破断岩体裂隙的流体流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对采动条件下破断岩体裂隙几何结构特征对流体流动行为的影响机制和规律等问题,从自然粗糙的单裂隙中流体流动特性这一基本问题入手,提出了粗糙单裂隙的多平行板等效模型及适用条件,推导了粗糙裂隙等效隙宽的表示方法,借此能将粗糙裂隙等效简化为平行板。通过该等效模型分析了裂隙粗糙形态影响自然粗糙裂隙中流体流动行为的作用机制和规律,表明:裂隙粗糙引起的过量水压降损耗使得粗糙裂隙中流体流动规律偏离平行板理论;隙宽的收缩和雷诺数过大是产生过量水压降损耗的主因,并由此进一步修正了等效模型。在此基础上,通过将粗糙单裂隙等效为平行板来构建裂隙网络,研究了裂隙间的联接方式对裂隙网络流体流动行为的影响,主要的五种联接方式的流体流动行为均可采用平行板理论来近似,其中裂隙串行联接及十字交叉联接的过量水压降损耗相对略大。作为对该问题的进一步深入,通过CT扫描构建三维粗糙裂隙的数值模型,探讨了粗糙及接触作用下的三维裂隙流体流动行为。
Rock fractures are affected by mining. Its structure influences the fluid flow behavior of fractured rock. We propose a series-parallel equivalent model to describe the fluid flow in single rough rock fracture and define the applicable conditions. By use of this model, the parallel plates theory analysis of rough fracture flow yields the expression of aperture for laminar flow, as a weighted harmonic mean of cubed apertures of local fracture segments with parallel walls.And the excess loss of pressure drop caused by varied aperture in facture generates deviation from the cubic law, as the effect mechanism of roughness on fracture fluid flow, its influence factor and change rule are gotten. Used the excess loss factor of pressure drop, series-parallel model is modified. Based on that, the influence of fractures connection ways on fluid flow in fracture network is investigated. We found the cubic law can give a nice approximation of flow for the main5connection modes, and the series connection and'X'cross connection would come out a slightly larger loss of excess pressure drop. As a further study of fluid flow in fractured rock, a3D model of fracture is build by means of CT images of fracture, and in which flow simulation is carried out to analyse the influence of roughn and contact on flow behavior.
引文
1. Neuman S P. Trends, prospects and challenges in quantifying flow and transport through fractured rocks [J]. Hydrogeology Journal.2005,13:124-147
    2. Lachassagne P, Pinault JL, Laporte P. Radon 222 Emanometry:A relevant methodology for water well sitting in hard rock aquifers [J]. Water Resource Research,2001,37(12):3131-3148
    3. 梁冰.孙可明.低渗透煤层气开采理论及其应用[M].北京:科学出版社,2006
    4. LIU J, ELSWORTH D. BRADY B H. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(5): 581-589.
    5. 周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].煤炭工业出版社.1999
    6. 徐德敏.高渗压下岩石(体)渗透及力学特性试验研究[D].成都理工大学博士学位论文.2008.12
    7. 李俊亭,王愈吉.地下水动力学[M].北京地质出版.1987
    8. Long J.C.S. Porous media equivalents for networks of discontinuous fractures [J]. Water Resources Res. 1982.18(3)
    9. 张有天.岩石水力学与工程[M].中国水利水电出版社,北京.2005
    10. 仵彦卿.岩体水力学基础(二)[J].水文地质工程地质.1997,(1):24-28
    11. 速宝玉,詹美礼.仿天然岩体裂隙渗流的实验研究[J1.岩土工程学报,1995.17(5):19-24
    12. Carlsson A, Olsson T. The Analysis of Fractures. Stress and Water Flow for Rock Engineering Project [J]. Comprehensive Rock Engineering, Vol.2.1993, P415-437.
    13. 许光祥.裂隙岩体渗流与卸荷力学相互作用及裂隙排水研究[D].重庆大学博士学位论文.2001
    14. 张有天.裂隙岩体中水的运动与水工建筑物相互作用[M].见:岩上与水工建筑物的相互作用.天津:天津大学出版社.1992,205-284
    15. 杨太华.水-裂隙岩体相互作用理论及其应用研究[D].同济大学博士论文,1995.6
    16. 田开铭.对裂隙岩石渗透性的初步探讨[J].地质研究.1982.1
    17. 田开铭.论裂隙岩石的水文地质模型[J].勘测科学技术.1984.4
    18. Neuzil C E,Tracy J V. Flow through fractures [J]. Water Resources Research,1981,17(1):191-199.
    19. Thorpe R K, Watkins D J. and Ralph W E. Strength and permeability of an Ultra-large Specimen of granitic rock[J].24th U.S Symp. on Rock Mechanics.1983.6. pp511-518
    20. Tsang Y W, Tsang C F. Channel model of flow through fractured media[J]. Water Resources Research,1987, 23(3):467-479.
    21. TSANG Y W, TSANG C F. Flow and tracer transport in Fractured media:A variable aperture channel model and its properties[J].Water Resources Research,1988,24(12):2049-2060.
    22. JEONG W. SONG J. Numerical investigations for flow and transport in a rough fracture with hydromechanical effect [J].Energy Sources,2005,27(11):997-1011.
    23. KOYAMA T, LI B. JIANG Y, et al. Numerical simulations for the effects of normal loading on particle transport in rock fractures during shear[J].International Journal of Rock Mechanics and Mining Sciences, 2008,45(8):1403-1419.
    24. KOYAMA T, LI B, JIANG Y. et al. Coupled shear-flow tests for rock fractures with visualization of fluid flow and their numerical simulations[J].International Journal of Geotechnical Engineering,2008,2(3): 215-227.
    25. KOPLIK J. IPPOLITO I.HULIN J P. Tracer dispersion in rough channels:a two-dimensional numerical study[J].Physics of Fluids A:Fluid Dynamics,1993,5(6):1333-1343.
    26. 熊祥斌.张楚汉.王恩志.岩石单裂隙稳态渗流研究进展[J].岩石力学与工程学报.2009.28(9):1839-1847
    27. 耿克勤.复合岩基的渗流、力学及其耦合分析研究及工程应用[D].清华大学博士论文,1994.4
    28. Gale J E. Comparison of coupled fracture deformation and fluid flow models with direct measurements of fracture pore structure and stress-flow properties [J].28th U.S Symposium on Rock Mechanics. University of Arizona.1987. pp1213-1222.
    29. Gale J E. Raven K G. Effects of sample size on stress-permeability relationship for natural fractures [J].Technical Information No.48.LBL-11865.SAC-48.UC-70.
    30. Gale J E. The effects of fracture type (Induced versus natural) on the stress-fracture closure permeability relationships [J].23th U.S Symposium on Rock Mechanics. Berkely. California.
    31. Bandis S C. Lumsden A C. Barton N R. Fundamentals of rock joint deformation[J].Int. J. Rock Mech. Min. Sci.& Geomech. Abs,1983.20:249-268.
    32. Liu HH, Bodvarsson GS. Finsterle S.A note on unsaturated flow in two-dimensional fracture networks[J].Water Resour Res.2002,38(9):1176
    33. Bandis S C. Barton N R and Christianson M. Application of a new numerical model of joint behavior to rock mechanics problems [J]. Proc. of. Int. Symp. On Fundamentals of rock Joints. Bjorkliden.1985.
    34. Barton N R. Bandis S C and Bakhtar K. Strength, deformation and conductivity coupling of rock joints [J]. Int J. Rock Mech. Min. Sci.&. Geomech. Abs.1985,22(22):121-140.
    35. 庄宁.裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[D].同济大学博士学位论文,2006
    36. Gangi A F. Variation of whole and fractured porous rock permeability with confining pressure [J]. Int J. Rock Mech. Min. Sci.&. Geomech. Abs.1978,15(5):249-257.
    37. Walsh J B. Effect of pore pressure and confining pressure on fracture permeability [J]. Int J. Rock Mech. Min. Sci.&. Geomech. Abs.1981.18(5):429-435.
    38. Bernabe Y. The effective pressure law for permeability in Chelmsford granite and Barre granite [J]. Int J. Rock Mech. Min. Sci.&. Geomech. Abs.1986.23(3):267-275.
    39. Waosh J B. Brace W F. The effect of pressure on porosity and the transport properties of rock [J]. J. Geophysics. Res.1984,89(B 11):9425-9431.
    40. Raven K G. and Gale J E. Water flow in a natural rock fracture as a function of stress and sample size [J]. Int J. Rock Mech. Min. Sci.&. Geomech. Abs.1985.22(4):251-261.
    41. Kelsan P C. Case J B. Evolutional of excavation-induced changes in rock permeability [J]. Int. J. Rock Mech. Min.Sci.& Geomech. Abstr,1984.21,(3):123-125
    42. 陈洪凯.张永兴.三峡工程永久船闸陡高边坡岩体渗流发育规律探讨[J].重庆交通学院学报.1996,15(4):21-25
    43. 许光祥.张永兴.岩体裂隙渗流的频率水力隙宽[J].重庆建筑大学学报.2001,23(5):50-55
    44. 艾万民.岩体卸荷应力场-渗流场耦合试验研究及数值分析[D].重庆大学硕士学位论文.2005.
    45. 梁宁慧.渗流对卸荷岩质边坡稳定性影响的研究[D]重庆大学硕十学位论文.2005
    46 刘先珊等.考虑卸荷作用的裂隙岩体渗流应力耦合研究[J].岩土力学.2007.28增:192-196
    47. Kulhaway F H. Stress-Deformation properties of rock and rock discontinuities [J]. Engng. Geol.1975. 8:327-350.
    48. Hungr O. and Coates D F. Deformability of rock joints and its relation to rock foundation settlements[J]. Can. Geotech. J.1978,15:239-249.
    49. 刘才华.陈从新.付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报.2003,22(10):1651-1655.
    50.蒋宇静.王刚.李博.赵晓东.岩石节理剪切渗流耦合试验及分析[J].岩石力学与工程学报.2007.26(11):2253-2259
    51.李博.蒋宇静.岩石单节理面剪切与渗流特性的试验研究与数值分析[J].岩石力学与工程学报.2008.27(12):2431-2439.
    52.杜守继.职洪涛,周枝华.岩石节理剪切过程中应力与渗流特性的数值模拟[J].岩石力学与工程学报.2008.27(12):2473-2481.
    53.徐礼华.谢妮.岩石剪切裂隙渗流特性试验与理论研究[J].岩石力学与工程学报.2009.28(12):2249-2257.
    54.熊祥斌.李博.蒋宇静.张楚汉.剪切条件下单裂隙渗流机制试验及三维数值分析研究[J].岩石力学与工程学报.2010.29(19):2230-2238.
    55.薛娈鸾.陈胜宏.剪切过程中岩石裂隙的渗流与应力-应变耦合分析[J].岩石力学与工程学报.2007.26(增2):3912-3919.
    56祝玉学.岩石节理面轮廓线的谱分析[J].金属矿山,1995,228(6):3-6
    57. Xie Heping. Wang Jin'an. Fractal Effects of Surface Roughness on the Mechanical Behavior of Rock Joints[J].Chaos. Solitons & Fractals,1997,8(2):221-252
    58. 谢和平.分形-岩石力学导论[M].北京:科学出版社,1996
    59. 陈洪凯.裂隙岩体渗流研究现状(1)[J].重庆交通学院学报.1996.15(1):55-60
    60. 陈洪凯.裂隙岩体渗流研究现状(2)[J].重庆交通学院学报.1996.15(2):29-34
    61. 杨米加.贺永年.岩体裂隙结构模型及其渗流规律研究[J].岩土力学.1998,19(4):8-13
    62. Neretnieks 1. Eriksen T. Tahtinen P. Tracer movement in a single fissure in granitic rock:some experimental results and their interpretation [J]. Water Resour Res 1982.18(4):849-58
    63. Neretnieks I. Solute transport in fracture rock—Applications to radionuclide waste repositories [J]. In:Bear J. Tsang CF. de Marsily G. editors. Flow and contaminant transport in fractured rock. San Diego:Academic Press. Inc;1993. p.39-127.
    64. Cacas MC. Ledoux E. de Marsily G. Tillie B, Barbreau A, Durand E, et al. Modeling fracture flow with a stochastic discrete fracture network:calibration and validation 1:The flow model[J]. Water Resour Res 1990:26(3):479-89.
    65. Cacas MC. Ledoux E. de Marsily G. Barbreau A, Calmels P, Gaillard B. et al. Modeling fracture flow with a stochastic discrete fracture network:calibration and validation 2:The transport model[J]. Water Resour Res 1990.26(3):491-500.
    66. Margolin G. Berkowitz B. Scher H. Structure, flow, and generalized conductivity scaling in fracture networks[J]. Water Resour Res 1998:34(9):2103-21.
    67. Smith L, Schwartz FW. An analysis of the influence of fracture geometry on mass transport in fractured media[J]. Water Resour Res 1984:20(9):1241-52.
    68. Brian Berkowitz. Characterizing flow and transport in fractured geological media:A review [J]. Advances in Water Resources.2002.25:861-884.
    69. Thomas Molls. M. Hanif Chaudhry. Depth-Averaged Open-Channel Flow Model [J]. Journal of Hydraulic Engineering,1995.121 (6):453-465
    70. M.S. Paterson. The equivalent channel model for permeability and resistivity in fluid-saturated rock—A re-appraisal [J]. Mechanics of Materials.1983.2(4):345-352.
    71. 周志芳,钱孝星.坝基各向异性岩体内渗透力的三维边界元分析[J].岩士工程学报.1992.3
    72 段小宁.李鉴初.刘继山.各向异性连续介质渗透系数的反分析法及其应用[J].大连理工大学学报.1991.5
    73. 杨静熙.陈士俊.刘茂兴.裂隙岩体三维渗流的有限元法计算[J]水利学.1992.8
    74. 毛昶熙.陈平.裂隙岩体渗流计算方法研究[J].岩土工程学.1991.6
    75. Granet S. Fabrie P. Lemonnier P, Quintard M. A single-phase flow simulation of fractured reservoir using a discrete representation of fractures [J]. In:6th European Conference on the Mathematics of Oil Recovery (ECMOR VI). Peebles, Scotland, UK, September 8-11.1998.
    76. Lenormand R. Le Romancer JF. Le Gallo Y. Bourbiaux B. Modeling the diffusion flux between matrix and fracture in a fissured reservoir[J], SPE 49007, Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. New Orleans, USA. September 27-30,1998.
    77. ORAN E. OH C. CYBYK B. DIRECT SIMULATION MONTE CARLO:Recent Advances and Applications 1 [J]. Annual Review of Fluid Mechanics,1998,30(1):403-41.
    78.梁正召.唐春安.唐世斌等.岩石损伤破坏过程中分形与逾渗演化特征[J].岩土工程学报.2007.29(009):1386-91
    79. Park Y-J. Lee K-K. Berkowitz B. Effects of junction transfer characteristics on transport in fracture networks [J]. Water Resour Res.2001.37(4):909-923
    80. Ji S-H. Lee K-K. Park Y-C. Effects of the correlation length on the hydraulic parameters of a fracture network [J]. Transport Porous Media.2004,55:153-168
    81. De Dreuzy J-R. Davy P. Bour O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution:1. Effective connectivity [J]. Water Resour Res. 2001.37(8):2065-2078
    82. De Dreuzy J-R. Davy P. Bour O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution:2. Permeability of networks based on lognormal distribution of apertures [J]. Water Resour Res.2001,37(8):2079-2095
    83. De Dreuzy J-R. Darcel C. Davy P, Bour O. Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution [J]. Water Resour Res.2004,40,W01502.
    84. De Dreuzy J-R. Davy P. Bour O. Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture [J]. Water Resour Res.2002.38(12).1276.
    85. Darcel C. Bour O. Davy P, De Dreuzy J-R. Connectivity properties of two-dimensional fracture networks with stochastic fractal correlation [J]. Water Resour Res.2003,39(10),1272.
    86. Benke R. Painter S.Modeling conservative tracer transport in fracture networks with a hybrid approach based on the Boltzmann transport equation [J]. Water Resour Res.2003.39(11):1324
    87. Liu HH. Bodvarsson GS. Constitutive relations for unsaturated flow in fracture networks [J].J Hydrol.2001.252:116-125
    88. Cvetkovic V. Painter S. Outters N. Selroos.1 O. Stochastic simulation of radionuclide migration in discretely fractured rock near the Aspo Hard Rock Laboratory [J]. Water Resour Res.2004.40. W02404.14
    89. Dershowitz WS, Fidelibus C. Derivation of equivalent pipe network analogues for three-dimensional discrete fracture net-works by the boundary element method [J]. Water Resour Res.1999.35(9):2685-2691
    90. Margolin G, Berkowitz B. Scher H. Structure, flow, and generalized conductivity scaling in fracture networks [J]. Water Resour Res.1998.34(9):2103-2121
    91. Nordqvist AW, Tsang YW, Tsang CF, Dverstorp B. Andersson J. Effects of high variance of fracture transmissivity on transport and sorption at different scales in a discrete model for fractured rocks[J]. J. Contam. Hydrol 1996:22:39-66.
    92. 陈征宙.胡伏生等.岩体节理网络模拟技术研究[J]岩土工程学报.1998.1.p22-25
    93.费祥麟.胡庆康,景思睿.高等流体力学[M].西安交通大学出版社.1989.
    94. Yi Cheng. Zhu hongguang. Xie Heping. A new fractal index Rd for rock roughness [J]. The 63rd Canadian Geotechnical Conference and the 6th Canadian Permafrost Conference.2010.
    95. Assaf P. Oron. Brian Berkowitz. Flow in rock fractures:The local cubic law assumption reexamined [J].Water Resources Research.1998,34(11):2811-2825.
    96. Tsang Y W. The effect of tortuosity on fluid flow through a single fracture [J]. Water Resources Research. 1984,20(9):1209-1215.
    97. Tsang Y W, Witherspoon P A. Hydromechanical behavior of a deformable rock fracture subject to normal stress [J]. Journal of Geophysical Research.1981.86(B10):9287-9298.
    98. Tsang Y W, Witherspoon P A. The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size [J]. Journal of Geophysical Research,1983,88(B3):2359-2366.
    99.王金安.谢和平.剪切过程中岩石节理粗糙度分形演化及力学特征[J].岩土工程学报.1997.19(4):2-9
    100. Belem, T. Homand-Etienne. F. Souley. M. Fractal Analysis of Shear Joint Roughness [J].International Journal of Rock Mechanics and Mining Sciences.1997.34(3-4):130-140
    ]01.葛世荣.粗糙表面的分形特征与分形表达研究[J].摩擦学报,1997.17(1):73-80
    102. R. Buzio. C. Boragno. U. Valbusa. Contact mechanics and friction of fractal surfaces probed by atomic force microscopy [J]. Wear.2003.254:917-923.
    103. Myung Chang Kanga. Jeong Suk Kima. Kwang Ho Kim. Fractal dimension analysis of machined surface depending on coated tool wear [J]. Surface and Coatings Technology.2005.193:259-265.
    104. G. Grassellia. J. Wirthc. P. Eggerb. Quantitative three- dimensional description of a rough surface and parameter evolution with shearing [J]. International Journal of Rock Mechanics and Mining Sciences,2002. 39:789-800.
    105.H.W. Zhou, H. Xie. Anisotropic characterization of rock fracture surfaces subjected to profile analysis [J]. Physics Letters A,2004.325:355-362.
    106. Clarke K C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method [J]. Computer & Geosciences.1986.12 (5):713-722.
    107.谢和平,岩石节理的分形描述[J].岩土工程学报.1994.17(1):18-23.
    108.谢和平Pariseau W G.岩石节理粗糙系数的分形估计[J].中国科学B辑.1994,24(5):524-530
    109. Xie H. Pariseau W G. Fractal estimation of joint roughness coefflcients [J]. Science in China (Series B).1994. 37(12):1516-1524.
    110. Xie H. Wang J A. Kawasniewski M A. Fractal evolution of surface roughness of rock joints in shear [J].Proc. of 3rd lnt Symp on Min.Sci.&.Tech.1996.
    111. Xie H. et al., Photoelastic study on the mechanical properties of fractal rock joints [J]. Fractals.1996,4(4):30-40
    112. Xie H.. Wang J A. Kawasniewski M A. Fractal effect of surfaces roughness on the mechanical behavior of rock joints [J]. Chaos. Solitons & Fractals,1996,7(10):1-32
    113.易成.张亮,陈忠辉.轴向受压两体力学模型相互作用的试验研究[J].岩土力学.2006.4:571-576
    114.易成.王长军,张亮,基于两体相互作用问题的粗糙表面形貌描述指标系统的研究[J].岩石力学与工程学报.2006.12:2481-2492
    115易成.工长军.刘晋艳.两体接触面剪切力学行为的三维数值分析[J].岩土力学.2008.8:2149-2156
    116.易成.刘晋艳.王长军.两介质接触处光弹性贴片试验及数值模拟研究[J].中国矿业大学学报.2008.37(4)
    117易成,李志兵.刘晋艳.两种介质接触面剪切力学性能的试验研究[J].岩土工程学报,2009.9:1317-1323
    118.易成.郝彬.朱红光.裂隙岩体的一体两介质模型抗剪性能研究[J].岩石力学与工程学报.2011.6:1207-1215
    119.易成.朱红光.王洪涛.轴压下两体力学模型的转化条件及影响因素分析[J].岩土力学.2011.32(5):1297-1302
    120.周宏伟,谢和平,M.A.Kwasniewski.粗糙表而分维计算的立方体覆盖法[J].摩擦学学报.2000,20(6):455-459.
    121. Zhou H W. Xie H. Direct estimation of the fractal dimensions of a fracture surface of rock [J].Surface Review and Letters.2003,10(5):751-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700