曲流点坝建筑结构及驱替实验与剩余油分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国许多油田已进入高含水期,特别是大庆油田,已进入特高含水期开发阶段,剩余油空间上分布零散,挖潜困难,如何挖潜这些剩余油已成为目前提高采收率的重大难题。在剩余油分布的储层中,曲流点坝储层占了很大的比例,其内部渗流场分布特征、剩余油的形成与分布机制、挖潜手段的选择等一些列问题,是目前开发地质工作者面临的重大课题。尽管国内外大批学者从野外露头和现代河流沉积及地下单砂体精细解剖等方面进行了探索,但尚未完全从机理上揭示曲流点坝内部建筑结构对渗流场的控制作用及其如何影响剩余油的形成与分布,无法进一步给出相应的挖潜措施。
     本文通过对国内外相关文献和研究成果的广泛调研,针对大庆油田南部杏六区葡Ⅰ33曲流河沉积储层,借助于水平井及高密度井网资料,对其可分性进行了充分论证,将该单元进一步划分成葡Ⅰ33a、葡Ⅰ33b两个河流期沉积单元,并对葡Ⅰ33a单砂体内部建筑结构进行了精细解剖,建立了曲流点坝三维属性模型。参考经典理论模式,结合已得到的研究区曲流点坝内部建筑结构模式,基于沉积动力学研制两种物理实验模型并进行了相关驱替实验研究。系统分析了内部建筑结构对储层非均质性的控制作用,提出了渗流场三维分布模式。科学的论证总结了剩余油形成与分布的4种控制模式,并针对具体模式提出了各种挖潜方案。自主创新成果主要包括:基于水平井资料的曲流点坝识别方法及相应参数提取技术;基于沉积动力学研制并构建两种实验模型及相关驱替实验方法;注入剂波及高度为储层的1.3/3,平行侧积方向呈阶梯状;地下曲流点坝精细解剖与实验结果相结合,系统论证了曲流点坝储层在开发过程中的渗流场分布特征,提出了曲流点坝内渗流场三维分布模式;提出了曲流点坝内部建筑结构控制剩余油形成与分布模式。
     本文的研究成果表明,单砂体内部建筑结构对储层的非均质性具有重要的控制作用,剩余油受侧积夹层空间建筑结构及单一侧积体内部渗透率空间变化、3级界面阻流等影响,主要分布在储层的中上部。研究成果为曲流点坝储层挖潜提供了充分的地质依据,对挖潜措施的选择具有地质导向作用。同时,本文的研究成果对进一步进行曲流点坝储层数值模拟提供了科学的地质模型,具有重要的指导意义。
Now many oil fields have went into high water-cut period. Especially the Daqing oil field has went into later development stage of extra-high water-cut period. The distribution of remaining oil in space is highly scattered. How remaining oil was produced has become a great difficult problem of increasing recovery efficiency. The point bar of meandering stream channel accounted for a substantial proportion of reservoirs with containing remaining oil. Many problems, including distribution of internal filtration field, distribution mechanism of remaining oil and producing approaches, are great topics of development geologist. Although many experts domestic and abroad have carried out relevant study from outcrop, modern fluvial sediment and fine dissecting underground monosandstone, but, they haven’t completely revealed control of internal architecture of the point bar to field of filtration and how distribution mechanism of remaining oil was affected so far.
     On the basis of domestic and abroad research and technical literature and results of study, considering of PⅠ3 3 meandering stream sedimentary reservoirs in Xing6 areas of southern of Daqing oilfield, applying horizontal well and logging information of close-space-wells, the divisibility of PⅠ33 was demonstrated and further subdivided two sedimentary units(PⅠ33a, PⅠ3 3b ). At the same time, internal architecture of the point bar in PⅠ33a was fine dissected and 3D property modeling of the point bar sand was built. Referred to classic theoretic model, combined internal architecture model of the point bar in the study area, and based on sedimentary dynamics, two physical models and relevant methods of displacement experiment were developed. the internal architecture of point bar in meandering stream channel and its control to the heterogeneity of reservoirs was systematically analyzed. Then 3D distribution model of filtration field was proposed.Four control models about formation and distribution of remaining oil were scientific demonstrated and summarized, and its producing approaches were proposed. The self-innovative technologies mainly are: the recognized methods of single point bar of meandering stream channel and extracted technologies of its relevant parameters; Based on sedimentary dynamics, development of two physical models and relevant methods of displacement experiment; swept height of injecting material is 1.3/3 of reservoirs, it parallel to lateral direction and is step-shaped; combined fine dissection of internal architecture of the point bar in with experimental results, systematically demonstrated distribution characteristics of filtration field in development in the point bar, and 3D distribution model of filtration field in the point bar was proposed; the proposal of internal architecture of the point bar controlling formation and distribution model of remaining oil.
     The outcomes of this text demonstrated it, which internal architecture of monosandstone have important controlling action to the heterogeneity of reservoirs, and remaining oil mainly distribute the middle and upper of reservoirs, because of the architecture of internal interlayer in space, the steric change of permeability in single lateral bedding, the choking of 3-level interface and so on. The outcome of this text provided full geological references for exploration of remaining oil in the point bar of meandering stream channel and had geological direction to selection of producing methods. At the same time, the outcome of this text can play an important role for further study of numerical simulation of the point bar reservoirs.
引文
[1]Miall A D.Architecture element analysis:a new method of facies analysis applied to fluvial deposits.Earth Science Review.1985,22(4):261~308.
    [2]Miall A D.Reservoir heterogeneities in fluvial sandstone:lessons from outcrop studies.AAPG.1988,72(6):682~697.
    [3]Miall A D . The Geology of Fluvial Deposits[M] . SPRINGER-Verlag Berlin Heidelberg ,NewYork.1996:1~190,453~478.
    [4]吕晓光,于洪文,田东辉,等.高含水后期油田细分单砂层的地质研究[J].新疆石油地质,1993,14(4):345~349.
    [5]俞启泰,罗洪,冯明生.我国油田河流相与三角洲相储层参数统计研究[J].大庆石油地质与开发,1999,18(1):29~31.
    [6]刘吉余,郝景波,尹万泉,等.流动单元研究方法及其研究意义[J].大庆石油学院学报,1998,22(1):5~7.
    [7]雷启鸿,宋子齐,谭成仟,等.利用流动单元建立渗透率模型的方法.新疆石油地质,2000,21(3):216~219.
    [8]魏斌,陈建文,郑浚茂,等.应用储层流动单元研究高含水油田剩余油分布.地学前缘,2000,7(4):403~409.
    [9]俞启泰.关于剩余油研究的探讨[J].石油勘探与开发,1997,24 (2) :46~50.
    [10]徐安娜,穆龙新,裘亦楠.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J]油勘探与开发,1998,25(5):43~47.
    [11]Miall A D.Reconstructing Fluvial Macroform Architecture from Two-dimensional Outcrops:Examples from The Castlegate Sandstone,Book Cliffs,Utah[J].Journal of Sedimentary Research,1994,64(2):146~158.
    [12]Miall A D . Rescription and Interpretation of Fluvial Deposits : a Critical Perspective :Discussion[J].Sedimentology,1995,42:379~384.
    [13]Church M.Pattern of instability in a wandering gravel bed channel.In:Collinson J D,Lewin J (eds).Modern and Ancient Fluvial Systems[A].Special Publication of the International Association of Sedimentologists[C].6,Blackwell,Oxford,1983.169~180.
    [14]Carson M A.The meandering-braided river threshold:areappraisal[J].Journal of Hydrology,1984,73:315~334.
    [15]Nanson G C,Croke J C.Agenetic classification of floodplains[J].Geomorphology,1992,4:459~486.
    [16]Hickin E J.Vegetation and river channel dynamics[J].Canadian Geographer,1984,28(2):111~126.
    [16]Rust B R.Aclassification of alluvial channel systems[A].In:Miall A D(ed.).Fluvial sedimentology[C].Can.Soc.Petrol.Geol.Mem.5.1978:187~198.
    [17]Nanson G.G,Knighton A D.An abranching rivers:their cause,character and classification[J].Earth Surfase Processesand Landforms,1996,21:217~239.
    [18]Miller J R.Controls on channel form along bedrock~influenced alluvial streams insouth-central Indiana[J].Physical Geography,1991,12(2):167~186.
    [19] Kale V C,Baker V R,Mishra S.Multi- channel patterns of bedrock rivers:an example from the central Narmada basin,India[J].Catena,1996,26:85~98.
    [20]Bridge J S,Leeder M R.Asimulation model of alluvial stratigraphy[J].Sedimentology,1979,26:617~644.
    [21]Bridge J S,Mackey S D.Revised alluvials tratigraphy model[A].In:Marzo M,Puigdefábregas C(eds).Alluvial Sedimentation[C].Special Publication of the International Association of Sedimentologists 17,Blackwell,Oxford,1993:319~336.
    [22]Mackey,S D,Bridge J S.Three-imensional Model of Alluvials Tratigraphy:Theory and Application[J].Journal of Sedimentary Research,1995,B65(1):7~31.
    [23]Bridge J S.Rivers and Floodplains[M].Oxford:Blackwell Publishing company,2003:214~244.
    [24]Bryant M,Falk P,Paola C.Experimental study of avulsion frequency and rate of deposition[J].Geology,1995,23(4):365~368.
    [25]Heller P L,Paola C.Downstream changes in alluvial architecture:an exploration of controls on channel-tacking patterns[J].Journal of Sedimentary Research,1996,66(2):297~306.
    [26]Eberth D A,Miall A D.Stratigraphy,sedimentology and evolution of avertebratebearing braided to anastomosed fluvial ystem,Cutter Formation(Permian-Pennsylvanian),north-central NewMexico[J].Sediment.Geol.,1991,72:225~252.
    [27]Bakker J G M,Kleinendorst T W,Geirnaert W.Tectonic and sedimentary history of a late Cenozoic intramontane basin(The Pitalito Basin Colombia)[J].Basin Research,1989,2:161~187.
    [28]Putnam P E.Amultidisciplinary analysis of Belly River-Brazeau (Campanian) fluvial channel reservoirs in west-central Alberta,Canada[J].Bulletin of Canadian Petroleum Geology,1993,41(2):186~217.
    [29]Miall A D.Fluvial Sed-imentology[C].Canada Society of Petroleum Geologists Memoir 5,Calgary,1978:577~586.
    [30] Friend P F,Slate rM J,Williams R C.Vertical and Lateral Building of River Sandstone Bodies1 36[M] .Journal of the Geological Society of London,EbroBasin,Spain,1979:39~46.
    [31] Friend P F.Towards the field classification of alluvial architecture or sequence[A].In:Collinson J D,Lewin J(eds).Mordern and Ancient Fluvial Systems[C].Special Publication of the International Association of the Sedi-mentollogists6,Balackwell.Oxford,1983:345~354.
    [32] Leopold L B,Wolman M G.River channel patterns,braided,meandering and straight.United States Geological Survey,Professional Paper,1957,282-B:45~62.
    [33]Chang Howard H.Minimum stream power and channel patterns[J].Journal of Hydrology,1979,41:303~327.
    [34] Ferguson R I.Channel form and channel changes [J].In:Lewin J(ed.).British River [C].Allen and Unwin,Longdon,1981:90~211.
    [35] Keller E A,Brookes A.Consideration of meandering in channelization projects:selected observation sand judgements [A].In:Elliot C M(eds).River Meandering.Proceedings of the conference Rivers' 83[C].New Or-leans,Louisiana,October 24-26,1983.American Society of Civil Engineers,NewYork,1984:384~397.
    [36]赵翰卿,付志国,吕晓光,等.大型河流一三角洲沉积储层精细描述方法[J].石油学报,2000,21(4):109~113.
    [37]王平在,王俊玲.嫩江现代河流沉积层序及沉积模式[J].沉积学报,2003,21(2):228~233.
    [38]王俊玲,任纪舜.嫩江现代河流沉积体岩相及内部构形要素分析[J].地质科学,2001,36(4):385~394.
    [39]薛培华.河流点坝相储层模式概论[M].北京:石油工业出版社,1991:5l~55.
    [40]许炯心.高含沙型曲流河床的形成机理[J].科学通报,1989,34(21):1649~1651.
    [41]许炯心.南运河弯曲河型的成因[J].地理学与国土研究,1989,5(2):54~59.
    [42]王继贿.根据河道形态和沉积物特征的河流新分类[J].沉积学报,1999,17 (2):240~246.
    [43]高健.滦河中游现代河流沉积构造与水动力关系[J].沉积学报,1983,1 (1):27~41.
    [44]赖志云.荆江太平口边滩现代沉积研究[J].沉积学报,1986,4(4):109~118.
    [45]王俊玲.嫩江下游现代河流沉积特征[J].地质论评,2001,47(2):193~199.
    [46]马世忠,杨清彦.曲流点坝沉积模式、三维构形及其非均质模型[J].沉积学报,2000,18(2):241~247.
    [47]马世忠.松辽盆地河流-三角洲体系高分辨率层序地层学、储层构型及非均质模型研究[D].中国科学院:地质与地球物理研究所,2003:232~238.
    [48]李思田,李祯,孙永传,等.陕甘宁盆地河流砂体露头调查及地质知识库基础研究[R].中国油气储层研究(85~103)成果报告,1994:60~69.
    [49]尹燕义,王国娟.曲流河点坝储集层侧积体类型研究[J].石油勘探与开发,1998,25(2).44~66.
    [50]马凤荣,张树林,王连武,等.现代嫩江大马岗段河流沉积微相划分及其特征.大庆石油学院学报,2001,25(2):8~11.
    [51]束青林.孤岛油田河流相储层结构与剩余油分布规律研究[D].中国科学院:广州地球化学研究所,2005:119~126.
    [52]束青林,张本华.河道砂储层油藏动态模型和剩余油预测[M].北京:石油工业出版社,2004:P81~102.
    [53]隋新光.曲流河道砂体内部建筑结构研究[D].大庆石油学院,2006:55~60.
    [54]刘建民,徐守余.河流相储层沉积模式及对剩余油分布的控制[M].2003,24(1):152~158.
    [55]马世忠,付春权,等.单砂体三维地质的优势渗透率分析方法[J].大庆石油学院学报,2000,24(3),1~5.
    [56]宫秀梅,曾溅辉,金之钧.渤南洼陷深层(沙三沙四段)原油一水川岩石相互作用模拟实验研究[J].沉积学报,2005,23(3)420~428.
    [57]宫秀梅,曾溅辉,金之钧.渤南洼陷深层(沙四段)油气成藏模拟实验研究[J].西安石油大学学报(自然科学版),2005,20(4):26~30.
    [58]吴胜和,曾溅辉,林双运,等.层间干扰与油气差异充注[J].石油实验地质,2003,25(3):285~289.
    [59]张善文,曾溅辉.断层对沾化凹陷馆陶组石油运移和聚集影响的模拟实验研究[J].地球科学—中国地质大学学报,2003,28(2):185~190.
    [60]于翠玲,曾溅辉.断层幕式活动期和间歇期流体运移与油气成藏特征[J].石油实验地质,2005,27(2):129~133.
    [61]尚尔杰,金之钧,丁文龙,等.断裂控油的物理模拟实验研究——以准噶尔盆地西北缘红车断裂带为例[J].石油实验地质,2005,27(4):414~418.
    [62]曾溅辉,王洪玉.反韵律砂层石油运移模拟实验研究[J].沉积学报,2001,19(4):592~597.
    [63]姜振学,陈冬霞,苗胜,等.济阳坳陷透镜状砂岩成藏模拟实验[J].石油与天然气地质,2003,24(3):223~227.
    [64]曾溅辉,王洪玉.静水条件下背斜圈闭系统石油运移和聚集模拟实验及机理分析[J].地质论评,2001,47(6):590~595.
    [65]张洪,庞雄奇,姜振学.库车坳陷克拉2气田超压成因研究[J].地球学报,2005,26(2):163~168.
    [66]康永尚,朱九成,陈连明.裂缝介质中石油运移物理模拟结果及地质意义[J].地球科学—中国地质大学学报,2002,27(6):736~740.
    [67]刘吉余.流动单元研究进展[J].地球科学进展,2000,15(3):303~306.
    [68]庞雄奇,陈章明,陈发景.排油气门限的基本概念、研究意义与应用[J].现代地质,1997,11(4):510~520.
    [69]邓林,汤磊,康志宏,等.盆地三维古水动力数值模拟方法及其应用[J].石油勘探与开发,2000,27(1):7~12.
    [70]辛仁臣,姜振学,李思田.三角洲前缘砂体中石油二次运移与聚集过程物理模拟及结果分析[J].地球科学—中国地质大学学报,2002,27(6):780~782.
    [71]陈冬霞,庞雄奇,姜振学,等.砂岩透镜体成藏门限物理模拟实验[J].科学技术与工程,2004,4(6):458~461.
    [72]林景哗,门广田,黄薇.砂岩透镜体岩性油气藏成藏机理与成藏模式探讨[J].大庆石油地质与开发,2004,23(2):5~7.
    [73]庞雄奇,金之钧,姜振学,等.深盆气成藏门限及其物理模拟实验[J].天然气地球科学,2003,14(3):207~214.
    [74]马新华,王涛,庞雄奇,等.深盆气高孔渗富气区块成因机理物理模拟实验与解析[J].石油实验地质,2004,26(4):383~388.
    [75]邱楠生,万晓龙,金之钧,等.渗透率级差对透镜状砂体成藏的控制模式[J].石油勘探与开发,2003,30(3):48~52.
    [76]邓津辉,史基安,王有孝,等.石油二次运移的分子地球化学特征[J].石油实验地质,2002(6):537~540.
    [77]史基安,邓津辉,曾凡刚,等.石油二次运移物理模拟及运移特征分析[J].沉积学报,2002,20(2):333~338.
    [78]曾溅辉,王洪玉.输导层和岩性圈闭中石油运移和聚集模拟实验研究[J].地球科学—中国地质大学学报,1999,24(2):193~196.
    [79]刘朝露,李剑,方家虎,等.水溶气运移成藏物理模拟实验技术[J].天然气地球科学,2004,15(1):32~36.
    [80]张云峰,王朋岩,陈章明.烃源岩之下岩性油藏成藏模拟实验及其机制分析[J].地质科学,2002,37(4):436~443.
    [81]陈冬霞,庞雄奇,姜振学.透镜体油气成藏机理研究现状与发展趋势[J].地球科学进展,2002,17(6):871~876.
    [82]陈章明,张云峰,韩有信,等.凸镜状砂体聚油模拟实验及其机理分析[J].石油实验地质,1998年6月,20(2):166~170.
    [83]张洪,庞雄奇,姜振学.物理模拟实验在天然气成藏研究中的应用—以柴达木盆地北缘南八仙和马海气田成藏过程为例[J].地质论评,2 0 0 4,50(6):644~648.
    [84]张洪,庞雄奇,姜振学,等.物理模拟在天然气成藏研究中的应用[J].新疆石油地质,2004,25(4):429~430.
    [85]曾溅辉,金之钧,王伟华.油气二次运移和聚集实验模拟研究现状与发展[J].石油大学学报(自然科学版),1997,21(5):94~97.
    [86]张云峰.源岩内岩性油气藏形成的模拟实验及机理分析[J].实验室研究与探索,2001,20(2):103~106.
    [87]王家禄,沈平平,陈永忠,等.三元复合驱提高石油采收率渗流机理的实验研究[J].中国科学E辑,2005,35(9):996~1008.
    [88]王家禄,沈平平,陈永忠,等.三元复合驱提高原油采收率的三维物理模拟研究[J].石油学报,2005,26(5):61~66.
    [89]王家禄,江如意.侧钻水平井提高石油采收率的油藏物理模拟[J].中国科学E辑,2003,33(3):280~288.
    [90]李华斌.岩心渗透率对复合驱油效率影响的实验研究[J].油田化学2007,.24(1):67~69.
    [91]陈霆.非均质储层模型微观水驱油实验.油气地质与采收率[J].2007,14(4):72~75.
    [92]崔文富.反韵律厚油层夹层分类及纵向剩余油分布模式—以胜坨油田沙二段8~15砂层组为例[J].油气地质与采收率,2005,12(1):52~55.
    [93]王家禄,沈平平,李振泉,等.交联聚合物封堵平面非均质油藏物理模拟[J].2002,23(3):60~65
    [94]李宜强,隋新光,李洁,等.纵向非均质大型平面模型聚合物驱油波及系数室内实验研究[J].石油学报,2005,26(2):77~84.
    [95]李建路,何先华,高峰,等.三元复合驱注入段塞组合物理模拟实验研究[J] .石油勘探与开发,2004,31 (4):126~128.
    [96]陈长春,魏俊之.水平井产能公式精度电模拟试验评价[J].石油勘探与开发,1998,25(5):62~64.
    [97]曲德斌,葛家理.水平井开发基础理论—物理模型研究[J].石油学报,1994,15(4):49~57.
    [98]Suprunowicz R.An Experimental Investigation of Convergent Flow to Horizontal Well.The sixth petroleum conference of the south saskatchewan section,1995:1~17.
    [99]Hongen Dou.The Experimental Study of Physical Simulation of Bottom Water Reserviors With Barrier and Permeable Interbed on Horizontal Well[J].SPE 55995,1999:1~10.
    [98]Mohamed A.Aggour and Irfan Sami Khan.Hele-shawModel Study of Horizontal Well Performance In Reservoir With Gas and Bottom Water Drive.Petrol Sci Technol2000,V(6):611~72.
    [100]Jiang Q.Butler R M.Experimental Study and Numerical Modelling of The Bottom Water Coning Flow to a Horizontal Well.Cim Petrol Soc EtAl Saskatchewan Petrol Conf,1995:16.
    [101]Permadi P,Lee R L,Kartoatmodjo R T.Behavior of Water CrestingUnder Horizontal Wells[J].SPE 30 743,1995:431~438.
    [102]Permadi P,Wibowo W,Erickson J.Optimum StingerLength for a Horizontal Well in a Bottom Water Drive Reservoir.Petroleum Society,1998.
    [103]Jha K N.Nitrogen Injection With Horizontal Wells for EnhancingHeavy-Oil Recovery:2D nd 3D Model Studies.SPE 23 029 ,1991:765~774.
    [104]万仁溥.中国不同类型油藏水平井开采技术[M].北京:石油工业出版社,1995.78~93.
    [105]江如意,王家禄,蒋志祥.高温高压三维水平井物理模拟系统[J].石油勘探与开发,1999,26(6):99~101.
    [106]刘丁曾,王启民,李伯虎.大庆多层砂岩油田开发.第一版[M].北京:石油工业出版社,1996.11.P5-6.
    [107]刘波.储集层的两种精细对比方法讨论,石油勘探与开发[J].2001,28(6),94-96.
    [108]赵翰卿.2000,大型河流-三角洲沉积储层精细描述方法[J].石油学报,21(4 ),109-113.
    [109]隋军,吕晓光,赵翰卿,等.大庆油田河流-三角洲相储层研究[M].北京:石油工业出版社.2000年,P85~111.
    [110]张昌民.青海油砂山油田第68号层分流河道砂体解剖学[J].沉积学报,1996,14(4 ):70-76.
    [111]刘波,赵翰卿,王良书,等.古河流废弃河道微相的精细描述.沉积学报,2001; 19(3):394~398.
    [112]张纪易.粗碎屑洪积扇的某些沉积特征和微相划分[J].沉积学报,1985,3 (3):75-85.
    [113]吕晓光,赵翰卿,付志国,等.河流相储层平面连续性精细描述[J].石油学报,1997:18(2):66~71.
    [114]赵被飞.河流相模式与储层非均质性[J].成都理工学院学报,1999,26(4):357~364.
    [115]蔡忠.孤岛、孤东油田馆上段微相特征与剩余油分布[J].石油大学学报,2000:21(3):256~258.
    [116]张红薇,赵翰卿,麻成斗.泛滥一分流平原相储层中河间砂体的精细描述[J].大庆石油地质与开发,1998,17(4):22~24.
    [117]伊三泉.曲流河边滩相中的反韵律沉积研究[J].大庆石油地质与开发,1995,14(1):12-14.
    [118]焦养泉,李思田,李祯,等.曲流河与湖泊三角洲沉积体系及典型骨架砂体内部构成分析[M].武汉:中国地质大学出版社.1995年,p105~136.
    [119]李庆明,陈程,刘丽娜,等.双河油田扇三角洲前缘储层建筑结构分析[J].河南石油,1999,13(3):14~19.
    [120]尹太举,张昌民,汤军,等.马厂油田储层层次结构分析[J].江汉石油学院学报.2001,23(4):19~21.
    [121]焦养泉,李祯.河道储层砂体中隔挡层的成因与分布规律[J].石油勘探与开发,1995,22 (4) :78~81.
    [122]裘亦楠,王振彪.油藏描述新技术[A]、见:中国石油天然气总公司油气田开发会议文集[C]北京:石油工业出版社,1996.62-72.
    [123]裘亦楠.开发地质方法论(一) [J].石油勘探与开发,1996; 23 (2):43~47.
    [124]尹燕义,王国娟.曲流河点坝储集层侧积体类型研究[J].石油勘探与开发,1998,25 (2) .
    [125]尹太举,张昌民,樊中海,等.地下储层建筑结构预测模型的建立[J].西安石油学院学报(自然科学版),2002,17(3):4~7.
    [126]刘忠保.定床变弯度曲流河边滩的水槽模拟实验[J].江汉石油学院学报,1994,16(4):34~38.
    [127]陆敬安,李舟波.测井曲线的自相似性研究[J].测井技术,1996,20(6),P422~427.李鹏翔.水平井测井解释研究的发展[J].江汉石油学院学报.1999,21(2):23~26.
    [128]Clavier C.The Challenge of Logging Horizontal Wells [J] .The Log Analyst,1991,32(2):63~84.
    [129]刘呈冰,毛克宇译.水平井测井数据的采集与解释[J] .测井译丛,1991(2):13~28.
    [130]Hardman R H,Shen L C.Theory of induction sonde in dipping beds[J].Geophysics,1986,51 (3):800~809.
    [131]马成玉译.感应测井的地层倾斜和井眼偏斜影响的校正图版[J] .国外测井技术,1988,3 (6):35~45.
    [134]Gianzero S,Su S M.The response of an induction dipmeter and standard induction tools in dipping beds[J].Geophysics,1990,55 (9):1128~1140.
    [135]肖加奇,张庚骥.水平井和大斜度井中的感应测井响应计算[J].地球物理学报,1995,38 (3):396~403.
    [136]李鹏翔,朱德怀,徐姣莲,等.大斜度井和水平井的感应测井响应及围岩影响校正[A].见:石油学会测井专业委员会编.'94西安国际测井学术会议论文集[C].北京:石油工业出版社,1994.115~123.
    [137]Chemali R,Gianzero S,Su S M.The dual laterolog in common complex situation [A].In:29th Annual Logging Symposium Transaction:Society of Professional Well Log Analyst,Paper N,1988.25.
    [138]徐建华,高义兵,王良琼,等.斜率井的侧向测井围岩校正[J] .江汉石油学院学报,1996,18 (1):49~52.
    [139]徐建华.朱德怀,李鹏翔,水平井中双侧向测井的围岩校正[J] .江汉石油学院学报,1994,16 (2):54~56.
    [140]向晓丽,张玺.有限元技术在预测储层孔隙度、渗透率中的应用[J].油气采收率技术,1999,6(2):49~53. [1141]焦养泉,李思田.陆相盆地露头储层地质建模研究与概念体系[J].石油实验地质,1998,12(4):346~353.
    [142]尹太举,张昌民.建立储层流动单元模型的新方法[J].石油与天然气地质,1999,20(2):170~175.
    [143]姚光庆,周锋德.孤岛油田馆陶组河流砂体储层宏观特征.河南石油,2002:16(3):4~7.
    [144]葛云龙,逮径铁,廖保方,等.辫状河相储集层地质模型一“泛连通体”[J].石油勘探与开发,1998,25(5):45~49.
    [145]吴胜和,金振奎.储层建模[M].北京:石油工业出版社,1999.P58~99.
    [146]贾爱林.1995年,储层地质模型建立步骤[J].地学前缘,2(3-4),221-225.
    [147]张昌民.储层砂体建筑结构分析.江汉石油学院学报,1994,16(2):1~7.
    [148]葛家理,刘月田,姚约东.现代油藏渗流力学原理(下册)[M].北京:石油工业出版社,2003.P30~100.
    [149]陈崇希,林敏.地下水动力学[M].北京:中国地质大学出版社,1999:P36~64.
    [150]陈程,贾爱林,孙义梅.厚油层内部相结构模式及剩余油分布特征[M].石油学报,2000,21(5),P99-103.
    [151]刘国旗,赵爱武,赵磊,等.河流相多层砂岩油藏剩余油描述及挖潜技术[J].大庆石油地质与开发,2001,20(5).
    [152]陈亮,彭仕密,聂昌谋.胡状集油田胡十二断块剩余油微观形成机理研究[J].断块油气田.1997,4(4):43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700