自然风作用下大跨钢桁拱桥刚性长吊杆减振措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国交通运输事业的迅速发展,高速铁路的大量建设,为了跨越江河天堑,作为其控制性工程的大跨度桥梁也大量出现。钢桁拱桥因其刚度相对较大,在铁路建设中也逐渐越来越多地使用。然而大跨度钢桁拱桥刚性长吊杆因其自身的特点对自然风作用较为敏感,容易发生风致振动破坏,故对其采取合理的减振措施对桥梁的运营安全有着重要意义。
     本文以京沪高铁某大桥为工程实例,对刚性长吊杆的减振措施进行了研究分析,主要工作如下:
     (1)对国内外的钢拱桥发展历史及自然风作用下发生风毁的拱桥进行了总结,简要介绍了风对桥梁结构的静力及动力作用,吊杆结构的弛振与涡激振动理论,以及结构减振措施的研究现状。
     (2)基于有限元理论利用ANSYS软件对该大桥建立全桥有限元模型,并进行全桥动力特性分析,建立节段模型计算出最长吊杆的基阶频率。
     (3)通过对对最长吊杆的风洞试验与理论分析,得出其在自然风作用下有发生弛振与涡振的可能性,并分析总结其风致振动的影响因素。比较分析了主动控制措施、改变气动外形方法、安装调质阻尼器方法和顺桥向不同位置增设拉杆的方法,对各种措施的减振效果进行了研究。结果表明各种措施都在一定程度上减小了吊杆的风致振动,对将来同类桥梁的吊杆结构设计具有一定的借鉴和指导意义。
With the booming development in transportation, a large number of High-speed railways are constructed in China. Long span bridges, as the controllable engineering for crossing rivers and natural chasm, appeared in abundance accordingly. More and more steel truss arch bridges are erected in railway construction as to their relatively greater stiffness. However, the characteristics of the slender suspender of long span steel truss bridge is more sensitive to the wind action, which is prone to occur wind-induced vibration. As a consequence, there is remarkable significance to adopt reasonable restriction measures for the bridge operational safety.
     In this thesis, taking a bridge in Beijing-Shanghai express railway as the project example, it studies the restriction measures for stiffening slender suspender, including following aspects:
     (1) This thesis is giving a summary of the history of steel arch bridges and the wind destroied arch bridges at home and abroad, which briefly introduces the static and dynamic wind effects on bridge structures, the theory of galloping and vortex-induced vibration of suspenders, and the current research situation in structure restriction measures.
     (2) The structural dynamic characteristics of the bridge are analyzed by using ANSYS to build the finite element model, and the longest suspender's frequencies are figured out with the segmental model on the basis of finite element theory. There is theory formula given to calculate the longest suspender's frequencies.
     (3) Wind tunnel test and theory analysis indicate the probability of galloping and vortex-induced vibration to the longest suspender. The wind-induced vibration influencing factors are analyzed and summarized. Then restriction measures are discussed such as implementing the active control methods, changing the aerodynamic shape, installing tuned mass damper (TMD), and setting longitudinal rod, of which the effects of vibration reduction are researched followed. Analysis results show that each measure can partly decrease the wind-induced vibration, which is instructive to the design of the similar suspender structure bridge in the future.
引文
[1]Wyatt T. A. Bridge Aerodynamic 50years after Tacoma Narrows-Part I:the Tacoma Narrows Failure and After.Journal of Wind Engineering and Industrial Aerodynamics,Vol.40,1992
    [2]Walshe D. E.& Wyatt T. A. Bridge Aerodynamic 50years after Tacoma Narrows-Part II:A New Discipline Word-wide. Journal of Wind Engineering and Industrial Aerodynamics, Vol.40,1992
    [3]项海帆.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005
    [4]李国豪.桥梁结构稳定与振动(修定版).第2版.北京:中国铁道出版社,2005
    [5]周远棣,徐君兰.钢桥.北京:人民交通出版社,2003
    [6]吴冲.钢桥.北京:人民交通出版社,2006
    [7]孙海涛.大跨度钢桁架搭桥关键问题研究.博士学位论文.同济大学.2006
    [8]钱冬生,夏建国,铁路钢桥——设计和制造.成都:西南交通大学出版社,1994
    [9]陈政清.桥梁风工程,北京:人民交通出版社,2002
    [10]埃米尔·希缪,罗伯特·H·斯坎伦.风对结构的作用——风工程导论.刘尚培,项海帆等译.上海:同济大学出版社,1992.
    [11]Strouhal.V. Uber eine besondere Art der Tonerregung, Ann. Physik (Leipzig),1873
    [12]Karman. Th. Uber den Mechanismus des Widerstandes den ein beweegter Korper in einen Flusslgkeit Erfahrt. Nachr Konigal. Gesellschaft,1912
    [13]白莱文斯R.D.流体诱发振动[M],吴恕三等译.北京:机械工业出版社,1983
    [14]Lienhard. J. H. Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders, Washington State University, College of Engineering, Research Division Bulletin 300,1966
    [15]胡雪莲.大跨度钢拱桥时域抖振分析.硕士学位论文.重庆大学,2005
    [16]马存明.流线型桥梁断面三维气动导纳研究.博士学位论文.西南交通大学.2007
    [17]丁浩江,何福宝,谢贻权等.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1987
    [18]晏致涛.大跨度中承式拱桥风致振动研究.博士学位论文.重庆大学.2006
    [19]南京大胜关大桥施工图设计文件.中铁大桥勘测设计院有限公司.2006
    [20]克拉夫与彭津著,王光远译.结构动力学.北京:科学出版社.
    [21]九江长江大桥技术总结.铁道部大桥工程局.武汉:武汉测绘大学出版社.1996
    [22]Carl. C. Ulstrup. Aerodynamic lessons learned from individual bridge members.Annals New York Academy of sciences.1980,265-281
    [23]詹昊.钢桁拱桥吊杆涡激振动仿真分析.博士学位论文.华中科技大学.2009
    [24]陈政清,刘慕广.拱桥刚性吊杆风振问题及其对策.第十八届全国桥梁学术会议论文集(下册).2008
    [25]全涌,顾明.方形断面高层建筑的气动阻尼研究[J].工程力学,2004
    [26]马存明,廖海黎,郑史雄.H型截面吊杆气动性能的风洞试验.中国铁道科学.2005
    [27]陈政清,刘慕广.H型截面细长杆件颤振稳定性试验研究.空气动力学,2009
    [28]詹昊,方秦汉.钢桁拱桥吊杆涡激振动仿真分析.中国铁道科学.2009
    [29]高宗余,李龙安,方秦汉,卫军.钢桁拱桥吊杆风致振动研究.武汉理工大学学报(交通科学与工程版).2007.Vol.31:281-284
    [30]李龙安,何友娣等.南京大胜关大桥吊杆风致振动的计算与控制方法研究.第十三届全国结构风工程学术论文集.大连.2007
    [31]余岭.九江长江大桥三大拱吊杆风致振动试验研究.长江科学院院报,1995,12(3):53-60
    [32]余岭,王晶.用调质频阻尼器抑制九江长江大桥吊杆风致振动.长江科学院院报,1996,13(4):45-53
    [33]余岭,顾金钧,汪正兴等.大型桥梁吊杆涡振试验研究.机械强度,1996,18(4):16-20
    [34]顾金钧,赵煜澄,邵克华.九江长江大桥应用新型TMD抑制吊杆涡振.土木工程学报.1994,27(3)
    [35]邓见,任安禄,邹建锋.方柱绕流及涡致振动数值模拟.浙江大学学报(工学版).2005,39(4)
    [36]曹丰产,项海帆.低雷诺数下方柱和圆柱意见致振动的数值分析.同济大学学报,1998,26(4):382-386
    [37]曹丰产,项海帆.圆柱非定常绕流及涡激振动的数值计算.水动力学研究与进步(A辑),201,16(1)
    [38]朱超.大跨度拱桥H型吊杆弛振性能研究.硕士学位论文.西南交通大学.2008
    [39]Son. J. S., Hanratty T. J. Numerical solution for the floes around a cylinder at Reyonds number of 40,200 and 500. Journal of Fluid Mechanics,1969,35.
    [40]罗奇PJ.计算流体力学.钟锡昌,刘学宗译.北京:科学出版社,1983
    [41]Tamura T. Relability on CFD estimation for wind-structure problems Journal of Wind Engineering and Industrial Aerodynamics.1999,81:117-143
    [42]Zhou C. Y., So R. M., Lam K. Vortex-induced vibration of an elastic circular cylinder. Journal of Fluids and Structures.1999 13(2) 165-189
    [43]Tetsuro Tamura, Tetsuya Miyagi. The effect of turbulence on aerodynamic forces on a square cylinder sith various corner shapes. Journal of Wind Engineering and Industrial Aerodynamics.1999,83:135-145
    [44]Francis Mather, Larry E. Writing Aerodynamic Response of Long H-section.Journal of the structure Division.1980,V106,183-198
    [45]Kbbo Y, Sakurai K, Azuma S. Aerodynamic characteristics of H-shaped section cylinder in laminar and turbulent flows. Memoirs of the Kyushu Institute of Technolegy, Engineering, n10,1980,1-14
    [46]JTG/T D60-01-2004,公路桥梁抗风设计规范.
    [47]南京长江第三大桥初步设计桥位风速观测及设计风速论证.江苏省气象研究所,2002.8
    [48]TB10002.2-2005,铁路桥梁钢结构设计规范.
    [49]欧进萍.结构振动控制—主动、半主动和智能控制.北京:北京科学出版社,2003
    [50]李宏男,李忠献等.结构振动与控制.北京:中国建筑工业出版社,2005
    [51]Housner G W, Bergman L A, Caughey T K. Structural Control:Past, Present, and Future[J].J of Engineering Mechancis,1997,123(9):897-971
    [52]王肇民.高耸结构振动控制.上海:同济大学出版社,1996
    [53]周友权.基于TMD的斜拉桥钢塔涡振控制研究.硕士学位论文.西南交通大学.2006
    [54]刘志文,杨阳,陈政清等.桥梁结构抗风设计中的涡激振动问题.第十八届全国桥梁学术会议论文集(下册).2008
    [55]西南交通大学风工程试验中心.京沪高速南京大胜关大桥吊杆减振制振气动措施风洞试验研究.成都:2006
    [56]项海帆,陈艾荣,顾明.调质阻尼器对桥梁涡激共振的抑制.同济大学学报,1994,22(2)
    [57]林均岐,王云剑.调谐质量阻尼器的优化分析.地震工程与工程振动,1996,16(1)
    [58]Grandal, S.H., Random Vibration in Mechanical System, Academic Press, 1963
    [59]邵克华,赵煜澄,顾金钧.九江桥三大拱吊杆抑制涡振的新型TMD.桥梁建设,1993,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700