液体静压支承系统油腔工作性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科学技术的日益进步给航空航天技术、船舶工业、汽车工业以及高精密仪器等领域带来了巨大的发展也对机床的加工能力提出了越来越高的要求。液体静压支承系统因其承载性能好、摩擦阻力小、使用寿命长、抗震性能好、精度高、稳定性好等优点,在现代高精度数控机床中得到了广泛的应用,并逐渐成为机床的核心部件。液体静压支承系统承载性能的优劣直接影响到整个机床运行的加工精度、可靠性、寿命和经济指标。
     本文采用CFD软件CFD-ACE+对高精度数控机床的液体静压转台系统中油腔的流场和承载特性进行了研究。具体研究内容包括:
     (1)研究了不同因素对中心入口油腔中流场分布的影响。在静态下,粘度增大会减少涡旋数目,增强油腔承载稳定性;入口速度、油腔深度和入口半径增加会增大涡旋数目,降低油腔承载稳定性;壁面运动会削弱入口喷射的影响,造成入口附近的涡旋逐渐减弱直至消失,而在封油边处会出现涡旋;
     (2)研究了偏心入口油腔的静动态承载特性。静态下,偏心入口油腔的压强小于中心入口油腔;转台转动情况下,壁面运动沿x轴正向和y轴正向运动油腔压强值高于沿x轴负向和y轴负向运动的油腔压强;在偏载的楔形油膜中,油腔压强在壁面运动方向与油膜倾斜方向相同时随着壁面速度增加而增大,反向时则随着壁面速度增加而减小,垂直时则不随壁面运动速度增加而变化;
     (3)利用流固耦合方法研究了变载情况下油腔的承载特性。在周期载荷情况下,油腔压强和交界面位移出现相同的周期性变化,但到达波峰的时间与载荷相比存在延迟。油腔初始压强与加载后载荷差值减小,油腔压强和交界面在加载后能更快达到稳定,交界面距离初始位置距离减小。
     研究结果表明,在应用于小型转台的中心入口油腔中,油腔几何尺寸变化、润滑油粘度以及壁面运动都会对油腔中的涡旋分布产生影响,而涡旋对壁面压强有很大影响,从而进一步影响油腔承载的稳定性;在应用于大型转台的偏心入口油腔中,壁面的不同运动速度会对油腔承载能力大小造成影响,而当壁面相对于油腔的运动方向不同时,其对压强造成的影响程度不同;当油膜呈楔形时,壁面在不同运动方向情况下,其运动速度变化对油腔压强造成的影响趋势不同;在周期性变化载荷作用下,油腔压强和交界面位移也呈周期性变化。
The increasingly development of technological drives the development of aerospace technology, shipbuilding industry, automobile industry and highly sophisticated device. All these are taking higher manufacturing requirements to the machine tools. With great carrying performance, low frictional resistance, long service life, high aseismic behavior, high precision and well stability, hydrostatic support system has became the core component in high-precision CNC machine tools. The carrying ability of the hydrostatic support system will directly affect the reliability of operation, life and economic indicators.
     The flow field and the bearing capability of oil cavity in high-precision CNC machine tools’hydrostatic turntable system were studied by the CFD software CFD-ACE+. Results are in the following:
     (1) The influences of different factors on the flow field of center entrance oil cavity were studied. In static state, the number of vortex will reduce and the stability of the oil cavity will be enhanced with the increasing of lubricant viscosity. However, the increase of inlet speed, oil cavity’s depth and inlet radius will lead to the vortex’s effect increasing and reduce the stability of oil cavity. The increase of hydrostatic turntable’s speed would directly lead to the vortexes appearing nearby the oil sealing edge and the vortexes near the inlet gradually being weakened until disappearing.
     (2) The static and dynamic carrying characteristics of eccentric entrance oil cavity were studied. In static state, the pressure of centre entrance oil cavity is higher than the eccentric entrance oil cavity. With the condition of turntable rotating, the oil cavity pressure when the surface move forward x axis and y axis is higher than the pressure with surface moving backward x axis and y axis. With the condition of cuneiform film caused by the offset load, the oil cavity pressure will increase with the surface’s speed increasing when the surface’s motion direction is the same as the surface’s inclination direction, but the pressure will decrease with the surface’s speed increasing when the surface’s motion direction is contrary to the surface’s inclination direction, moreover, the surface’s speed will not have influence to the oil cavity pressure when the surface’s motion direction is vertical to the surface’s inclination direction.
     (3) The carrying characteristics of oil cavity with variable load were studied by fluid-solid interaction method. Under the repeated load, the changes of oil cavity pressure and the interface moving are periodic which are same as the load, but the time to reach peak is delayed to the load. When the difference between load and initial pressure of oil cavity decrease, it’s easier to achieve stability for the oil cavity pressure and the interface, and the distance from initial position of the interface decrease.
     In the whole, about the studying of center entrance oil cavity, the geometry, viscosity and surface moving will affect the vortexes in the oil cavity, and the vortexes can affect the surface pressure and the carrying stability. About the studying of eccentric entrance oil cavity, the surface’s motion speed and direction will affect the distribution of pressure. When the oil film is cuneiform, different motion directions of surface have different effect trends to the pressure. With the effect of repeated load, the oil cavity pressure and interface moving also show a periodic change.
引文
1丁振乾.我国机床液体静压技术的发展历史及现况.精密制造与自动化. 2003,155(3):19~22.
    2 M. Braun, M. Dzodzo, S. Lattime. Some Qualitative and Quantitative Aspects of Flow in a Hydrostatic Journal Bearing Pocket. Fluids Engineering Division Conference ASME. 1996,4:109~114
    3 M. Braun, M. Dzodzo. Three Dimensional Flow and Pressure Patterns in a Single Pocket of a Hydrostatic Journal Bearing. Proceedings of the 1995 Workshop of NASA Lewis Reasearch Center. 1995,10181:285~297
    4 M. Dzodzo, M. Braun, R. Hendricks. Pressure and Flow Characteristics in a Shallow Hydrostatic Pocket with Rounded Pocket/Land Joints. Tribology International. 1996,29(1):69~76
    5 M. J. Braun, M. Dzodzo. Effects of Hydrostatic Pocket Shape on the Flow Pattern and Pressure Distribution. International Journal Machinery. 1995,1(3~4):225~235
    6 M. Braun, M. Dzodzo. Effects of the Feeline and the Hydrostatic Pocket Depth on the Flow Pattens and Pressure Distribution. Journal of Tribology. 1995,117:224~233
    7 M. Braun, M. Dzodzo. Three-Dimensional Flow and Pressure Patterns in a Hydrostatic Journal Bearing Pocket. Journal of Tribology. 1997,119:711~719
    8 G. Jean, Detry, B. B. B. Jensen, M. Sindic, C. Deroanne. Flow Rate Dependency of Critical Wall Shear Stress in a Radial-flow Cell. Journal of Food Engineering. 2009,92:86~99
    9 G. Jean, Detry, B. B. B. Jensen, M. Sindic, C. Deroanne. Laminar Flow in Radial Flow Cell with Small Aspect Ratios:Numerical and Experimental Study. Chemical Engineering Science. 2009,64:31~42
    10 N. B. Naduvinamania, P. S. Hiremathb, G. Gurubasavaraja. Effect of Surface Roughness on the Couple-stress Squeeze Film Between a Sphere and a Flat Plate. Tribology International. 2005,38:451~458
    11 R. Serrato, M. M. Maru, L. R. Padovese. Effect of Lubricant Viscosity Grade on Mechanical Vibration of Roller Bearings. Tribology International. 2007,40:1270~1275
    12陈皓生,李永健,陈大融,汪家道.规则形貌作用下非牛顿流体润滑的数值分析.机械工程学报. 2007,8:48~52
    13陈皓生,陈大融,汪家道,李永健.粗糙表面滑动轴承非牛顿介质润滑的计算.摩擦学学报. 2005,25(6):559~563
    14陈皓生,陈大融,汪家道,李永健.动载荷下径向轴承的非牛顿介质润滑.润滑与密封. 2005,5:170~173
    15马震岳,董毓新.推力轴承油膜刚度的二维热弹流动力润滑计算.大连理工大学学报. 1990,30(2):205~211
    16马震岳,董毓新.推力轴承油膜刚度的三维热弹流动力润滑计算.大连理工大学学报. 1991,31(1):101~106
    17 M. C. GUPTA, M. C. GOYAL. Unsteady Plane Poiseuille Flow Between Two Parallel Plates. Proceedings Mathematical Sciences. 1971,74(2)68~78
    18 M. TABATABAI, A. POLLARD. Turbulence in Radial Flow Between Parallel Disks at Medium and Low Reynolds Numbers. Fluid Mechanics. 1987,185:483~502
    19 G. H. Vatistas, A. Ghila, G. Zitouni. Radial Inflow Between Two Flat Disks. Acta Mechanica. 1995,113:109~118
    20 K. Nakabayashi, T. Ichikawa, Y. Morinishi. Size of Annular Separation Bubble Around the Inlet Corner and Viscous Flow Structure Between Two Parallel Disks. Experiments in Fluids. 2002,32:425~433
    21刘震北.静压支承设计中压降系数的计算.机械设计. 1980,2:58~61
    22 F. Horvat. Experimental and Numerical Analysis of Flow and Pressure Fields Inside a Variable Depth Single Pocket Hydrostatic Bearing. The University of Akron. 2008
    23 E. R. Nicodemus, S. C. Sharma. Orifice Compensated Multirecess Hydrostatic-hybrid Journal Bearing System of Various Geometric Shapes of Recess Operating with Micropolar Lubricant. Tribology International. 2011,44:284~296
    24 A. Erdemir. Review of Engineered Tribological Interfaces for Improved Boundary Lubrication. Tribology International. 2005,38 (3):249~256
    25 M. Geiger, S. Roth, W. Becker. Surface & Coating Technology. Elsevier Science S. A. Lausanne Switzerland. 1998,100:17~22
    26 H. Ike. Properties of Metal Sheets with 3D Designed Surface Microgeometry Prepared by Special Rolls. Journal of Materials Processing Technology. 1996,60:363~368
    27 I. Krˇupka, M. Hartl. The Influence of Thin Boundary Films on Real Surface Roughness in Thinfilm, Mixed EHD Contact. Tribology International. 2007,40:1553~1560
    28 J. Bouyer, M. Fillon. Experimental Measurement of the Friction Torque on Hydrodynamic Plain Journal Bearings During Start-up. Tribology International. 2011,1(8):1~10
    29 V. M. Phalle, S. C. Sharma, S. C. Jain. Influence of Wear on the Performance of a 2-lobe Multirecess Hybrid Journal Bearing System Compensated with Membrane Restrictor. Tribology International. 2011,44:380~395
    30金长善.混合摩擦的滑动导轨表面内油膜刚度的简化计算.润滑与密封. 1981,1:14~20
    31汪家道,陈大融,孔宪梅,及开元.面接触规则凹坑表面流体润滑计算.清华大学学报(自然科学版). 2001,41(2):42~45
    32徐文琴,孙英达.机床液体静压导轨油膜厚度确定的研究.制造技术与机床. 2009,6:56~57
    33戴学余.几种低粘度润滑介质下动静压轴承的性能分析.润滑与密封. 2004,3:11~17
    34刘旭辉,李连进,宋平娜,滕献银.非牛顿流体润滑剂的动力学模型及仿真研究.润滑与密封. 2006,4:76~77
    35陈大融,温诗铸.非牛顿介质润滑计算的进展.自然科学进展. 1992,(3):205~215
    36汪家道,陈大融,孔宪梅.规则凹坑表面形貌润滑研究.摩擦学学报. 2003,23(1):52~55
    37李笑迪,陈皓生,陈大融,汪家道.非牛顿介质中图形化表面对减阻效果的影响.润滑与密封. 2007,32(1):4~6
    38韩中领,汪家道,陈大融.不同凹坑深度在乏油润滑状态下的减阻实验.润滑与密封. 2007,32(3):19~21
    39韩中领,汪家道,陈大融.表面形貌在面面接触乏油状态下的减阻效果实验.润滑与密封. 2006,(7):91~93
    40韩中领,汪家道,陈大融.表面形貌在乏油润滑时的最大静摩擦力研究.润滑与密封. 2007,32(9):21~24
    41 I. Gherasim, G. Roy, C. T. Nguyen, D. Vo-Ngoc. Heat Transfer Enhancement and Pumping Power in Confined Radial Flows Using Nanoparticle Suspensions (Nanofluids). International Journal of Thermal Sciences. 2011,50:369~377
    42 Y. T. Yang, F. H. Lai. Numerical Study of Heat Transfer Enhancement with the use of Nanofluids in Radial Flow Cooling System. International Journal of Heat and Mass Transfer. 2010,53:5895~5904
    43 H. C. Garg, V. Kumar, H. B. Sharda. Performance of Slot-entry Hybrid Journal Bearings Considering Combined Influences of Thermal Effects and Non-Newtonian Behavior of Lubricant. Tribology International. 2010,43:1518~1531
    44 M. Braun, F. Choy, Y. Zhou. Transient Flow Patterns and Pressure Characteristics in a Hydrostatic Pocket. JOURNAL OF TRIBOLOGY ASME. 1994,116:139~146
    45 H. Zhou, S. X. Zhao, H. Xu, J. Zhu. An Experimental Study on Oil-film Dynamic Coefficients. Tribology International. 2004,37:245~253
    46 J. S. Basavaraja, S. C. Sharma, S. C. Jain. A Study of Misaligned Electrorheological Fluid Lubricated Hole-entry Hybrid Journal Bearing. Tribology International. 2010, 43:1059~1064
    47 D. J. Chen, J. W. Fan, F. H. Zhang. Dynamic and Static Characteristics of a Hydrostatic Spindle for Machine Tools. Journal of Manufacturing Systems. 2010,11(6):1~8
    48 A. C. Bannwart, K. L. Cavalca, G. B. Daniel. Hydrodynamic Bearings Modeling with Alternate Motion. Mechanics Research Communications. 2010,37:590~597
    49 S. Boubendir, S. Larbi, R. Bennacer. Numerical Study of the Thermo-hydrodynamic Lubrication Phenomena in Porous Journal Bearings. Tribology International. 2011,44:1~8
    50 S. C. Sharma, V. M. Phalle, S. C. Jain. Performance Analysis of a Multirecess Capillary Compensated Conical Hydrostatic Journal Bearing. Tribology International. 2011,44:617~626
    51朱希玲.静压轴承压力场的有限元数值模拟.上海工程技术大学学报. 2002,16(2):92~95
    52朱希玲,张玉华,赵胜祥,陈忠基,吴晓元.有限元数值模拟在静压轴承设计中的应用.轴承. 2005,11:1~3
    53朱希玲.数值模拟在静压轴承系统中的应用.润滑与密封. 2006,3:136~137
    54卢华阳,孙首群.液体静压导轨支承油膜的有限元分析.机床与液压. 2007,35(10):46~49
    55邵俊鹏,张艳芹,李永海,于晓东.大尺寸椭圆形静压轴承油膜态数值模拟.哈尔滨理工大学学报. 2008,13(6):117~120
    56金秋颖,刘赵淼.粘度对油膜工作性能影响的初步模拟.第15届北京市力学会议.北京,2009
    57 C. Xing, M. J. Braun, H. M. Li. Damping and Added Mass Coefficients for a Squeeze Film Damper Using the Full 3-D Navier–Stokes Equation. Tribology International. 2010,43:654~666
    58温诗铸,黄平.摩擦学原理(第三版).北京:清华大学出版社. 2008.
    59陈燕生.液体静压支承原理和设计.国防工业出版社. 1980
    60乔鸣.影响静压滑台油膜刚度因素分析.试验技术与试验机. 1994,34(2~3):11~13
    61 X. F. Peng, G. P. Peterson, B. X. Wang. Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels. Experimental Heat Transfer. 1994,7:249~264
    62邢景棠,周盛,崔尔洁.流固耦合力学概述.力学进展. 1997,27(1):19~38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700