三维电极生物膜反应器脱除低C/N值废水中硝酸盐氮和COD
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用自行设计的三维电极-生物膜反应器引入到低C/N比的废水中进行反硝化的试验研究,分别对城市污水二级生化系统的模拟出水进行了深度脱氮研究,以及对硝酸盐氮负荷较高的废水进行脱氮研究。研究结果表明:
     利用三维电极-生物膜反应器对城市污水二级生化系统的模拟出水进行深度脱氮,在常温(20±1℃)条件下,进水中硝酸盐氮为40mg/L,COD为100mg/L时,为避免氢抑制现象的产生,反应器存在一个最佳工作电流20mA,反应器最大电流效率可达1003%;硝酸盐氮的去除速率随着硝酸盐氮负荷的增加,变化不大,电流和碳源是这个体系反硝化脱氮的主要控制因素;与单纯生物膜法相比,电极-生物膜法能显著提高反硝化脱氮效果,是单纯生物膜法的4.5倍,能够显著地缓解低C/N废水生物脱氮过程中碳源不足的矛盾;用自制的反应器处理1m3的模拟废水(含硝酸盐氮30mg/L,COD100mg/L),反应器对硝酸盐氮的去除率可达90%,反应器仅需要0.05KW·h的电能。因此,电极-生物膜污水处理装置具有低能耗的优点。
     将复极性三维电极生物膜反应器改进为单极性三维电极生物膜反应器,即在阳极石墨棒周围包裹筛绢,经改进后的反应器对硝酸盐氮负荷较高的废水脱氮效果明显提高,对硝酸盐氮的去除率为85%左右,约是改进前的2.4倍。
     总之,三维电极-生物膜反应器废水中的微生物能够同时利用有机物和电解产生的氢气进行反硝化,在低耗高效脱氮的同时,使COD也得到降解。它将是低C/N废水脱氮的一种很有潜力的工艺。
The experiments using low C/N ratio wastewater containing nitrate were carried out to investigate the denitrification performances of a self-made three-dimensional electrode-biofilm reactor. A synthetic secondary effluent containing nitrate and organic materials and high NO3--N concentration sewage were studied in this thesis. The results obtained in this study are described as follow.
     The advanced denitrification and organic materials removal performances were studied by the self-made three-dimensional electrode-biofilm reactor using a synthetic secondary effluent. An inhibition effect was observed. The optimum current was 20mA for the synthetic polluted water containing 40mg/L NO3--N and 100mg/L COD, and the peak current efficiency was up to 1003%. It was found that the denitrification rate was irrelevant to the concentration of NO3--N but influenced by the current and organic carbon source. The nitrate removal efficiency of the three-dimensional electrode-biofilm reactor was 4.5 times higher than that of the biofilm reacor. So, in some way, it could solve the problem of lack of carbon source. When the nitrate removal efficiency was about 90%, the reactor only consumed 0.05KW·h power for the sewage containing 30mg/L NO3--N and 100mg/L COD. Accordingly, the reactor was operated well under low energy- consumption.
     For high NO3--N concentration sewage, the bipolar three-dimensional electrode was reformed to a monopolar three-dimensional electrode, on which the nitrate removal efficiency was about 85%, about 2.4 times higher than that on the bipolar three- dimensional electrode-biofilm reactor.
     In conclusion, the microorganism in the three-dimensional electrode-biofilm reactor could denitrify by simultaneously utilizing the organic materials and hydrogen gas from the electrolysis of water. Meanwhile, COD could be removed effectively. The reactor was operated well under low energy-consumption. It would be a promising technique for low C/N ratio wastewater treatment.
引文
[1] 金兆半, 徐竟成. 城市污水回用技术手册[M]. 化学工业出版社, 2004: 7~10
    [2] 沈红心. 水资源的持续开发与利用[J]. 环境污染与防治, 1998, 20(3):32~34
    [3] 黄仲杰. 我国城市供水现状、问题与对策[J]. 给水排水, 1998, 24(2): 18~20
    [4] 肖羽堂.我国水资源与水工业的可持续发展[J]. 江流域资源与环境, 1999, 8(1): 50~56
    [5] 2002年《中国环境状况公报》, 国家环保局.2003
    [6] 国家环境保护总局科技标准司编. 中国湖泊富营养化及其防治研究[M]. 出版社: 中国环境科学出版社, 2001: 4~5
    [7] 郑兴灿, 李亚新编著. 污水除磷脱氮技术[M]. 中国建筑工业出版社, 1998
    [8] 吴耀国.地下水环境中反硝化作用.环境污染治理技术与设备[J]. 2002, 3(3): 27~31
    [9] Spalding,R.F and M.E.,Exner. Occurrence of nitrate in groundwater. A review. [J].Environ. Qual,1993,22(3): 392~402
    [10] Loftis.J.C.Trends in groundwater quality. Hydrological Process[J], 1996, 10(2): 335~355
    [11] 范彬, 曲久辉等.饮用水中硝态氮的脱除[J]. 环境污染治理技术与设备, 2000, 1(3): 4 ~5
    [12] MiquelA.F, OldaniM.A. newly developed process for nitrate removal from driking water. Nitrate contamintion: exposure, consequence and control, Borgardi, I.,and Kuzelka[J]. R.D.eds, 1991: 385~394
    [13] Richard Y.R., Operating experience of full scale biological and ion exchange denitrification plant in france, [J].Inst. WaterEnviron.Mgmt.,1989,3:154~167
    [14] CliffordD., Liu X., Biological denitrification of spent regenerant brine using a sequencing batch reactor[J].Wat.Res.,1993,27: 1477~1484
    [15] HagenW.A.M. The CARIX(r) process for removing nitrate, sulfate and hardness from water[J]. Aqua, 1980, 5:275~27
    [16] GuterG. A., Removal of nitrate from contaminated water supplies for public use[J].EPA-2600/S2-82-042,U.S. EPA, Cincinnati, Ohio, 1982
    [17] Skerman V.B.D., MacRaeI.C.. The influence of oxygen availability on the degree of nitrate reduction by Pseudomonas denitrification[J]. Microbiol, 1957, 3: 505~530
    [18] HalmoG.,EimhjellenK.,Low temperature removal of nitrate by bacterial denitrification[J].Wat.Res.,1980, 15: 989~998
    [19] 徐亚同. 污染控制微生物工程.北京:化学工业出版社, 2001: 95~992
    [20] 张蔚萍, 陈建中. 低碳高浓度含氮废水的生物脱氮技术[J]. 环境保护, 2003, (6): 20~21
    [21] 黄君涛, 熊帆, 钟理. 污水生物脱氮新工艺[J]. 广东化工, 2004, (9~10): 55~58
    [22] 王建龙. 生物脱氮新工艺及其技术原理[J]. 中国给水排水, 2000 , 16(2): 25~28
    [23] Sakakibara Y, Kuroda M. Electric prompting and control of denitrification[J]. Bio tech. Bio eng., 1993, 42: 535~537
    [24] 黄民生, 高廷耀. 电极生物膜法反硝化试验研究[J].上海环境科学, 1996, 15(6): 25~27
    [25] 范彬, 曲久辉, 雷鹏举等. 异养-电极-生物膜联合反应器脱除地下水中硝酸盐的研究[J]. 环境科学学报, 2001, 21(3): 257~262.
    [26] Sakakibara Y, Araki K, Tananka T, et al. Denitrification and neutralization with an electro chemical and biological reator[J]. Wat.Sci.Tech, 1994, 30(6):151~155
    [27] Sakakibara Y, Araki K, Watanabe T, et al. The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater[J].Wat.Sci.Tech., 1997, 36(2):61~68
    [28] Kuroda M, Watanabe T, Umedu Y. Simultaneous oxidation and reduction treatments of polluted water by a bio-electro reactor[J]. Wat. Sci. Tech., 1996, 34(9): 101~108
    [29] Kuroda M, Watanabe T, Umedu Y. Simultaneous COD removal and denitrification of wastewater by bio-electro reactors[J]. Wat.Sci.Tech., 1997, 35(8): 161~168
    [30] Zhang Lehua, Jia Jinping, Zhu Youchun, Electro-chemically improved bio-degradation of municipal sewage[J]. Biochemical Engineering Journal, 2005, 22: 239~244
    [31] 黄游. 电极生物膜-SBR联合法处理城市污水的研究[硕士学位论文]. 保存地点:广东工业大学, 2004
    [32] 郝桂玉. 电极生物膜SBR反硝化脱氮试验研究:[硕士学位论文].济南: 山东师范大学图书馆, 2003
    [33] Andrew M H, Joseph R V, Jamil K. Electrolytic stimulation of denitrification in sand columns. Wat Res, 1998, 32(9): 2830~2834
    [34] Tomohide Watanabe, Hisashi M, Masao K. Denitrification and neutralization treatment by direct feeding an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process[J]. Wat Res.,2001,35(17): 4102~4110
    [35] 吴未红, 袁兴中, 曾光明等. 电极-生物膜法处理铜酸洗废水[J]. 中国环境科学, 2005, 25(2): 236~240
    [36] Skadberg B., Geoly-Horn S. L., Sangamalli V. Influence of pH, current and copper on the biological dechlorination of 2,6-dichlorphenol in an electrochemical cell[J]. Wat Res.,1999, 33(9): 1997~2010
    [37] 朱靖, 许炉生. 生物膜电极法处理高浓度苯胺废水的研究[J]. 环境污染与防治, 2003, 25(5): 308~311
    [38] Feleke Z, SakakibaraY. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide [J]. Wat. Res., 2002, 36(12):3092~3102
    [39] 谭佑铭,王萌,罗启芳. 固定化反硝化菌涂层电极及模拟脱氮装置的研制[J]. 卫生研究, 2004, 33(4): 407~409
    [40] 沈耀良. 固定化微生物污水处理技术[M]. 北京: 化学工业出版社, 2002年.21~22
    [41] 冯玉杰. 电化学技术在环境工程中的应用[M]. 北京: 化学工业出版社, 2002年. 55~57
    [42] 范彬, 曲久辉, 雷鹏举, 等.异养-电极-生物膜联合反应器脱除地下水中硝酸盐的研究[J]. 环境科学学报, 2001, 21(3): 257~262
    [43] 范彬, 曲久辉, 刘锁祥, 等.复三维电极-生物膜反应器脱除饮用水中的硝酸盐[J]. 环境科学学报, 2001, 21(1): 39~43
    [44] Sakakibara Y, Nakayama T. A Novel Multi-Electrode System for Electrolytic and Biological Water Treatments: Electrolytic Charge Transfer and Application Denitrification[J]. Wat Res., 2001, 35(3): 768~778
    [45] Prosnansky M., Sakakibara Y. Kuroda M. Higt-rate denitrification and SS rejection by biofilm-electro reactor(BER)combined with microfiltration[J]. Wat.Res.,2002,36: 4801~4810
    [46] 王建龙.生物脱氮除磷新工艺及技术展望[J].中国给水排水, 2000, 16(2):25~28
    [47] 雷乐成, 杨岳平. 污水回用新技术及工程设计[M]. 出版社:化学工业出版社, 2002. 441~443
    [48] 周抗寒,周定. 用涂膜活性炭提高复极性电解槽电解效率[J]. 环境科学, 1994, 15(2), 38~40
    [49] 谢建治, 李博文, 张书廷, 等. 三维电极体系工作机理探讨[J]. 河北农业大学学报, 2005, 28(2): 108~111
    [50] 刘锁祥. 电化学-生物集成反硝化去除饮用水中硝酸盐氮的研究[博士论文]. 北京: 中国科学院生态环境研究中心, 2001
    [51] 王海燕, 曲久辉, 雷鹏举. 介质粒径对复三维电极-生物膜脱硝反应器的影响环[J]. 境科学学报, 2003, 23(1): 64~68
    [52] 国家环保局编. 水和废水监测分析方法[M]. 中国环境科学出版社,1989
    [53] 国家环保局编. 水质分析大全[M]. 科学技术文献出版社, 1989
    [54] HerJiunn-Jye, HuangJu-Sheng. Influences of carbon source and ratio on nitrate/nitrate denitrification and car bon breakthrough[J]. Bioresource Technology, 1995, 54(1): 45~51
    [55] Orhon D. Respirometric analysis of activated sludge behaviour- Ⅰassessment of the readily biodegradablesubstrate[J]. WatRes, 1998, 32(2): 461~475
    [56] FuerhackerM, BaverH, EllingerR, et al. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors[J]. WatRes, 2000, 34(9): 2499~2506
    [57] CarucciA, Ramadori R, Rssoettf S, et al. Kinetics of denitrification reactions insingle sludge systems[J]. Wat Res, 1996, 30(1): 51~56
    [58] Orhon D, Ates E. Characterization and COD fractionation of domestic wastewaters[J]. EnvironPoll, 1997, 95(2): 191~204
    [59] 李晓晨, 杨敏, 袁丽梅. 城市污水高效低耗生物脱氮工艺研究[J]. 江苏环境科技, 2003, 16(3): 1~3
    [60] 阎宁, 金雪标, 张俊清. 甲醇与葡萄糖为碳源在反硝化过程中的比较[J].上海师范大学学报, 2002, 31(3): 4~44
    [61] 李军, 杨秀山, 聂梅生, 等.序批式生物膜法的脱氮特性及机理研究[J].环境科学学报, 2002, 22(3): 20~323
    [62] 高景峰, 彭永臻, 王淑莹. 不同碳源及投量对SBR法反硝化速率的影响[J]. 给水排水, 2001, 27(5): 55~58
    [63] 金春姬, 佘宗莲, 高京淑等. 间歇曝气周期对低C/N比污水生物脱氮的影响[J]. 环境污染与防治, 2003, 25(5): 257~258
    [64] 侯红娟, 王洪洋, 周琪. 进水COD浓度及C/N值对脱氮效果的影响[J]. 中国给水排水, 2005, 21(12):19~21
    [65] J RVFlora, M TSuidan, S Islam, etal. Numerical modeling of a biofilm electrode reator used for enhanced denitrificationg[J]. Wat.Sci.Tech., 1994, 29(10~11): 517~524
    [66] 曲久辉, 范彬, 刘锁祥等. 电解产氢自养反硝化去除地下水中硝酸盐氮的研究[J]. 环境科学, 2001, 22(6): 49~52
    [67] 冯玉杰等编. 电化学技术在环境工程中的应用[M]. 出版社: 化学工业出版社, 2002, 24~25
    [68] 贾保军, 张爱丽. 有机废水处理中复极固定床电解槽的研究进展[J]. 环境污染治理技术与设备, 2003, 4(11):21~25
    [69] 周抗寒, 周定. 用涂膜活性炭提高复极性电解槽电解效率[J]. 环境科学, 1994, 15(2): 38~40
    [70] 娄金生, 谢水波, 何少年等. 生物脱氮除磷原理与应用[M]. 出版社: 国防科技大学出版社, 2002. 24~25
    [71] 李建平, 袁兴中, 渡智秀等. 生物电极膜内脱氮速率模型[J]. 中南大学学报(自然科学版), 2004, 35(3): 418~422
    [72] 徐亚同. 环境微生物学[M]. 出版社: 华东师范大学出版社, 1993
    [73] 沈耀良, 王宝贞. 废水生物处理新技术-理论与应用[M]. 出版社: 中国环境科学出版社, 2002
    [74] 田晋红, 熊平, 董莉仙等. 固定化反硝化细菌脱氮的研究[J]. 西南农业大学学报(自然科学版), 2004, 26(3): 318~321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700