-C1ark and A.P. Mouritz, M.Bannister and I. Herszberg, (in Press),Effect of Weaving damage on the tensile properties of three-dimensional Woven composites,Comp.Struct.2002.
    [22]. Guess T.R.and E.D.Reedy, Comparison of interlocked fabric and laminated fabric Kevlar 49/epoxy composites, J.Comp. Tech.&Res., 1985,7:136~142
    [23]. Guess T.R.and E.D.Reedy, Comparison of interlocked fabric and laminated fabric Kevlar 49/epoxy composites, J.Comp. Tech.&Res., 1985,7:136~142
    [24]. Cox B.N., M. S. Dadhkak, W.L.Morris and J. G.F1intoff, Failure mechanisms of 3D Woven composites in tension, compression and bending, Acta Metal.et Mat., 1994, 42:3967~3984.。
    [25]. peirce FT. The geometry of cloth structure. Journal of the Textile Institute, 1937, 28(3):T45~96
    [26]. Whitney T J,Chou T W. Modeling of 3D angle-interlock textile structural composite. Journal of Composite Materials,1989,23(9):890~911.
    [27]. Byun J H,Chou T W.Elastic properties of three-dimensional angle-interlock fabricperforms.Journal of the Textile institute,1990,81(4):538~548.
    [28].丁辛,易洪雷.论多层机织物接结组织结构的表征.雷国栋编.全国第十二届玻璃钢/复合材料年会论文集,青岛.1997,10,21~24.
    [29]. Yang J M, Ma C L,Chou T W. Fiber inclination model of three-dimensional textile structural composites. Journal of Composite Materials,1986,20(9):472~484.
    [30]. Byun J H,Chou T W. Elastic properties of three-dimensional angle-interlock fabric preforms. Journal of the Textile institute,1990,81(4):538~548.
    [31].易洪雷,丁辛.三维机织复合材料的弹性性能预报模型.力学学报,2003,35(5):469~575
    [32].杨彩云,田玲玲,三维角联锁结构复合材料的力学模型,固体火箭技术,2007,2,30卷第一期
    [33]. Cox B N , Carter W C , Fleck N A. A binary model of textile composites:1.formulation.Acta Metallurgica et Materialia,1994,42(10):3463~3479。
    [34]. Xu J,Cox B N,MeGlockton M A,et al.A binary model of textile compositesⅡthe elastic regime. Acta Metallurgica et Materialia. 1995,43(9): 3511~3524.
    [35]. Tan P,Tong L,Steven GP. Modeling approaches for 3D orthogonal woven composite. Journal of Reinforced Plastics and Composites,1998,17(6):545~577
    [36]. Phillips EA,Herakovich CT,Graham LL. Damage development in composites with large stress gradients. Composites Science and Technology,200l,61(15):2169一2182
    [37].顾平,多重纬角连锁三维机织物结构设计,上海纺织科技,2002,8,30卷第4期
    [38].易洪雷.三维机织复合材料的结构设计与力学性能研究[博士论文].东华大学,2000:21一22
    [39].顾平,多重纬角连锁三维机织物结构设计,上海纺织科技,2002,8,30卷第4期
    [40].姬长干,三维正交机织复合材料点冲击响应和有限元计算(硕士论文),2007,12,8~9
    [41].徐国平,韩建.复合材料成型过程中树脂的流动分析.纺织学报,2007,28(9):61一64
    [42].高庆,康国政,杨川,等.高温下短纤维增强金属基复合材料界面的微观结构和热残余应力状态研究[ J] .复合材料学报, 2002, 19( 4) : 46- 50.
    [43].柴东朗,李晓军,曹利强,等.增强相形态对复合材料微区力学状态影响的有限元分析[ J ] .应用力学学报, 2004, 21 ( 3) :145- 148.,
    [44]. Van den H euvel P W J, Wubbdt s M K, Youn g R J, et al .Failure p henomena in two2dimensional mult i 2fibre modelcomposit es: 5. A finit e element study [ J] . Comp osit es Par tA , 1998, 29A: 1121- 1135.
    [45].张娟.短纤维增强金属基复合材料热残余应力及其对力学行为的影响.成都:西南交通大学,2002.35-48.
    [46].金泉,覃继宁,张荻,吕维洁,颗粒和纤维混杂增强复合材料力学性能的三维有限元模拟,复合材料学报,2006,4.
    [47].杨剑.张璞.陈火红.新编MD Nastran有限元实例教程[M].机械工业出版社,2008:3-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700