直驱永磁风力发电机组数学模型及并网运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直驱永磁风力发电机组由于具备较强的并网运行能力,已大规模应用到风电场中。并网稳定性已经成为直驱永磁风力发电机组安全并网运行的关键因素,引起了广大风力发电研究人员的高度重视。直驱永磁风力发电机组并网运行特性主要受到风速突变和电网故障的影响,涉及到空气动力学、结构动力学、电机学、电力电子学、自动化控制等学科,具有较为复杂的学科综合性。因此,深入开展直驱永磁风力发电机组并网运行特性研究具有重要的理论意义。
     目前,综合考虑风轮侧风速突变和电网故障因素,在这两方面进行研究正是本文研究目的所在。本文的创新性研究内容归纳为以下几个方面:
     以直驱永磁风力发电机组为研究对象,建立了直驱永磁风力发电机组的结构动力学方程;利用涡流理论建立了直驱永磁风力机风动力数学模型;在此基础上,应用计算流体动力学理论建立了描述三维风电场的基本方程,进而构建了风电场结构与空气动力特性联合求解环境,应用德洛奈法完成了求解环境的非结构网格划分,应用梯度垂线法绘制了风电场三维地形;通过建立完整的风力机三维仿真模型、定义边界条件、定义风电场动态风速和风向,完成了三维风力机的结构与气动性能求解,得到了风力机结构和气动性能曲线,仿真结果证明了理论研究的正确性。
     在完成风力机气动性能仿真的基础上,本文建立直驱永磁风力发电机的数学模型,推导了直驱永磁风力发电机功率平衡方程和转矩平衡方程。完成了变流器的三相坐标系和两相坐标系下的坐标转换,建立了电机侧整流器数学模型和与网侧逆变器数学模型;最终将风动力数学模型、风力发电机数学模型、变流器数学模型合成为直驱永磁风力发电机组的数学模型,进而建立了直驱永磁风力发电机组功率双侧跟踪闭环控制策略。
     在建立的风动力数学模型及直驱永磁风力发电机组数学模型的基础上,在结构与空气动力联合求解环境中完成直驱永磁风力发电机组的三维气动仿真,在机组数学模型求解环境中建立直驱永磁风力发电机组数学模块,并在电力系统求解环境中实现控制策略及电网电压跌落调节,通过三个求解环境的互联,进行渐变风情况、风轮侧风速突变与电网电压跌落故障三种工况下的直驱永磁风力发电机组并网运行控制策略联合仿真研究,研究不同扰动对机组电流分量、转子转速、转矩、功率、电压、直流电压的影响。
     为对本文建立的直驱永磁风力发电机组数学模型和仿真结果做进一步的试验验证,本文分别设置了单相故障与三相故障两种工况开展并网运行试验测试。并设置大功率输出和小功率输出两种功率输出方式用于模拟机组低风速和高风速情况。研究电网故障对机组电流分量、机组功率的影响。结果表明在本文控制策略下的仿真结果是准确的,本文的仿真模型能够应用于直驱永磁风力发电机组的并网运行测试。
The direct-drive permanent magnet wind turbine generator system has been used extensively in wind farms due to its superior integration performances. The integration stability has become a vital factor of the operating safety of the integrated wind turbine generator system, in fact it has aroused high attention of the majority wind power researchers. The integration performances of the direct-drive permanent magnet wind turbine generator system are mainly influenced by sudden changes of the wind speed and grid failures, relating to a complex set of subjects including aerodynamics, structural dynamics, electromechanics, power electronics, automation and control. As a result, intense researches on the integration performances of the direct-drive permanent magnet wind turbine generator system have theoretical significance.
     So far, rarely has any mathematical model of the direct-drive permanent magnet wind turbine generator system been reported in the literature that has an overall consideration on the sudden changes of wind speed and grid failures including the wind speed, the direct-drive permanent magnet wind turbine generator system, the rectifier and the inverter; neither does researches on the spot performance tests of the wind turbine generator system. Filling the blank in these two areas is the aim of this dissertation. Innovative contents of this paper can be summarized as follows:
     In this dissertation the direct-drive permanent magnet wind turbine generator system was taken as the study object and its structural dynamics equations were established; the vortex theory was used to establish the dynamic mathematical model of the direct-drive permanent magnet wind turbine generator system. These were the foundations on which the basic equations describing the three-dimensional wind farm were established with the computational fluid dynamics theory, and then the computing space of the three-dimensional wind farm was built, the Delaunay method and gradient perpendicular method were used to achieve the non-structural mesh of the computing space and draw the three-dimensional terrain of the wind farm, respectively; the structural and aerodynamic performances of the three-dimensional wind turbine generator system were solved by establishing the three-dimensional simulation model of the wind turbine generator system completely, defining the boundary conditions and the dynamic wind speed and wind direction of the wind farm. The structural and aerodynamic performance curves were obtained and the results had shown the correctness of the theory.
     On the basis of the accomplished simulation on the aerodynamic performances of the wind turbine generator system, this paper had deduced the balance equations of the power and torque. The coordinate transformation of the converter between the three-phase coordinate system and two-phase coordinate system was achieved to build the mathematical models of the turbine-side rectifier and the grid-side inverter; finally the mathematical model of the direct-drive permanent magnet wind turbine generator system was accomplished by combining mathematical models of the wind dynamic, the wind turbine generator system and the converters; the bilateral power feed-forward control strategy was found based on the power balance theory of the direct-drive permanent magnet wind turbine generator system.On the foundations of the established mathematical models of the wind dynamic and direct-drive permanent magnet wind turbine generator system, the there-dimensional aerodynamic simulation environment of the latter was built in Structure and air power link solving environment, the mathematical model of the latter was built in Unit mathematical model environment and the control strategy and the grid voltage drop regulation was achieved in Power system solve the environment. Simulation researches on the operating control strategies of the integrated direct-drive permanent magnet wind turbine generator system under three modes including normal condition, sudden changes of wind speed on the wind wheel side and grid voltage drop faults were accomplished by the combination use of the three software, the influences of different disturbances on the current components, rotor speed, torque, power, voltage, DC voltage were studied. The simulation results had verified the mathematical models of the wind dynamic and the wind turbine generator system.
     Further experimental verifications on the established mathematical model and research results of the direct-drive permanent magnet wind turbine generator system had been achieved. Two modes including the single-phase fault and three-phase fault were used to verify the integration operation. The influences of grid faults on the current component and power of the wind turbine generator system were tested. Research results had shown the validity of the mathematical model of the direct-drive permanent magnet wind turbine generator system established as well as the satisfiability of the control strategy for the operation of the integrated wind turbine generator system in this paper.
引文
[1]国网能源研究院.2010中国电力供需分析报告.北京:中国电力出版社,2010.
    [2]魏一鸣,廖华.能源系统的可持续发展与创新.北京:机械工业出版社,2011.
    [3]吕相南.风电并网运行的综合分析:(硕士学位论文).北京:华北电力大学,2012.
    [4]饶建业,徐小东,何肇等.中外风电并网技术规定对比.电网技术,2012,36(8):44~49.
    [5]苑国锋,柴建云,李永东.新型转子电流混合控制的变速恒频异步风力发电系统.电网技术,2005,25(15):76~80.
    [6]H. Li, Z. Chen. Overview of different wind generator systems and their comparisons. IET Renewable Power Generation,2008(2):123~138.
    [7]Qiao W,Qu L Y,Harley R G. Control of IPM synchronous generator for maximum wind power generation considering magnetic saturation.IEEE Trans on Industry Applications, 2009(3):1095~1105.
    [8]JamalA.Baroudi,VenkataDinavahi,Andrew M.kight.A review of power converter topologies for wind generators [J].Renewable Energy 2007(32):2369~2385.
    [9]Hany M. Jabr. Effects of main and leakage flux saturation on the transient performances of doubly fed wind driven induction generator, Electric Power Systems Research, Vol. No.B, pp 1019~1027,2007.
    [10]Carrasco J M, Franquelo L G, Bialasiewicz J T,etal.Power electronic systems for the grid integration of renewable energy sources:a survey.IEEE Transactions on Industrial Electronics, 2006,53(4):1002~1016.
    [11]Polinder H, van der Pijl F F A, de Vilder G J, et al.Comparison of direct drive and geared generator concepts for wind turbines.IEEE Transactions on Energy Conversion,2006,21(3):725-733.
    [12]李晶,方勇,宋家骅等.变速恒频双馈风电机组分段分层控制策略的研究.电网技术,2005,29(9):15~21.
    [13]郎永强,张学广,徐殿国等.双馈电机风电场无功功率分析及控制策略.中国电机工程学报,2007,27(9):77~82.
    [14]Janaka B, Ekanayake, Lee Holdsworth, etal.Dynamic modeling of doubly fed induction generator wind turbines.IEEE Trans on Power Systems,2003(2):803-809.
    [15]韩金刚,陈昆明,汤天浩.半直驱永磁同步风力发电系统建模与电流解耦控制.电力系统保护与控制,2012,40(10):110~115.
    [16]程航,曹五顺,周明星.不对称电网电压条件下直驱永磁风力发电机组并网逆变器的双电流闭环控制策略的研究.电力系统保护与控制,2012,40(7):66~72.
    [17]杨恩星.低速永磁直驱风力发电变流器若干关键技术研究:(博士学位论文).杭州:浙江大学,2009.
    [18]苏勋文.风电场动态等值建模方法研究:(博士学位论文).北京:华北电力大学,2010.
    [19]任海军.风力发电机组控制系统关键技术研究:(博士学位论文).重庆:重庆大学,2011.
    [20]汪令祥.永磁同步直驱型全功率风机变流器及其控制:(博士学位论文).合肥:合肥工业大学,2010.
    [21]刘胜文,包广清,范少伟等.兆瓦级直驱永磁风电系统低电压穿越研究.中国电力,2011,44(2):69~73.
    [22]谷鑫.直驱式永磁风力发电系统Boost斩波-三电平变换器控制:(博士学位论文).天津:天津大学,2010.
    [23]李戈,宋新莆,常喜强.直驱永磁风力发电系统低电压穿越改进控制策略研究.电力系统保护与控制,2011,39(6):74~83.
    [24]栗然,高起山,刘伟.直驱永磁同步风电机组的三相短路故障特性.电网技术,2011,35(10):153~158.
    [25]张仰飞,李海峰,王伟胜等.直驱永磁同步风力发电机的电气参数辨识.电力系统自动化,2012,36(14):150~153.
    [26]赵兴勇.直驱永磁同步风力发电机组低电压穿越控制策略.中国电力,2011,44(5):74~77.
    [27]程显忠.风力发电试验系统的研究:(博士学位论文).合肥:合肥工业大学,2007.
    [28]蔺红,晁勤.直驱永磁同步风力发电系统的降阶模型研究.电网技术,2012,36(8):145~151.
    [29]胡雪松.直驱永磁同步风力发电系统功率平滑策略的研究与控制系统设计:(博士学位论文).重庆:重庆大学,2010.
    [30]张凯.立轴风力机空气动力学与结构分析:(硕士学位论文).重庆:重庆大学,2007.
    [31]Ouahiba Guerri, Anas Sakout. Simulations of the fluid flow around a rotating vertical axis wind turbine. Wind Engineering 2007(3):149~163.
    [32]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望.计算力学学报,2008,25(4):411~416.
    [33]Paul S Veers, Thomas D. Ashwill, Herbert J. Sutherland, et al. Trends in the design, manufacture and evaluation of wind turbine rotor. Wind Energy,2003(6):245~259.
    [34]Hu Ming-Hung. Dynamic behaviour of wind turbine rotor. Proceedings of the institution of mechanical engineers, Part C:Journal of Mechanical Engineering Science,2008(8):1453~1464.
    [35]Liu Tingrui, Ren Yongsheng. Aeroelastic stability of wind turbine rotor based on beddoes-Leishman model.2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop Proceedings,2008,605~608.
    [36]MatthewM, Duquette, Kenneth D, et al. Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines.Journal of Solar Energy Engineering.2003(11):425~432.
    [37]Chanin Tongchitpakdee, Sarun Benjanirat, Lakshmi N. Sankar. Numerical simulation of the aerodynamics of horizontal axis wind turbines under yawed flow conditions. Journal of Solar Energy Engineering.2005(11):464-474.
    [38]毛军,杨立国,郗艳红.大型轴流风力机叶片的气动弹性数值分析研究.机械工程学报,2009,45(11):133~139.
    [39]洪嘉振,刘铸永.刚柔耦合动力学的建模方法.上海交通大学学报,2008,42(11):1922~1926.
    [40]洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展.动力学与控制学报,2004,2(2):1~6.
    [41]刘锦阳,李彬,洪嘉振.作大范围运动的柔性梁的刚柔耦合动力学.力学学报,2006,3(2):276~282.
    [42]尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究:(硕士学位论文).上海:上海交通大学,2006.
    [43]于化楠,褚福磊,刘莹.风力机气动弹性稳定性问题综述.机械设计,2008,25(6):1-3.
    [44]Bob Palais, Richard Palais. Eider's fixed point theorem:The axis of a rotation. Journal of fixed point theory and application,2007(2),215~220.
    [45]苟怀勇.基于立轴风力机叶片的气动弹性分析:(硕士学位论文).重庆:重庆大学,2008,15~28.
    [46]李永强,郭星辉,李健.科氏力对旋转叶片动频的影响.振动与冲击,2006,25(1):79~85.
    [47]贺德馨.风工程与工业空气动力学.北京:国防工业出版社,2006.
    [48]Zhang, Ying-ChaoZhang, Zhe Li, Jie. Virtual wind tunnel test based computational fluid dynamics. Jilin Daxue Xuebao.2010(1):90~94.
    [49]Moonen, P. Blocken, B2Carmeliet, J. Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel.Journal of Wind Engineering and Industrial Aerodynamics, 2006(10):699~723
    [50]Gu Ming,Yang Wei,Huang Peng.Wind tunnel test and numerical simulation on TTU building model.Journal of Tongji University, Dec.2006(12):1563~1567.
    [51]Sun Yan,Zhang Zhengyu.Design method for photosensitive resin wind tunnel model considering elastic deformation. Jixie Gongcheng Xuebao.2011(8):169~174.
    [52]Kato M,Hanafusa T. Wind tunnel simulation of atmospheric turbulent flow over a flat terrain. Atmospheric Environment.2006(16):2853~2858
    [53]Ramakrishnan R, Rennie M. Uncommon noise signatures in a wind tunnel.Canadian Acoustics, v 29, n 3, p 96-9, Sept.2001(3):96~99.
    [54]李宇红,张庆麟.风力机叶片三维流动特性与气动性能的数值分析.太阳能学报,2008,29(9):1172~1174.
    [55]伍艳,谢华,王同光.风力机风轮的非定常气动特性计算方法的改进.工程力学,2008,25(10):54~59.
    [56]张仲柱,王会社,赵晓路等.水平轴风力机风轮气动性能数值模拟.电网与水力发电进展,2008,24(6):,54-57.
    [57]张果宇,蒋劲,刘长陆.风力发电机整机气动性能三维仿真计算与仿真研究.华东电力,2009,37(3):449~451.
    [58]徐建源,祝贺.风波联合作用海上风力机动态特性分析.中国电机工程学报,2010,30(5)120~124.
    [59]祝贺,徐建源,滕云等.风力机风轮气动性能三维流场数值模拟.中国电机工程学报.2010(17):85~90.
    [60]范晓旭.变速恒频风力发电机组建模仿真及其协调优化控制:(博士学位论文).北京:华北电力大学,2010.
    [61]李晶,王伟胜,宋家骅.变速恒频风力发电机组建模与仿真.电网技术,2003,27(9):14~17.
    [62]雷亚洲.国外风力发电导则及动态模型简介.电网技术,2005,25(12):27~32.
    [63]付勋波,郭金东,赵栋利等.直驱风力发电机组的仿真建模与运行特性研究.电力自动化设备,2009,29(2):1-5.
    [64]李东东,陈辰.风力发电机组动态模型研究.中国电机工程学报,2005,25(3):117~122.
    [65]尹明,李庚银,张建成等.直驱式永磁同步风力发电机组建模及其控制策略.电网技术,2007,31(15):61~65.
    [66]郭金东,赵栋利,林资旭等.兆瓦级变速恒频风力发电机组控制系统.中国电机工程学报,2007,27(6):1-6.
    [67]Chinchilla M, Arnaltes S, Burgos J C.Control of permanent-magnet generators applied to variable speed wind energy systems connected to the grid.IEEE Trans on Energy Conversion, 2006(1):130~135.
    [68]Tan K, Islam S.Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors.IEEE Trans on Energy Conversion,2004(2):392~399.
    [69]Ribrant J, Bertling L M.Survey of failures in wind power systems with focus on Swedish wind power plants during 1997~2005.IEEE Transactions on Energy Conversion,2007(1):167~173.
    [70]冯哲峰,杨恩星,陈国柱.永磁直驱风力发电机的单位功率因数控制.机电工程,2007,24(9),70~73.
    [71]徐科,胡敏强,郑建勇等.风力发电机无速度传感器网侧功率直接控制.电力系统自动化,2006,30(23):43~47.
    [72]赵仁德,土永军,张加胜.直驱式永磁同步风力发电机组最大功率追踪控制.中国电机工程学报,2009,29(27):106~111.
    [73]徐科,胡敏强,杜炎森等.直流母线电压控制实现并网与最大风能跟踪.电力系统自动化,2007,31(11):53~58.
    [74]姚骏,廖勇,瞿兴鸿等.直驱永磁同步风力发电机的最佳风能跟踪控制.电网技术,2008,32(10):11~15.
    [75]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003,27(20):62~67.
    [76]姚红菊,许洪华,赵斌.变速恒频风电机组额定风速以上恒功率控制.电气时代,2005,10(11):84~85.
    [77]Chinchilla M, Arnaltes S, Burgos J C.Control of permanent magnet generators applied to variable speed wind energy systems connected to the grid.IEEE Transactions on Energy Conversion,2006, 21(1):130~135.
    [78]Dehghan S M, Mohamadian M, Varjani A Y. A new variable speed wind energy conversion system using permanent magnet synchronous generator and Z source inverter.IEEE Trans on Energy Conversion,2009(3):714~724.
    [79]Lescher F, ZHAO Jingyun, Borne P. Robust gain scheduling controller for pitch regulated variable speed wind turbine. Studies in Informatics and Control,2005(4):299~315.
    [80]黄守道,肖磊,黄科元等.不对称电网故障下直驱型永磁风力发电系统网侧变流器的运行与控制.电工技术学报,2011,26(2):173~180.
    [81]廖勇,庄凯,姚骏.电网电压不平衡时全功率风电并网变流器的控制策略.电网技术,2012,36(1):72~78.
    [82]朱宁.风力发电PWM变流器及其控制策略:(硕士学位论文).北京:北京交通大学,2007.
    [83]温春雪,张利宏,李建林等.三电平PWM整流器用于直驱风力发电系统.高电压技术,2008,34(1):191~195.
    [84]陈瑶.直驱型风力发电系统全功率并网变流技术的研究:(博士学位论文).北京:北京交通大学,2008.
    [85]徐锋,王辉,杨韬仪.兆瓦级永磁直驱风力发电机组变流技术.电力自动化设备,2007,27(7):57~61.
    [86]李建林,周谦,刘剑等.直驱式变速恒频风力发电系统变流器拓扑结构对比分析.电源技术应用,2007,10(6):12~15.
    [87]胡书举,李建林,许洪华.直驱风电系统变流器建模和跌落特性仿真.高电压技术,2008,34(5):949~954.
    [88]Li Wei, Abbey C, Joos G. Control and performance of wind turbine generators based on permanent magnet synchronous machines feeding a diode rectifier[C]. Proceedings of the 37th IEEE Power Electronics Specialists Conference,2006, Jeju, Korea,2006:1-6.
    [89]李建林,徐少华.直接驱动型风力发电系统低电压穿越控制策略.电力自动化设备,2012,32(1):29~33.
    [90]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略.电力系统自动化,2009,33(12):91~96
    [91]关宏亮,赵海翔,迟永宁等.电力系统对并网风电机组承受低电压能力的要求.电网技术,2007,31(7):78~82.
    [92]李建林,胡书举,孔德国等.全功率变流器永磁直驱风电系统低电压穿越特性研究.电力系统自动化,2008,32(19):92~95.
    [93]胡书举,李建林,许宏华.永磁直驱风电系统低电压运行特性分析.电力系统自动化,2007,31(17):73~77.
    [94]王虹富,林国庆.利用串联制动电阻提高风电场低电压穿越能力.电力系统自动化,2008,32(18):81~85.
    [95]姚骏,陈西寅,廖勇.抑制负序和谐波电流的永磁直驱风电系统并网控制策略.电网技术,2011,35(7):29~35.
    [96]姚骏,陈西寅,廖勇.电网电压不平衡时永磁直驱风电机组的控制策略.电力系统保护与控制.2011,39(7):99~106.
    [97]Hansen A D,Michalke G. Multipole permanent magnet synchronous generator wind turbines grid support capability in uninterrupted operation during grid faults.IET Renewable Power Generation, 2009(3):333~348.
    [98]Ng C.H,Li Ran,Bumby J. Unbalanced Grid Fault ride through control for a wind turbine inverter.IEEE Transactions on Industry Applications,2008(3):845~856.
    [99]Abbey C, Joos G. Effect of low voltage ride through (LVRT) characteristic on voltage stability [C]. Proceedings of IEEE Power Engineering Society General Meeting:San Francisco, USA,2005: 1901~1907.
    [100]王福军.计算流体动力学分析.北京.清华大学出版社,2004.
    [101]胡虔生,胡敏强.电机学.北京.中国电力出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700