用户名: 密码: 验证码:
互联网测量管理若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网是20世纪最伟大的发明之一。时至今日,互联网已成为信息化的重要平台、重要工具和重要组成部分。随着互联网的发展,网络规模日益增大,网络异构性和复杂性不断增强,互联网已演变成为一个开放的、高度异构的复杂巨系统,同时也给网络的管理、行为分析等带来一系列困难。互联网测量技术是对网络进行认识与深入研究的重要手段,是进行网络安全评估,防范大规模网络攻击的重要保障。
     本文从测量技术、软件支撑平台和实现三个层面,深入研究了大规模互联网网络测量中所面临的部分关键技术问题。论文在研究互联网物理拓扑自动发现算法的同时,提出新的思路解决了网络性能数据抽样、高速互联网流量数据处理所面临的算法难题。
     本文主要的创新点体现在以下几方面:
     (1)提出了一种新的基于交换机的物理网络拓扑发现算法。该方法用树的演绎方法遍历所有的顶点和边,完成拓扑发现,与现有算法相比,其时间复杂度有较大降低,推导方法也更为容易理解。所提出的判断理论,能够判断拓扑图中的边缘节点、边缘连线和进行树的演绎过程推导;提出的将交换机物理拓扑关系表述成多棵树的形式,支持存在缺失连接关系的拓扑结构发现。解决了由于VLAN划分造成的设备端口与MAC地址无法对应的问题。指出“拓扑发现仅需要地址转发表不需要生成树”这种错误的观点,因为地址转发表获取的仅仅是连接的对方端口的MAC地址信息和本端虚拟端口编号,虚拟端口映射到本地实际端口必须通过生成树(BRIDGE-MIB:dot1dBasePortTable: 1.3.6.1.2.1.17.1.4)的映射关系才能够获取。文中从理论和实际应用方面论证了该拓扑算法的效率、准确性和有效性。
     (2)提出了一种自适应的网络性能数据测量抽样方法(Network Data Measurement and Statistics Model, NMSM)。该模型根据性能采样数据的实时分析结果,动态调整样本的采集频率,来提高被测数据的精度,其误差较传统概率抽样统计方法要小。文中论证了NMSM模型采集样本估计量的无偏性和一致性。与均匀抽样和泊松抽样相比,NMSM模型在样本变化不大的情况下,会降低采集周期减少对被测网络的额外影响。实际测量结果表明,该模型在网络数据变化比较平稳时,对网络的影响程度较低,在网络数据变化比较大时,对真实数据的拟合程度则较好。
     (3)提出了高速互联网流量测量的数据处理方法。该方法根据处理点的不同将流数据测量分成不同的种类,指出了基于SNMP采集的流量数据包具有瞬时性的特点,NetFlow流量数据包具有累加性的特点。在此基础上提出了一种在采集程序和数据库之间实现的流数据处理方法,充分利用了采集器的运算性能和数据库的存储记忆性,建立了对流数据包的自动关联分析。论文提出了一种基于流量占用率的数据处理算法,在数据处理前对异常流进行分析,保存重要流数据和过滤非重要流数据;提出了一种基于流数据包的归并算法,根据时间窗口对数据进行归并压缩,极大程度节约了测量数据存储空间。论文对上述算法的正确性和存储效率在实际环境中进行了验证。
     (4)提出了一种基于分类的可靠事件服务设计方法。该方法符合分布对象标准J2EE/CORBA规范,提供异构环境中对象之间的双向通信能力,并在信息传送过程中对事件进行分类处理,保证事件在不同应用环境中都能够及时可靠传递。提出将可靠事件机制运用到NetManager的消息传递流程和告警处理流程,提供信息的及时、无误传递,保证系统在大型企业级应用中能够稳定、可靠运行。
     (5)提出了一种可靠的、分层的测量管理平台架构,设计并实现了互联网综合测量系统NetManager。该系统实现了网络性能测量NMSM抽样算法,解决了高速互联网NetFlow流量数据包的存储效率问题,并支持基于网络层和链路层的网络拓扑自动发现。NetManager由平台支撑层、数据采集层、平台应用层组成,实现了“插件式应用”的理念,保证了软件系统的稳定性、可复用性和可扩展性。
Internet is one of the greatest inventions in the 20th century. The global construction of information technology is in the ascendant. Nowadays Internet has become a crucial platform, tool and component in information technology. Along with the development of Internet, the scale, heterogeneity and complexity of network have increased significantly. It has evolved to an open, high-heterogeneous and tremendous network system leading to series of difficulty in management and behavior analysis. Network measurement technology is an important methodology in understanding and deeply research of network. It is also a significant approach in both network security assessment and high-scale network attack prevention.
     Measurement technology of Internet is an important method to understand and study network, it is also an important guarantee to evaluate the network security and prevent the network attack. This dissertation makes a deep research of part of key technical difficulties of Internet measurement from three parts: which are software support platform, measurement theory and realization. It not only provides the resolutions for the sampling of network performance data, measurement and analysis of high-speed Internet traffic data, but also presents a new method to solve the difficulty of automatic discovery of network topology.
     The main innovative points in this dissertation include:
     (1) A new topology discovery algorithm of physical network based on switches is proposed. In comparison with the current method, the proposed one which finishes topology discovery by traversing all nodes and edges of a tree with deducing method has the lower time complexity. The suggested judge theory has the ability to identify the edge node, edge link and processing tree deduction. And the proposed topology of switches which is represented by multiple trees support the topology discovery without connections. It resolves the problem of mismatch between MAC address and port which caused by VLAN division and also points out that the topology discovery need Address Forwarding Table without spanning tree is inaccurate. Since the address forwarding table contains both the information of MAC address of remote port and corresponding local virtual port number which requires spanning tree (BRIDGE-MIB: dot1dBasePortTable: 1.3.6.1.2.1.17.1.4) only to map with physical port. The efficiency, accuracy and effectiveness of this topology discovery algorithm have been verified in this dissertation from both theory and practical application.
     (2) A Network Data Measurement and Statistics Model (NMSM) based on real-time automatic analysis is proposed. It enhances the accuracy of the measured data with both the result of real-time analysis and adjusting the frequency of dynamic sampling. It has lower error occurrence rate than traditional possibility sampling methods. The unbiassedness and consistency of estimated value sampled by NMSM model are verified. In comparison with Mean sampling and Poisson sampling, the NMSM model reduces the negative impact on the measured network by decreasing the sampling period. The outcome of the experiment reveals that this model has minimum influence on the network performance when its data remains stable otherwise it has the best fitting result with actual data.
     (3) A measurement method of high-speed network traffic is proposed. It divides traffic data measurement into different types according to various data processing points. This method also indicates that the SNMP based traffic package has instantaneous property and NetFlow traffic package has accumulative property. On the ground of that method, a flow package data processing approach is suggested making sufficient use of calculating ability of collector, database storage attribution and establishing automatically correlates and analyzes of flow traffic package. A data processing algorithm based on traffic usage is proposed which analyzes abnormal traffic before processing to save important data and filtering unimportant one. A merge algorithm found on traffic data which merges and compresses the data according to laws of query is suggested. It saves the storage space of measurement data at great extent. It is verified in practical environment in terms of accuracy of data and storage space.
     (4) A category-based service design method of credible event is proposed. This method which is complied with distributed object standard J2EE/CORBA provide the ability of dual communication in heterogeneous environment. In order to guarantee the events are transferred in time and securely in different application environment, it classifies them on the process of transmission. For the purpose of ensuring in-time and accurate transmission and guarantee system run stably and credibly on large-scale enterprise, this method also proposed a reliable event mechanism which applies to the message transition and alarm disposing process.
     (5) Internet measurement system NetManager is designed and implemented based on the proposed credible, layered measurement and management platform. In order to resolve the NetFlow flow package and saving efficiency problem and support auto-discovery of network topology on the ground of both network and data link layer, this system implements the NMSM sampling algorithm which is a measurement of network performance. The NetManager composed by support layer, data collect layer and application layer implements the concept of“plug-in application”to ensure the stability, reusability and expansibility of system.
引文
[1]第20次中国互联网络发展统计报告.中国互联网络信息中心.2007.7.
    [2]第22次中国互联网络发展统计报告.中国互联网络信息中心.2008.7.
    [3]戴汝为,操龙兵.Internet—一个开放的复杂巨系统.中国科学E辑,2003,33(4):289-296.
    [4] Yu W, Cao J, Chen G, et al. Local Synchronization of a Complex Network Model. IEEE Transactions on Systems, Man, and Cybernetics, 2008, 39(1):230-241.
    [5] Salazar N, Rodriguez A, Juan A, et al. An Infection-Based Mechanism for Self-Adaptation in Multi-agent Complex Networks. Proceedings of Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, 2008(SASO '08). Venezia: IEEE Press, 2008, 161-170.
    [6] Leland W E, Taqqu M S, Willinger W, et al. On the Self-Similar Nature of Ethernet Traffic. IEEE/ACM Transaction on Networking. 1994, 2(1):1-15.
    [7] Paxson V, Floyd S. Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transaction on Networking, 1995, 3(3):226-244.
    [8] Jean B, Robert B, Murad S, et al. Long-Range Dependence in Variable-Bit-Rate Video Traffic. IEEE Transactions on Communications, 1995, 43(2):1566-1579.
    [9] Mark E, Azer B. Self-Similarity in Word Wide Web Traffic: Evidence and Possible Cause. IEEE/ACM Transaction on Networking, 1997, 5(6):835-846.
    [10] Vázquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of the Internet. Physical Review E, 2002,65(6):66-130.
    [11] Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationship of the Internet topology. ACM SIGCOMM Computer Communication Review, 1999, 29(4):251-262.
    [12] Huberman B A, Adamic L A. Power-law distribution of the world wide web. Science, 2000, vol 287, p 2115.
    [13] Watts D J, Strogatz S H. Collective dynamics of' small-world' networks. Nature, 1998, 393(6684): 440-442.
    [14] Floyd S, Paxson V. Difficulties in Simulating the Internet. IEEE/ACM Transactions on Networking, 2001, 9(4):392-403.
    [15] Barabási A L, Albert R, Jeong H. Scale-free characteristics of random networks: the topology of the World Wide Web. Physica A, 2000, 281:69-77.
    [16] Huberman B A. The Laws of the Web. Cambridge,:MIT Press,2001.
    [17] MaáS, Marián B. Topology of the world trade web. Physical Review E, 2003, 68(1):015101 -015104.
    [18] Sporns O, Tononi G, Edelman G M. Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 2000, 10(2):127-141.
    [19] Scott J. Social Network Analysis: A Handbook. London: Sage Publications, 2000.
    [20] Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University, 1994.
    [21] Andersson C, Hellervik A, Lindgren K. Urban economy as a scale-free network. Physical Review E, 2003, 68(3):036124.
    [22] CEN L H, XI Y G. Sewage flow optimization algorithm for large-scale urban sewer networks based on network community division. Journal of Control Theory and Applications, 2008, 6(4):372–378.
    [23]车宏安,顾基发.无标度网络及其系统科学意义.系统工程理论与实践,2004,24(4):11-16.
    [24]姜璐,刘琼慧.系统科学与复杂网络研究.系统辩证学学报,2005,13(4):14-17.
    [25]吴金闪,狄增如.从统计物理学看复杂网络研究.物理学进展,2004,24(1):18-46.
    [26]汪秉宏,周涛,何大韧.统计物理学与复杂系统研究最新发展趋势分析.中国基础科学,2005,7(3):37-43.
    [27] Albert R, Jeong H, Barabási A L. Error and attack tolerance of complex networks. Nature, 2000, 406:378-382.
    [28] David M. The Spread of the Code-Red Worm (CRv2). November 2003. http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml.
    [29] Steven B, Bill C. The Effects of War on the Yugoslavian Network. November 2003. http://www.research.lumeta.com/ches/map/yu/index.html.
    [30] Waxman B M. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 1988, 6(9):1617-1622.
    [31] Doar M B. A better model for generating test networks. Proceedings of the GLOBECOM’96. London: IEEE Press, 1996, 86-93.
    [32] Zegura E W, Calvert K L, Donahoo M J. A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Transaction on Networking, 1997, 5(6):770-783.
    [33] Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. ACM SIGCOMM Computer Communication Review, 1999, 29(4):251-262.
    [34] Albert L B. The physics of the Web. 2001. http://www.physicsWeb.org/article/ world/ 14/7/09
    [35] Palmer C R, Steffan J G. Generating network topologies that obey power laws. Proceedings of the GLOBECOM 2000.San Francisco: IEEE Press, 2000,434-438.
    [36] Aiello W, Chung F, Lu L Y. A random graph model for massive graphs. Proceedings of the ACM STOC 2000. Portland: ACM Press, 2000, 171-180.
    [37] Magoni D, Pansiot J J. Analysis of the autonomous system network topology. ACM SIGCOMM Computer Communication Review, 2001,31(3):26-37.
    [38] Albert R, Barabási A L. Topology of evolving networks: local events and universality. Physical Review Letters, 2000, 85(24): 5234.
    [39] Tian B, Towsley D. On distinguishing between Internet power law topology generators. Proceedings of the IEEE INFOCOM 2002. New York: IEEE Press, 2002, 638-647.
    [40] Magoni D, Pansiot J J. Internet topology modeler based on map sampling. Proceedings of the ISCC 2002.Taormina: IEEE Press, 2002,1021-1027.
    [41] Medina A, Lakhina A, Matta I, et al. BRITE:An approach to universal topology generation. Proceedings of the MASCOTS 2001. Washington: IEEE Press, 2001, 346-353.
    [42] Jared W, Sugih J. Inet-3.0: Internet topology generator. Technical Report, CSE-TR-456-02, Ann Arbor: University of Michigan, 2002.
    [43] Magoni D. nem: A. software for network topology analysis and modeling. Proceedings.of the MASCOTS 2002. IEEE Press, 2002,364-371.
    [44] Kleinrock L, Nayor W. On Measured Behavior of the ARPA Network. Proceedings of AFIPS Conference. Chicago: AFIPS, 1974: 767-780.
    [45] Claffy K, Gattett M, Braun H. Report of the NSF-sponsored workshop on Internet Statistics Measurement and Analysis. http://www.caida.org/outreach/isma/ 9602/report, Feb. 1996.
    [46] Paxson V. Measurement and Analysis of End-to-End Internet Dynamics. PHD thesis, Computer Science Division, University of California Berkeley, 1997.
    [47] National Laboratory of Applied Network Research. http://www.nlanr.net.
    [48] Paxon V, Mahdavi J, Adams A, et al. An architecture for large-scale internet measurement. IEEE Communications, 1998, 36(8):48-54.
    [49] Internet Engineering Task Force. http://www.ietf.org.
    [50] CAIDA, http://www.caida.org/analysis/performance/measinfra.
    [51] Surveyor project. http://www.advance.org/surveyor.
    [52] Cisco. http://www.cisco.com/go/netflow.
    [53] Juniper. http://www.juniper.net.
    [54] Huawei.http://www.huawei.com.
    [55] RIPE. http://www.ripe.net/, 2006.
    [56] Thomas S. Internet measurements, http://user.cs.tu-berlin.de/~stain/ DILEMMA/ paper.htm, 2004.
    [57]王俊锋.高速互联网测量若干关键技术的研究.博士论文.电子科技大学.2004.
    [58]黎文伟.端到端互联网监测技术的研究.博士论文.湖南大学.2006.
    [59]蔡志平.基于主动和被动测量的网络测量技术、模型和算法的研究.博士论文.国防科技大学.2005.
    [60]朱畅华.IP网络测量和业务性能研究.博士论文.西安电子科技大学.2004.
    [61]潘乔.网络测量中的抽样技术研究.博士论文.西安电子科技大学.2007.
    [62]刘瑞芳.网络性能测量和推测技术的研究.博士论文.北京邮电大学.2006.
    [63]孙红杰.基于主动测量的网络性能分析.博士论文.哈尔滨工业大学.2007.
    [64] Paxson V, Almes G, Mahdavi J, et al. Framework for IP Performance Metrics. IETF RFC2330, May 1998.
    [65] Albert R, Barabsi A L. Topology of evolving networks: local event and universality. Physical Review L, 2000, 85(24):5234-5237.
    [66] Eckmann J P, Moses E. Curvature of co_links uncovers hidden the-matic layers in the World Wide Web. Proceedings of the National Academy of Science, 2002, 99(9):5825-5829.
    [67] Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297 (5586):1551-1555.
    [68] Barabási A L, Albert R. Emergence of Scaling in Random Networks. Science, 1999(10):509-512.
    [69] Albert R, Jeong H, Barabási A L. Error and Attack Tolerance of Complex Networks. Nature, 2000, 406:378-381.
    [70] Chalmers R C, Almeroth K C. On the topology of multicast trees. IEEE/ACM Transactions on Networking, 2003, 11(1):153-165.
    [71] ITU-T.1540. Internet protocol data communication service-IP packet transfer and availability performance parameters. Dec. 2002.
    [72] Mahdavi J, Paxson V. IPPM Metrics for Measuring Connectivity. RFC2678, Internet Engineering Task Force, Sept, 1999.
    [73] Almes G, Kalidindi S, Zekauskas M. A One-way Delay Metric for IPPM. RFC2679, Internet Engineering Task Force, Sept, 1999.
    [74] Almes G, Kalidindi S, Zekauskas M. A One-way Packet Loss Metric for IPPM. RFC2680, Internet Engineering Task Force, Sept, 1999.
    [75] Demichelis C, Chimento P. IP Packet Delay Variation Metric for IP Performance Metrics. RFC 3393, Internet Engineering Task Force, November, 2002.
    [76]黎文伟,王俊锋,谢高岗等.基于包对采样的I P网络时延变化测量方法.计算机研究与发展,2004,41(8):1352-1360.
    [77] Almes G, Kalidindi S, Zekauskas M. A One-way Round-trip Metric for IPPM. RFC2681, Internet Engineering Task Force, Sept, 1999.
    [78] Jacobsen V. Dynamic Distance Maps of the Internet Paths. ftp://ftp.ee.lbl.gov/pathchar, April 1997.
    [79] Downey A B. Using Pathchar to Estimate Internet link Characteristics. Proceedings of ACM SIGCOMM'99. Cambridge: ACM Press, 1999:241-250.
    [80] Kevin L, Mary B. Measuring Link Bandwidths Using a Deterministic Model of Packet Delay. Proceedings of ACM SIGCOMM 2000. Stockholm: ACM Press, 2000, 283-294.
    [81] Dovrolis C, Ramanathan P, Moore D. What Do Packet Dispersion Techniques Measure? Proceedings of IEEE 20th Annual Joint Conference of the IEEE Computer and Communications Societies 2001 (INFOCOM 2001). Anchorage: IEEE Press, 2001, 905-914.
    [82] Prasad R S, Murray M, Dovrolis C, et al. Bandwidth Estimation: Metrics, Measurement, Techniques, and Tools. IEEE Networks, 2003, 17(6):27-35.
    [83] Zhu Y, Dovrolis C, Ammar M. Combining Multihoming with Overlay Routing. Proceedings of 26th IEEE International Conference on Computer Communications (INFOCOM 2007). Anchorage: IEEE Press, 2007,839-847.
    [84] Stephane B. http://echoping.sourceforge.net. Oct, 2001.
    [85] Thomas D. http://www.fping.com. Oct, 2002.
    [86] Duan W. http://www.life-gone-hazy.com/src/gnuplotping. May 1997.
    [87] Caceres S R, Duffield N, Horowitz J, et al. Multicast-based Inference of Network-Internal Characteristics: Accuracy of Packet Loss Estimation. Proceedings of IEEE 18th Annual Joint Conference of the IEEE Computer and Communications Societies 1999 (INFOCOM 1999) New York: IEEE Press, 1999, 371-379.
    [88] Presti F L, Duffield N G, Horowitz J, et al. Multicast-Based inference of network-internal delay distributions. IEEE/ACM Transaction on Networking, 2002, 10(6): 761-775.
    [89] Duffield N, Horowitz J, Towsley D, et al. Multicast-based loss inference with missing data. IEEE Journal on Selected Areas of Communications, 2002, 20(4): 700-713.
    [90] Donnet B, Friedman T. Internet Topology Discovery: a Survey. IEEE Communications Surveys & Tutorials, 2007, 9(4): 56-69.
    [91]朱涛,常国岑,施笑安.基于复杂网络的指挥信息系统拓扑模型研究.系统仿真学报,2008,20(6):1574-1581.
    [92] Breitbart Y, Garofalakis M, Martin C, et al. Topology discovery in heterogeneous IP networks. Proceedings of IEEE International Conference on Computer Communication 2000(IEEE INFOCOM’2000) . New York: IEEE Press, 2000, 265-274.
    [93] Breitbart Y, Garofalakis M, Jai B, et al. Topology discovery in heterogeneous IP networks: The NetInventory system . IEEE/ACM Transaction on Networking, 2004, 12(3): 401-414.
    [94]张宇,方滨兴,张宏莉.中国AS级拓扑测量与分析.计算机学报,2008,31(4):611-618.
    [95]张昕,赵海,王莉菲等.AS级Internet拓扑分析.通信学报.2008,29(7):50-61.
    [96]张文波.1nternet宏观拓扑结构的生命特征研究.博士论文.东北大学.2006.
    [97]李建东,田野,盛敏,张琰,姚俊良.大规模ad hoc网络拓扑分割探测研究.通信学报,2008,29(9):54-61.
    [98]王飞,张树生,白晓亮,王洪申.拓扑和形状特征相结合的三维模型检索.计算机辅助设计与图形学学报,2008,20(1):99-103.
    [99]刘迎,刘学慧,孙春娟,吴恩华.基于上下文的网格拓扑压缩熵编码方法.软件学报,2008,19(2):446-454.
    [100]刘炜.复杂网络安全事件的知识表示和关联分析方法.小型微型计算机系统,2008,29(12):2218-2223.
    [101]王跃武,荆继武,向继等.拓扑相关蠕虫仿真分析.软件学报,2008,19(6):1508-1518.
    [102] Lowekamp B, O’Hallaron D R, Gross T R. Topology Discovery for Large Ethernet Networks . Proceedings of ACM Special Interest Group on Data Communication 2001(ACM SIGCOMM’2001) . New York: ACM Press, 2001. 237-248.
    [103] Bejerano Y, Breitbart Y, Garofalakis M, et al. Physical Topology Discovery for Large Multi-Subnet Networks. Proceedings of IEEE International Conference on Computer Communication 2003(IEEE INFOCOM’2003). New York: IEEE Press, 2003. 342-352.
    [104]郑海,张国清.物理网络拓扑发现算法的研究.计算机研究与发展,2002,39(3):264-268.
    [105]孙延涛,吴志美,石志强.基于地址转发表的交换式以太网拓扑发现方法.软件学报,2006,17(12):2565-2576.
    [106]孙延涛,石志强,吴志美.交换式以太网物理拓扑结构的自动发现.计算机研究与发展,2007,44(2):208-215.
    [107] Bobelin L, Muntean T. Integrated Genetic Algorithm and Goal Programming for Network Topology Design Problem With Multiple Objectives and Multiple Criteria. IEEE/ACM Transactions on Networking, 2008, 16(3): 680-690.
    [108] Jin X, Tu W Q, Chan S. Scalable and Efficient End-to-End Network Topology Inference. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(6): 837-850.
    [109] Bobelin L, Muntean T. Algorithms for Network Topology Discovery using End-to-End Measurements. Proceedings of International Symposium on Parallel and Distributed Computing, 2008 (ISPDC '08). Krakow: IEEE Press, 2008, 267-274.
    [110] Kundu S R, Pal S, Basu K, et al. An Architectural Framework for Accurate Characterization of Network Traffic. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(1): 111-123.
    [111] Giorgi G, Narduzzi C. A Study of Measurement-Based Traffic Models for Network Diagnostics. IEEE Transactions on Instrumentation and Measurement, 2008, 57(8): 1642-1650.
    [112] Liu Y, Towsley D, Ye T, et al. An Information-theoretic Approach to Network Monitoring and Measurement. Proceedings of ACM Conference on Internet Measurement. Berkeley: ACM, 2005: 159-172.
    [113]潘乔,裴昌幸.一种新的可变采样率的网络流量抽样测量方法.西安电子科技大学学报,2008,12(6):968-972.
    [114]王洪波,程时端,林宇.高速网络超连接主机检测中的流抽样算法研究.电子学报,2008,36(4):809-818.
    [115]王洪波,韦安明,林宇等.流测量中基于测量缓冲区的时间分层分组抽样.软件学报,2006,17(8):1775-1784.
    [116] Hohn N, Veitch D. Inverting sampled traffic. IEEE/ACM Transactions on Networking, 2006, 14(1): 68-80.
    [117] Amer P D,Cassel L N. Management of sampled real-time network measurements, Proceedings of 14th Conference on Local Computer Networks, Mineapolis, MN, USA, 1989.
    [118] Claffy K, Polyzos G, Braun H. Application of sampling methodologies to network traffic characterization. Proceeding of ACM SIGCOMM′93, San Francisco California, 1993, 194-203.
    [119] Cozzani I, Giordano S. A passive test and measurement system: Traffic sampling for QoS evaluation. Proceedings of GLOBE-COM 1998. Sidney Australia, 1998, 1236-1241.
    [120] Duffield N, Grossglauser M. Trajectory sampling for direct traffic observation. IEEE/ACM Transactions on Networking, 2001, 9(3): 280-292.
    [121] Leow W L, Daiheng N, Pishro N H. A Sampling Theorem Approach to Traffic Sensor Optimization. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 369-374.
    [122] Lili Y, Michailidis G. Sampled Based Estimation of Network Traffic Flow Characteristics. Proceedings of 26th IEEE International Conference on Computer Communications 2007 (IEEE INFOCOM 2007). Anchorage: IEEE Press, 2007, 1775-1783.
    [123] Ge Qian, Wei C J. Multiresolution-based Echo State Network and its Application to the Long-Term Prediction of Network Traffic. Proceedings of Computational Intelligence and Design, 2008 (ISCID '08). Wuhan: IEEE Press, 2008, 469-472.
    [124] Hu C C, Wang S, Tian J, et al. Accurate and Efficient Traffic Monitoring Using Adaptive Non-Linear Sampling Method. Proceedings of IEEE The 27th Conference on Computer Communications (INFOCOM 2008). Beijing: IEEE Press, 2008: 26-30.
    [125] Guo Z B, Qiu Z D. Identification peer-to-peer traffic for high speed networks using packet sampling and application signatures. Proceedings of 9th International Conference on Signal Processing, 2008 (ICSP 2008). Beijing: IEEE Press, 2008, 2013-2019.
    [126] IETF,Packet Sampling(psamp),http://www.ietf.org/html.charters/psamp-Charter.html,2007.
    [127] Boschi E, Mark L, Quittek J, et al. IPFIX Implementation Guidelines. RFC5153, 2008.
    [128] Chan Y T, Shoniregun C, Akmayeva G. A NetFlow based internet-worm detecting system in large network. Proceedings of Third International Conference on Digital Information Management, 2008 (ICDIM 2008). London: IEEE Press, 2008, 581-586.
    [129] Androulidakis G, Papavassiliou S. Improving network anomaly detection via selective flow-based sampling. IET Communications, 2008, vol 2: 399-409.
    [130] Estan C, Keys K, Moore D, et al. Building a better netflow. ACM SIGCOMM Computer Communication Review, 2004, 34(4):245-256.
    [131] Random sampled netflow. 2005. http://www.cisco.com/en/US/products/sw/iosswrel/ ps5207/ products_feature_guide09186a00801a7618.html
    [132] Kumar A, Xu J. Sketch guided sampling-using on-line estimates of flow size for adaptive data collection. Proceedings of 25th IEEE International Conference on Computer Communications 2006 (INFOCOM 2006). Barcelona: IEEE Press, 2006. 1-11.
    [133] Keys K, Moore D, Estan C. A robust system for accurate real-time summaries of internet traffic. Proceedings of the 2005 ACM SIGMETRICS international conference. NewYork: ACM, 2005. 85-96.
    [134] Zhao Q, Xu J, Kumar A. Detection of super sources and destinations in high-speed networks: algorithms, analysis and evaluation. IEEE Journal on Selected Areas in Communications, 2006, 24(10): 1840-1852.
    [135] Zeng Z, Veeravalli B. On the Design of Distributed Object Placement and Load Balancing Strategies in Large-Scale Networked Multimedia Storage Systems. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(3):369-382.
    [136] Ostrowski K, Birman K, Dolev D. Live Distributed Objects: Enabling the Active Web. IEEE Internet Computing, 2007, 11(6):72-78.
    [137] Object Management Group. Common Object Request Broker Architecture, Revision3.1, 2008.
    [138]吴俊勇.基于JMS的电力市场支持系统数据通信的实现.计算机工程与应用,2007,43 (13):203-206.
    [139]李雅萍,杨尚森,李阳.CORBA技术在SCA系统中的应用.计算机工程与设计,2008,29(16):4200-4206.
    [140] Guan J H, Cheng T P. Distributed Object Technology-Based Updating Strategy for Component-Oriented Updating System. Proceedings of International Colloquium on Computing, Communication, Control, and Management, 2008 (CCCM '08). Guangzhou: IEEE Press, 2008, 533-537.
    [141] Bahreini K, Elci A. A New Software Architecture for J2EE Enterprise Environments via Semantic Access to Web Sources for Web Mining by Distributed Intelligent Software Agents. Proceedings of 32nd Annual IEEE International Computer Software and Applications 2008 (COMPSAC '08). Turku: IEEE Press, 2008, 902-907.
    [142]汪振东,孙明海,冯重熙.CORBA/SNMP网关上高效信息采集策略.清华大学学报,2007,47(4):568-572.
    [143]贺细平,朱幸辉.基于CORBA的大规模事务处理系统失效检测机制的实现.计算机应用,2008,28(7):1850-1853.
    [144] Laranjeiro N, Vieira M, Madeira H. Experimental Robustness Evaluation of JMS Middleware. Proceedings of IEEE International Conference on Services Computing, 2008 (SCC '08). Honolulu: IEEE Press, 2008, 119-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700