浮体二阶非线性水弹性力学分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮体水弹性力学将浮体结构力学和浮体水动力学有机地结合起来,为评估柔性浮
    体结构的总体性能提供了一个更具一致性和合理性的方法。水弹性理论至今已发展了
    20多年,着重研究线性问题(Bishop & Price,1979;Wu,1984;杜双兴,1996;王大
    云,1996)。线性理论着重研究小运动浮体及在流体中的结构频率特征处于波频范围
    内或大于波频频段的弹性体。在高海况条件下浮体作大幅运动时其刚体运动引起的二
    阶力及瞬时湿表面变化引起的二阶流体力可能对浮体产生较大的非线性影响。当海洋
    浮体的尺度大为增加,远远超过常规船舶的尺度时,他们的低频特征十分显著,在波
    浪中的运动也会不同于一般的浮体。在这些情况下,就有必要研究二阶及高阶波浪力
    对浮体水弹性响应的影响。本文的目的之一就是建立浮体二阶水弹性力学分析方法,
    分析上述二阶波浪力对浮体水弹性分析的影响。基于多类浮体都要靠锚泊系统定位,
    而关于锚泊系统与可变形体的相互作用尚缺乏深入的研究,本文的目的之二就是建立
    锚泊浮体的一阶及二阶水弹性分析理论并开发相应的计算程序。
     基于上述两个目的,作者在完成本文的过程中所做的主要工作包括:
     (1)对二维与三维水弹性力学理论及与二阶波浪力相关的分析方法的国内外研
    究情况作了简要的回顾。
     (2)简要介绍了三维线性水弹性力学的基本理论和分析方法。
     (3)在考虑一阶速度势和一阶响应对二阶作用力影响的情况下,推导了带航速
    浮体三维非线性水弹性分析中二阶水动力系数的广义形式,建立了航行浮体三维频域
    非线性水弹性分析理论。
     (4)讨论了锚链系统的非线性特征,分析了对称式布置锚链系统的线性化方法,
    推导了重力式锚链和张力式锚链的锚链恢复力刚度矩阵。
     (5)推导得出了锚泊浮体所受水动力的广义形式,建立了锚泊浮体三维线性及
    非线性频域水弹性力学运动方程。在航行浮体线性水弹性力学分析程序(吴有生、杜
    双兴,1992)的基础上开发了锚泊浮体线性水弹性分析程序,使得只需简单的输入锚
    链参数即可考虑锚泊系统的影响。对锚泊长方箱形的浮动均匀梁(后文简称浮式箱梁)
    模型进行了线性水弹性分析预报。对预报结果进行了较为详细的分析讨论,得出了一
    些可供工程应用参考的结论。
     (6)开发了锚泊浮体三维非线性水弹性分析程序,并对锚泊浮式箱梁模型进行了
    
    
     摘要
    二阶水弹性分析预报,给出了浮式箱梁在不规则波中的和频和差频响应主坐标,计算
    了位移、弯矩、剪力的时间响应和锚链系泊力,并与线性水弹性分析结果进行了比较。
    详细讨论了和频和差频响应对总响应的影响和不同二阶力对总响应的贡献,以及不同
    刚体模态和弹性模态间的耦合作用问题。
     本文得出的主要结论有:
     (l)对于对称式布置的锚链系统,在进行水动力或水弹性分析时,锚链的作用可
    以近似作线性化处理,可以预先求解锚泊系统的线性刚度矩阵,将其并入水动力或水.
    弹性分析的总恢复力矩阵。
     (2)在波频接近于浮体在水中的湿固有频率时会出现谐振现象。所以当浮体结构
    较柔,也即其固有频率较低而处于波频范围内时必须考虑浮体的水弹性响应。
     门)对于系泊浮体,在水弹性响应的刚体模态即耐波性响应会出现低频谐振现象,
    而且会跟后面的弹性模态产生耦合而影响结构的安全(如疲劳寿命),在系泊系统设
    计阶段必须对这些现象引起注意。
     门)浮式箱梁二阶水弹性分析的和频和差频主坐标与一阶主坐标类似,在各波向 学-
    角时均会出现谐振现象,且谐振点的出现位置与一阶主坐标的分析结果一致。
     (5)二阶力对浮体的运动有影响,受二阶力影响较大的为纵荡、横荡、垂荡、艄
    摇、二节点垂弯、四节点垂弯、一节点扭转、二节点扭转等运动模态,受影响较小的
    是横摇、纵摇、各阶水平弯曲、三节点垂弯和五节点垂弯等运动模态,总的规律是二
    阶力对纵荡、横荡和脂摇以及与他们无耦合效应的运动模态的贡献较大,而对与他们
    有耦合效应的运动模态的贡献较小。另外,总体上差频的影响大于和频。
     瞩)浮体的垂向位移、弯矩和剪力受H阶力的影响都比较大,在波向角p司35 f
    “和p=1“”时,二阶非线性的分析结果的最大值一般比线性分析的结果要大。
     门)锚链力在波向角p=135”和p叫旷 时,二阶非线性效应不可忽略,其分析
    结果比线性结果显著增大。
     (8)在高海况下,二阶力的主要贡献是刚体的二阶转动引起的二阶力,其它二阶
    力的影响则较小。
Hydroelasticity theories of ships and floating marine structures, which embody the full
     complexities of the dynamics of the structure concerned and the fluid around it, provide more
     consistent and more rational approaches for the assessment of the overall behavior of a
     flexible marine structure. The existing theories have been developed for more than 20 years,
     however mainly focus on linear problems (Bishop and Price, 1979; Wu, 1984; Du, 1996;
     Wang, 1996). The linear theories are suitable for investigating a floating body with small
     amplitude of motion or an elastic structure in waves with resonant frequencies within or
     higher than the range of the wave frequencies. When responding to high waves with large
     amplitude, the floating structure may apparently suffer from non-linear responses due to the
     second order hydrodynamic forces induced by the rigid body rotations of motion and the
     effect of the instantaneous wetted surface. For a marine structure with the scale much larger
     than a conventional ship, its resonant frequencies in water will be very low, and its behavior
     in waves will be quite different than a usual vessel. In these circumstances it is obviously
     necessary to investigate the influence of the second and higher order hydrodynamic actions
     on the hydroelastic responses of a floating structure. The first objective of the present thesis
     is therefore to establish a second order hydroelasticity theory and the corresponding
     numerical method for investigating the effect of the above mentioned second order wave
     forces on the structural behavior of the floating body.
     Most of the floating marine structures are kept stationary by a mooring system.
     However there has still been a lack of deepening study about the interaction between a
     慺lexible?structure in waves and its mooring system. The second objective of the present
     thesis is to develop the second order hydroelastic analysis method and the corresponding
     computer program for predicting the responses of a moored flexible floating structure to
     waves.
     To achieve these two objectives, the following efforts have been made and the results are
     presented in the present thesis. These include:
     (1) The existing two and three dimensional hydroelasticity theories and the analysis
     methods for the second order wave forces are briefly reviewed.
     (2) The fundamental contents and the analysis methods of three-dimensional
     hydroelasticity theories are briefly introduced.
     (3) Under the condition that only the contributions of the first order velocity potentials
     and responses to the second order hydrodynamic forces are considered in the analysis, a
     frequency domain non-linear three-dimensional hydroelasticity theory for a floating body
     either traveling or stationary in waves is presented. The general formulations of the second
     order hydrodynamic coefficients appearing in the non-linear three-dimensional hydroelastic
     equations of motion of the floating body are also included.
     (4) The non-linear characteristics of the mooring system are discussed. The linearized
     III
    
    
    
    
    
    
    
    
    
     Abstract
    
     representations of the mooring effects, together with the stiffness matrices respectively for
     symmetrically disposed tensional and gravitational mooring systems are introduced.
     (5) The linear and non-linear three-dimensional hydroelastic equations of motion of the
     moored floating system in frequency domain are presented. Based on the computer
     program suite of linear three-dimens
引文
1) Aksu, S., Bishop, R.E.D., Price, W.G. and Temarel, P., 1990, On the behavior of a product carrier in ballast traveling in a seaway, Trans. RINA, W2
    2) Ankudinov, V.K., 1969, Non-periodical forces and moments on a ship in waves, International Shipbuilding Progress, Vol.16, No.179
    3) Aranha, J.A.P., 1994, A formula for "wave damping" in the drift for a floating body, Journal of Fluid Mechanics, No. 275, pp147-155
    4) Aranha, J.A.P., Pernandes, A.C., 1995, On the second-order slow drift force spectrum, Applied Ocean Research, Vol. 17, No 5, pp311-313
    5) Bao, W. and Kinoshita, T. J. 1993, Society of Naval Architects of Japan, 174: 193-203
    6) Belik, O., Bishop, R.E.D. and Price, W.D., 1980, On the slamming response of ships to regular head waves, Trans. RINA 122, pp325-337
    7) Bessho, M., 1997, On the fundamental singularity in the theory of ship motion in a seaway, Memoirs of the Defense Academy Japan, Vol.XVII, No.8, pp95-105
    8) Betts, C.V., Bishop, R.E.D. and Price, W.G., 1977, The symmetric generalised fluid forces applied to a ship in a seaway, Trans. RINA 199, pp265-278
    9) Bishop, R.E.D. and Price, W.G., 1977, The generalized antisymmetric fluid forces applied to a ship in a seaway, International Shipbuilding Progress, Vol.24, pp.3-14
    10) Bishop, R.E.D., Price, W.G. and Tarn, P.K.Y., 1978, On the dynamics of slamming, Trans. RINA 120, pp259-280
    11) Bishop, R.E.D., Price, W.G. and Temarel, P., 1980, A unified dynamic analysis of antisymmetric ship response to waves, Suppl. Papers RINA, 122, pp349-365
    12) Bishop, R.E.D., Price, W.G. and Temarel, P., 1991, A theory on the loss of the MV Derbyshire, Trans. RINA 133,pp389-453
    13) Bishop, R.E.D., Price, W.G. and Wu, Yousheng, 1986, A general linear hydroelasticity theory of floating structures moving in a seaway. Phil. Trans. Of Royal Society, London, A316
    14) Bortcher, H., 1989, Simulation of ship motions in a seaway, Report 498 of the Instiruter fur Schiffbau der Unifersitat Hanburg
    15) Bourianoff, G.L. and Penumalli, B.R., 1977, Numerical simulation of ship motion by Eulerian hydrodynamic techniques, Second International Conference on Numerical Ship Hydrodynamics, University of California, Berkeley
    16) Bowers, E.C., 1976, Long-period oscillations of moored ships subject to short-wave seas, Trans, Roy. Inst. Nav. Arch., London, Vol.118, pp181-191
    17) Che, X.L., Riggs, H.R., Ertekin, R.C., Wu, Yousheng and Wang, M.L., 1992, Two-dimensional analysis of prying response of twin-hull floating structures, Proceeding of Second International Offshore & Polar Engineering Conference, ISOPE'92, June
    18) Clarke, J.D., 1986, Wave loading in warships, Advances in Marine Structures, Ed.by C.S. Smith and J.D. Clarke, Elsevier Applied Science Publishers, pp1-25
    19) Dalzell, J.F. and Kim, C.H., 1976, Analytical investigation of the quadratic frequency response for added resistance, Report SIT-DL
    20) Dev, A.K., Pinkster, J.A., 1995, Viscous mean drift forces on moored semi-submersible, 5th International Offshore & Polar Engineering Conference
    21) Dong, Y. and Lin W., 1992, Hydroelasticity and wave loads for hullform ship with shallow draft, J.S.R.
    
    
    22) Du, S.X., and Ertekin, R.C., 1991, Dynamic response analysis of a flexibly joined Multimodule very large floating structure, OCEANS'91, USA
    23) Eatock-Taylor, R., Huang, J.B., 1997, Semianalytical formulation for second-order diffraction by a vertical cylinder in bi-chromatic waves, Journal of Fluid and Structures, 11(5)
    24) Emmerhoff, O.J. And Sclavounos, P.O., 1992, Jouranl of Fliud and Mechanics, 242: pp31-50
    25) Emmerhoff, O.J. and Sclavounos, P.O., 1996, The simulation of slow-drift motions of offshore structures, Applied Ocean Research, No.18
    26) Endo, H. and Yoshida, K., 1998, Timoshenko Equation of Vibration for Plate-like Floating Structures, Hydro-elasticity in Marine Technology, pp255-264
    27) Faltinsen, O.M. and Loken, A.E., 1978, Drift forces and slowly varying forces on ships and offshore structures in waves, Nowegian Maritime Research, No. 1
    28) Faltinsen, O.M., 1996, Water impact and hydroelasticity, Proceeding of Seminar on hydroeiasticity, Trondheim, Norway
    29) Faltisen, O.M. and Michelsen, F., 1974, The motions of large structure in waves at zero Froude number, Symposium on the Dynamics of Marine Vehicles and Structures in Waves, London
    30) Fu, Yuning, Price, W.G. and Temarel, P., 1987, the 'dry and wet' towage of a jack-up in regular and irregular waves, Trans. RINA, 129: pp149-159
    31) Fukasawa, T., 1991, Hydroelastic response of membrane structure in waves, Dynamics of Marine Vehicles and Structures in Waves, Elsevier Science Publishers B.V.
    32) Gerritsma J. and Beukelman W, 1971, Analysis of the resistance increase in waves of a fast cargo ship, Report No.334, Laboratorium for Scheepsbouwkunde, Technical University of Delft
    33) Goo, J.S. Lee, C.H., et al., 1996, Steady drift forces on very large offshore structures supported by multiple floating bodies, Fourth Pacific/Asia Offshore Mechanics Symposium, Pusan, Korea
    34) Gu M.X., Wu, Y.S. and Xia, J.Z., 1989, Time domain analysis of Non-linear hydroelastic response of ships, Fourth PRADS, Varna, Bulgaria
    35) Hamamoto, T, Hayashi, T, et al., 1996, 3D BEM-FEM coupled hydroelastic analysis of irregular shaped, module linked large floating structures, 6th International Offshore & Polar Engineering Conference, 26-31 May, Los Angeles, USA.
    36) Hamamoto, T, Suzuki, A. and Fujita, K., 1997, Hybrid Dynamic Analysis of Large Tension Leg Floating Structures Using Plate Elements, 7th ISOPE, Vol.1, pp285-292
    37) Hamamoto, T., Suzuki, A., Tsujioka, N. and Fujita, K., 1998, 3D BEM-FEM Hybrid Hydroelastic Analysis of Module Linked Large Floating Structures Subjected to Regular Waves, 8th ISOPE, Vol.44, No.450,pp321-339
    38) Haskind, M.K., 1946, The oscillation of a ship in still water, Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk 1: pp23-34
    39) Havelock, T.H., 1942, The drifting force on a ship among waves, Philosophical Magazine, Vol.33
    40) Heller, S.R. and Abramson, H.N., 1959, Hydroelasticity: A new naval science, J.Am.Soc.Naval Engns., Vol.71 (2) , pp205-209
    41) Hermans, A. J. and Sierevogel L.M., 1996, A discussion on the second order wave forces and wave drift damping, Applied Ocean Research, No. 18
    42) Hermans, A. J., 1998, A Boundary Element Method to describe the Excitation of Waves in a Very Large Floating Flexible Platform, Hydroelasticity in Marine Technology, pp69-76
    43) Hermundstad, O.A., Aarsns, J.V. and Moan, T, 1999, Linear hydroelastic analysis of high-speed catamarans and monohulls, Journal of Ship Resear, 43:1, pp48-63.
    44) Hsu, F.H. and Blenkarn, K.A., 1970, Analysis of peak mooring force caused by slow vessel drift oscillation in random seas, Offshore Technical. Conference, Paper No. O.T.C.1159, Houston
    
    
    45) Iijima, K., Yoshida, K. and Suzuki, H., 1997, Hydrodynamic and Hydroelastic Analyses of Very Large Floating Structures in Waves, 14th OMAE, Vol. 6, pp139-145
    46) Ikoma, K., Maeda, H., Masuda, K. and Rheem, C. K., 1998, Hydroelastic response of pontoon type very large floating offshore structures (The 4th report, Estimation method of slowly varying wave drift force and fender reaction force), Journal of the Society of Naval Architects of Japan, 184: pp291-296
    47) Inglis, R.B. and Price, W.G., 1980, Comparison of Forward speed upon three dimensinal hydrodynamic forces, Journal of the Society of Naval Architects of Japan, Vol.166, pp. 187-205
    48) Insik Chun, 1994, For the Good Time of Floating Breakwaters in Korea-A Numerical and Experimental Study, Proceedings of International Workshop on Floating Structures In Coastal Zone, Japan.
    49) Joosen, W.P.A., 1966, added resistance of ships in waves, Proceedings of the sixth Symposium On Naval Hydrodynamics
    50) Juncher, Jensen, 1994, Non-linear Wave Response Predictions in Stochastic Seaways, DCAMM, Anniversary Vol.15
    51) Kagemoto, H., Fujino, M. and Zhu, T., 1996, On the Estimation Method of Hydrodynamic Forces Acting on a Huge Floating, JSNA, Vol.179, pp173-182
    52) Kaplan, P. and Sargent, T.P., 1976, Motions of offshore structures as influenced by mooring and positioning system, BOSS'76, Tronelhaim
    53) Kashiwagi, M., 1998a, A Hierarchical Interaction Theory for Wave Forces on a Large Number of Elementary Bodies of a SemisubType VLFS, Proceedings 14th Ocean Engineering Symposium, pp425-431
    54) Kashiwagi, M., 1998b, A B-spline Galerkin scheme for calculating hydroelastic response of a very large floating structure in waves, Journal of Naval Architects of Japan, 180: pp373-381
    55) Kashiwagi, M., 1998c, A B-Spline Galerkin Scheme for Calculating the Hydroelastie Response of a Very Large Floating Structure in Waves, Journal of Marine Science and Technology, Vol.R, No.1, pp37-49
    56) Katory M., Liu, C.F., 1992, Hydroelastic performance predictions for three-ships, Transaction of the Royal Institution of Naval Architects, Vol.134
    57) Kean, A.J. Temarel, P., Wu, X.J. and Wu, Y.S., 1991, Hydroelasticity of nonbeamlike ships in waves, The Dynamics of Ships, The Royal Soc. London, pp153
    58) Kim, J.W. and Ertekin R.C., 1998, An Eigenfunction-expansion Method for Predicting Hydroelastic Behavior of a Shallow-draft VLFS Hyroelasticity in Marine Technology, pp47-60
    59) Kim, K.J. and Kim, M.H., 1997, Wave-current-body interaction by a time-domain high-order boundary element method, Proceedings 7th International Offshore and Polar Engineering Conference, pp107-115
    60) Kim, Y., Kring, D. C. and Sclavounos, P.D., 1997, Linear and nonlinear interactions of surface waves with bodies by a three-dimensional Rankine panel method, Applied Ocean Research, 19:5-6, pp235-249
    61) Kin, J. W. and Webster, W. C., 1996, The Drag of an Airplane Taking off from a Floating Runway, VLFS, pp235-241
    62) Kinoshita, T. and Bao, W., 1998, Third-order harmonic wave forces acting on a truncated circular cylinder, Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Paper OMAE'98/OFT-0473, Lisbon, Porugal
    63) Kinoshita, T. Bao, W. & Sunahara, S., 1994, Wave drift damping of multiple vertical cylinders: prediction and measurement, Proceedings of International Workshop on Floating Structures In Coastal Zone, Yokosuk, Japan
    64) Korvin-Kroukovsky, V.B. and Jacobs, W.R., 1957, Pitching and heaving motions of a ship in regular waves, Transaction of SNAME, Vol.65, pp590-632
    
    
    65) Kyuzuka, Y., 1982, Experimental study on second-order forces acting on a cylindrical body in waves, 14 Symp. On Naval Hydrodynamics, Michigan, U.S.A., Session III and IV, Preprints pp73-136
    66) Li, W. and Williams, A. N., 1998, Second-order bi-chromatic wave loads on a semi-immersed horizontal rectangular cylinders, Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Paper OMAE 97, Yokohama, Japan
    67) Lin, H., Yim, S.C.S., 1998, Experimental Investigation of Stability and Bifurcation of Nonlinear Moored Structural Responses, Proceeding of 8th International Offshore and Polar Engineering Conference, Montreal, Canada
    68) Lin, X. and Takaki, M., 1998, A B-spline element method for predicting the hydroelastic response of a very large floating structure in waves (in Japanese), Journal of Society of Naval Architects of Japan, 183 :PP219-225
    69) Liu, X.R., Ertekin, C., Riggs, H.R. and Xia, D., 1998, Mean wave drift loads on connected multiple semi-submersibles, Proceeding 17th Internaional Conference on Offshore Mechanics and Arctic Engineering, Paper OMAE'98/OFT-0320, Lisbon, Portugal
    70) Lundgren, J., Price, W.G. and Wu, Y.S., 1988, a hydroelastic investigation into the behaviour of a floating ‘dry' dock in waves, Spring Meeting, RINA, London
    71) Ma, N. and Hirayama, T., 1997, Hydroelastic Responses of Two Types of Very Large Floating Structure, 16th OMAE, Vol.6, pp211-218
    72) Maeda, H., Masuda and Ikoma, T., 1997, Hydroelastic response of pontoon type very large floating offshore structures (The 3rd report), The effects of 2nd-roder wave loads, Journal of the Society of Naval Architects of Japan, 182: pp319-328
    73) Maeda, H., Masuda, K, and Ikoma, T, 1996, Hydroelastic responses of pontoon type very large floating offshore structure, Proceedings 15th international Conference on Offshore Mechanics and Arctic Engineering, 18-20 June, Florence, Italy.
    74) Maeda, H., Masuda, K., Miyajima, D. and Ikoma T, 1995, Hydroelastic Responses of Pontoon Type Very Large Floating Offshore Structure, JSNA, Vol.178, pp203-212
    75) Markiewicz, M., Letkowski, P. and Mahrenholtz, O., 1999, Third-order hydrodynamic loads on an oscillating vertical cylinder in water, Journal of Offshore Mechanics and Arctic Engineering, 121:1, pp16-21
    76) Marthinsen T., 1983, Calculation of slowly varying drift forces, Applied Ocean Research, Vol.5, No.3
    77) Maruo, H., 1957, The excess resistance of a ship in rough seas, International Shipbuilding Progress, Vol.4, No.35
    78) Maruo, H., 1960, The drift of a body floating on waves, J.S.R., Vol.4, No.3
    79) Masuda, K., Miyazaki, T. and Takamura, H., 1998, Study on Estimation Method for Motions and Mooring Tensions of Moored Floating Structure in Offshore Area Under Tsunami, Proc. 14th Ocean Engineering. Symposium, pp 161-166
    80) Matsui, T, 1986, Analysis of slowly varying wave drift forces on compliant structure, OMAE, Vol. 1
    81) Matsui, T, Lee, S.Y. and Sano, K. J., 1991, Journal of the Society of Naval Architects of Japan, 170: pp277-287
    82) Mavrakos, S.A., 1995, Mean drift loads on multiple vertical axis-symmetric bodies in regular waves, 5th International Offshore & Polar Engineering Conference
    83) Miao, Q.P., Du, S.X., Dong, S.Y. and Wu, Y.S., 1996, Hydrodynamic Analysis of A Moored Very Large Floating Structure. International Workshop on Very Large Floating Structures VLFS'96. pp201-208, Hayama, Japan
    84) Molin, B., 1979, Second-order diffraction loads upon three-dimensional bodies, Proc. of Second Int. Conf. On the Behaviour of Offshore Structures, Vol.1
    
    
    85) Murai, M., Kagemoto, H. and Fujino, M., 1997, On the prediction of hydroelastic behaviors of a huge floating structure in waves (2nd report) (in Japanese), Journal of the Society of Naval Architects of Japan, 181: pp199-210
    86) Murai, M., Kagemoto, H. and Fujino, M., 1998, On the Predictions of Hydroelastic Behaviors of a Huge Floating Structure in Waves-3rd Report, Journal of the Society of Naval Architects of Japan, Vol.183
    87) Nagata, S., Yoshida, H., Fujita, T. and Isshiki, H., 1997a, The Analysis of the Wave-Induced Responses of an Elastic Floating Plate, OMAE, Vol.6, pp163-169
    88) Nagata, S., Yoshida, H., Isshiki, H. and Ohkawa, Y., 1997, Motions of a very large floating elastic plate in waves (in Japanese), Journal of the Society of Naval Architects of Japan, 182: pp285-294
    89) Nagata, S., Yoshida, H., Isshiki, H. and Ohkawa, Y., 1997b, Motions of a very large elastic plate in waves, JSNA, Vol.182, pp285-294
    90) Newman J.N., 1967, The drift force and moment on ships in waves, J.S.R., Vol.11, No.1
    91) Newman J.N., 1974, Second order slowly-varying forces on vessels in irregular waves, Symposium on the Dynamics of Marine Vehicle and Structures in Waves, London
    92) Newman, J. N., Maniar, H. D. and Lee, C.H., 1996, Analysis of Wave Effects for Very Large Floating Structures, VLFS, pp135-142
    93) Newman, J.N., 1978, The theory of ship motions, Advances in Applied Mechanics, Vol.18, pp221-285
    94 ) Ohkusu, M. and Namba, Y., 1998, Hydroelastic Behavior of Floating Artificial Islands, JSNA, Vlo. 183
    95) Ohmatsu, S. and Ohta, M., 1998, Time Domain Analysis of Hydroelastic Behavior of VLFS in Waves, Proceedings 14th Ocean Engineering Symposium, pp483-486
    96) Ohmatsu, S., 1997, Numerical Calculation of Hydroelastic Responses of Pontoon Type VLFS, Journal of the Society of Naval Architects of Japan, Vol.182, pp329-340
    97) Ohta, M., Ikegami, K. and Yamaguchi, Y, 1998, Experimental Study on Elastic Behavior of a Huge Floating Structure in Waves, Transaction of The West-Japan Society of Naval Architects, No. 95, pp99-108
    98) Pierson, W.J.jr, 1955, Wind fenerated gravity waves. Advances in Geophysics, Vol.2 Academic Press, New York
    99) Pinkster, J.A. and Van ortmerssen, G., 1977, Computation of the first and second order wave forces on bodies on bodies oscilating in regular waves, Second International Conference On Numerical Ship Hydrodynamics, University of California, Berkeley
    100) Pinkster, J.A., 1976, Low frequency second order wave forces on vessels moored at sea, th Symposium on Naval Hydrodynamics University College, London
    101) Price, W.G. and Temarel, P., 1982, The influence of hull flexibility in the anti-symmetric dynamic behaviour of ships in waves, International Shipbuilding Progress, Vol.29
    102) Price, W.G. and Wu, Y.S., 1985, Structural responses of a SWATH of multi-hulled vessel travelling in waves, Int. Conf. On SWATH ships and Advanced Multi-hulled Vessels, RINA, London
    103) Price, W.G. and Wu, Y.S., 1989, The influence of non-linear fluid forces in the time domain responses of flexible SWATH ships excited by a seaway, OMAE'89, VOL.2, pp125-135
    104) Price, W.G., Salas-Inzunza, M. and Temarel, P., 1996, Behavior of large type structures in waves, VLFS,pp173-182
    105) Price, W.G., Temarel, P. And Wu, Y.S., Structural responses of a SWATH or multi-dull vessel travelling in waves, International Conference On SWATH ships and advanced Multi-hulled Vessels, RINA, London, 1985
    106) Proc. of 1st Int. Workship on VLFS, 1991,Honolulu, Hawaii, USA
    107) Proc. of 2nd Int. Workship on VLFS, 1996, Hayama, Japan
    108) Proc. of 3rd Int. Workship on VLFS, 1999, Honolulu, Hawaii, USA
    
    
    109) Qiu, Q. and Lin, J.R., 1993, A toe-dimensional hydroelasticity theory of ships and its application, Proceedings of ICAHE'93, Beijing, China
    110) Riggs, H. R., Ertekin, R. C. and Mills, T. R. J., 1998, Impact of connector stiffness on the response of a multi-module mobile offshore base, Proceedings of the 8th International Offshore and Polar Engineering Conference, 1: pp200-207
    111) Riggs, H. R., Ertekin, R. C. and Mills, T. R. J., 1999, A comparative study of RMFC and FEA models for the wave-induced response of a MOB, Proceedings of the Third International Wordshop on Very large Floating Structure (VLFS1999) , II: pp622-631
    112) Riggs, H.R. and Ertekin, R.C., 1991, Approximate methods for dynamic response of multi-module floating structures, Proceedings of 1st International Workshop on Very Large Floating Structures, VLFS'91
    113) Robertys, J.B., 1981, Nonlinear analysis of slow drift oscillations of moored vessels in random seas, J.S.R., Vol.25, No.2
    114) Salvesen, N., 1974, Second order steady state forces and moments on surface ships in oblique regular waves, Symposium On the Dynamics of Marine Vehicles and Structures in waves, London
    115) Salvesen, N., Tuck, E.O. and Faltinsen, O., 1970, Ship motions and sealoads, Transaction of the Society of Naval Architecture and Marine Engineers, Vol.78, pp250-287
    116) Sathyapal S., Bhattacharyya S. K. and Vendham C. P., 1999, Analysis of second steady hydrodynamic forces on floating bodies in regular waves by finite element method, Proceedings of 9th International Offshore and Polar Engineering Conference (ISOPE'99) , Brest, France.
    117) Schlachter, G., 1989, Hull girds loads in a seaway including non-linear effects, Schiffstechnik, Vol.36, pp.169-180
    118) Seto, H. and Ochi, M., 1998, A hybrid element approach to hydroelastic behavior of a very large floating structure in regular waves, Proceedings of the 2nd International Conference on Hydroelasticity in Marine Technology
    119) Soding, H., 1982, leckstabilitate in seegang, Report 429 of the Institute fur Schiffbau Hamburg
    120) Sun, B.Q. and Gu, M.X., 1985, A numerical solution for the diffraction of second-order group-induced waves by a floating body, th International Conf. On Numerical Ship Hydrodynamics, Washington, D.C.
    121) Suyehiro, K., 1924, On the drift of ships. Caused by Rolling among wanves, trans. INA, Vol.180
    122) Takaki, M. and Gu, X., 1996, Motions of a Floation Elastic Plate in Waves, Journal of the Society of Naval Architects of Japan, Vol.180, pp331-339
    123) Tanizawa, K. and Naito, S., 1997, A study on wave-drift damping by fully nonlinear simulation, 12th International Workshop on water waves and floating bodies
    124) Teng, B. and Kato, S., 1999, Amethod for second-order diffraction potential from an axisymmetric body, Ocean Engineering, 26:12, pp1359-1387
    125) Teng, B., 1998, Calculation of second-order steady potential, Proceedings 8th International Offshore and Polar Engineering Conference (ISOPE), Montreal, Canada
    126) Teng, B., Kato, S., Hoshino, K.., 1996, Prediction of wave drift damping by a higher order BEM, J Soc Naval Arch Japan, Vol.179, pp183-191.
    127) Timman, R. And Newman, J.N., 1962, The coupled damping coefficients of symmetric ships, J.S.R.,Vol.5, No.4
    128) Tsubogo, T., 1998, A basic investigation on deflection wave propagation and strength of very large floating structures (3rd report) (in Japanese), Journal of the Society of Naval Architects of Japan, 182:pp381-390
    129) Utsunomiya, T., Watanabe, E. and Eatock Taylor, R., 1998, Wave Response Analysis of a Box-Like VLFS Close to a Breakwater, 17th OMAE
    
    
    130) Wang, M.L., Du, S.X, Ertekin, R.C., 1991, Hydroelastic reponse and fatigue analysis of a multi-module very large floating structure, International Symposium on Fatigue and Fracture in Steel and Concrete Structures, Madras, India
    131) Watanabe, E, and Utsunomiya, T., 1996, Transient Response Analysis of a VLFS at Airplane langding, VLFS, pp243-247
    132) Watanabe, Y., 1938, Some Contributions to the theory of Rolling, Trans. INA, Vol.80
    133) Winkler, R.S., Seidl, L.H., Riggs, H.R., Ertekin, R.C., and Wilkins, G.A., 1990, The design and analysis of fery large floating structures (VLFS); Vol.1-Design. Rep. No. UHMOE-90105, Department Of Ocean Engineering, Univercity Of Hawaii
    134) Wu, C., Watanabe, E. and Utsunomiya, T., 1995, An eigenfunction expansion matching method for analyzing the wave-induced responses of an elastic floating plate, Applied Ocean Research, Vol.17, pp301-310
    135) Wu, Y.S., 1984, Hydroelasticity of floating boddies, Ph.D. Thesis, Brunei Univ., U.K.
    136) Wu, Y.S., 1990, A general interface boundary condition, Research Note, CSSRC
    137) Wu, Y.S., 1991, A modified Hydroelasticity theory and its application to long multi-body structures, CSSRC Reports
    138) Wu, Y.S., and Du, S.X., 1993, A fast evaluation method and a dynamic mode refinement method in hydroelastic analysis of marine structures, Selected Papers of the Chinese Society of Naval Architects and Marine Engineers, Vol.8
    139) Wu, Y.S., and Price, W.G., 1993, Advances in hydroelasticity of ships, Aero-hydroelasicity Devlopments and Applications, ed.E.J.Cui, Semological Press, Beijing.
    140) Wu, Y.S., Du, S.X., Riggs, H.R., Ertekin, R.C., 1993, Fluid-structure interaction analysis of very large floating structures, Aero-Hydroelasticity Developments and Applications, Seismological Press
    141) Wu, Y.S., Maeda, H. & Kinoshita, T, 1997, The second order hydrodynmic actions on a flexible body, Tokyo
    142) Wu, Y.S., Wang, D.Y., Riggs, H.R. and Ertekin, R.C. ,1991,Composite singularity distribution method with application to hydroelasticity, Proceedings of the First International Workshop on Very Large Floating Structures, Honolulu, Hawaii, USA, also Marine Structure, Vol.6, N0. 2&3, pp143-163
    143) Wu, Y.S., Xia, J.Z. and Du, S.X, 1991, Two engineering approaches to hydroelastic analysis of slender ships, Dynamics of Marine Structure, Vol.6, No.2&3, pp. 143-163
    144) Xia, J. and Wang, Z. 1996, Time-Domain Hydroelasticity Theory of Ships Responding to waves, Department of Naval Architecture and Offshore Engineering, DTU.
    145) Xia, J. and Wang, Z., 1997, Time domain hydroelasticity theory of ships responding to waves, Journal of Ship Research, 41:4, pp286-300
    146) Xia, J., Wang, Z. and Jensen, J.J., 1998, Non-linear wave loads and ship responses by a time-domain strip theory, Marine Structures, 11:3, pp101-123
    147) Yago, K. and Endo, H., 1996, On the hydroelastic response of box-shaped floating structure with shallow draft (Tank test with large scale mode) (in Japanese), Journal of the Society of Naval Architects of Japan, 180: pp341-352
    148) Yago, K., 1995, Forced Oscillation Test of Flexible Floating Structure and Hydrodynamic Pressure, Proceedings 13th Ocean Engineering Symposium, pp313-320
    149) Yamamoto, Y, Fujino, M., Fukasawa, T. and Ohtsubo, H., 1978, Slamming and whipping of ship among rough seas, Symp. Numerical Analysis of the Dynamics of Ship Structures, Association Technique Maritime at Aeronautique
    150) Yamamoto, Y, Sugai, K., Inoue, H. et al., 1986, Wave loads and response of ships and offshore structures from the viewpoint of hydroelasticity, Advances in Marine Structure, ed. C.S. Smith and J.D. Clarke, London, Elsevier
    
    
    151) Yamashita,S.,ltoh,A.and Kabaya,T.,1997,An Experimental Investigation to Wave Loads on a Mat-Like Floating Structure in Waves with Short Length,16th OMAE,Vol.6,pp241-248.
    152) Yasuzawa,Y.,Kagawa,k.,Kawano,D.and Kitabayashi,K.,1997,Dynamic response of a large flexible floating structure in regular waves,Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering,Yokoham,Japan,IV:pp187-194
    153) Yasuzawa,Y.,Kagawa,K.,Kawano,D.and Kitabayashi,K.,1997,Dynamic Response of a Large Flexible Floating Structure in Regular Waves,17th OMAE,Vol.6,pp187-194
    154) Yeung,R.W. and Kim,J.W.,1998,Structural Drag and Deformation of a Moving Load on a Floating Plate,Hydroelasticity in Marine Technology,pp77-88
    155) Yoshimoto,H.,Hoshino,K.,Ohmatsu,S.and Ikebuchi,T.,1996,Estimation of Slamming Load Acting on VLFS,VLFS,pp197-114
    156) Zhu,T,Kagemoto,H.and Fujino,M.,1997,On the estimation method of hydrodynamic forces acting on a huge floating structure(2nd report)(in Japanese),Journal of the Society of Naval Architects of Japan,182:pp273-283
    157) 陈徐均、孙芦忠、沈庆、郑峰,1998,海上浮体受系泊锚链系统影响的非线性处理,工程兵工程 学院学报,Vol.13,No.1,pp40-48
    158) 程静、刘应中、缪国平,1988,人直径圆柱体上的二阶波浪力,水动力学研究与进展,VOL.3,No.3, pp44-55
    159) 达荣庭,1984,_二阶平均漂移力计算,中国船舶科学研究中心技术报告
    160) 戴仰山、贺五洲,1986,有限水深二维辐射问题的二阶速度势和水动力,第四届船舶耐波性学术 讨论会论文集
    161) 董艳秋,1991,船舶波浪外荷和水弹性,天津大学出版社
    162) 董艳秋、林维学、朱建国,1989,浅吃水肥大船波激振动研究,中国造船,No.1
    163) 杜双兴,1990,海洋浮体结构的直接分析方法--三维线性水弹性随机分析理论及应用,硕士学 位论文,中国船舶科学研究中心
    164) 杜双兴,1996,完善的三维航行船体线性水弹性力学频域分析方法,博士学位论文,中国船舶 科学研究中心
    165) 杜双兴、林吉如、李琪华、吴有生,1993,25000G/T浮动船坞拖航中运动和结构动应力的水弹 性分析,No.4
    166) 高木又男,1992,栾长久译,1993,在有限水深区域中航行船舶的三维振荡格林函数,关西造 船协会志第217号,舰船力学情报,Vol.3
    167) 黄振加、劳国升和姜际升,1988,作用在离岸结构物上的二阶漂移力,大连工学院学报,Vol.27, No.1
    168) 林吉如,1995,超大型船舶的波激振动,船舶工程,No.2
    169) 林家浩、曲乃泗、孙焕纯,1990,计算结构动力学,高等教育出版社
    170) 刘应中、缪国平,1985,二维物体上的二阶波浪力,中国造船,No.90,pp1-14
    171) 刘应中、缪国平,1987,船舶在波浪上的运动理论,上海交通大学出版社
    172) 倪绍毓,1992,用切片法计算波浪漂移力,哈尔滨船舶工程学院学报,Vol.13,No.1
    173) 任慧龙,1995,非线性波浪载荷与船体极限强度,博士学位论文,哈尔滨工程大学
    174) 宋兢正、任慧龙、戴仰山,1994,船体非线性波激载荷的水弹性分析,中国造船
    175) 孙伯起,1987,二阶平均漂移力和慢变力的计算,博士学位论文,中国船舶科学研究中心
    176) 孙伯起、董慎言、达荣庭、秦其平、肖袁根,1984,不规则波浪中任意三元零航速物体的二阶力 计算,水动力学研究与进展
    
    
    177) 汤雪峰、陈徐均、袁辉、郝文宁,2001,浮式箱梁干模态分析及其频率选取的记号排序法,解放 军理工大学学报(自然科学版),Vol.2,No.3
    178) 陶建华、丁旭,1988,大尺度结构物的二阶波浪荷载,力学学报,Vol.20,No.5,pp385-392
    179) 王朝晖,1992,船舶二维非线性水弹性力学分析方法,硕士学位论文,中国船舶科学研究中心
    180) 王大云,1996,三维船舶水弹性力学的时域分析方法,博士学位论文,中国船舶科学研究中心
    181) 王杰德、杨永谦,1995,船体薄壁梁弯扭动力分析的流固耦合边界元法,武汉交通科技大学学报, Vol.19,No.4,pp345-352
    182) 王振鸿、吴文伟,1995,集装箱船弯扭联合振动研究,七0二所技术报告
    183) 吴建华、李世谟、吴秀恒,1989,三维波浪绕射势的二阶稳态解,国际海事技术学术会议,上海
    184) 吴有生,1987,水弹性力学研究的进展,辛一心先生逝世30周年纪念专刊,中国造船学会
    185) 吴有生、杜双兴,1990, 海洋浮体结构的直接分析方法--三维线性水弹性随机分析理论及应 用,舰船性能研究,No.4
    186) 吴有生、杜双兴,1992,航行浮体结构的三维水弹性力学分析程序(新版)使用说明书,中国船 舶科学研究中心科技报告
    187) 吴有生、夏锦祝、王朝晖、刘应中,1994,船舶波浪砰击的二维非线性水弹性力学分析,中国船 舶科学研究中心技术报告
    188) 夏锦祝,1987,波浪中弹性船舶对称响应的时域分析,舰船性能研究,No.2
    189) 夏锦祝,1994,细长浮体的水弹性力学理论,博士学位论文,中国船舶科学研究中心
    190) 夏锦祝、林吉如、王朝晖、吴有生,1994,时域非线性水弹性力学分析与弹性船模试验的比较研 究,舰船性能研究No.4
    191) 夏锦祝、吴有生,1993,流固耦合问题的一个一般交界面条件,舰船性能研究,No.2
    192) 徐向东,1996,舰船结构冲击屈曲破损机理,硕士学位论文,中国船舶科学研究中心
    193) 钟万勰,1992,计算结构力学与最优控制
    194) 周清甫,1985,柱体非线性散射问题的辐射条件,力学学报,Vol.17,No.4,pp307-315
    195) 邹志利,1989,Stokes波中三维物体的二阶绕射问题,博士学位论文,哈尔滨船舶工程学院

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700