遥感与GIS技术在山区铁路工程地质勘察中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路是国民经济的生命大动脉,为了有效实施西部大开发,国家加大了西部铁路网络建设,这些铁路主要分布在我国西部第一、二级地貌阶梯上,山高谷深,环境恶劣、交通不便,工程地质条件复杂,不良地质体类型繁多。在这些地区进行铁路选线采用常规地质勘察方法显得捉襟见肘,野外勘察范围有限,外业劳动强度大,工作进度缓慢,勘察质量难以保证;铁路工程地质勘察工作需要大量信息和资料的支持,同时也产生大量的成果数据,面对这些多源信息传统的文件管理模式也束手无策;目前我国铁路设计都是在二维地图上进行,缺乏立体感、不直观。在铁路工程地质勘察中采用遥感、GIS、三维可视化等新技术新方法,可以很好地克服以上局限,加快工作进度,并从整体上提高和保证工程地质勘察水平和质量。遥感技术为支持铁路勘察、规划和建设工作的数据采集和更新提供了必要的数据源;它的应用可以扩大地质勘察范围,克服地面调查的局限性,增强预见性,并可减少外业工作量,提高调查效率;通过遥感和三维可视化技术的应用可以对拟定线路穿越区的地形、地貌、地物、地质条件进行总体的认识和把握,准确直观地提取沿线工程地质条件和不良地质体等信息;而GIS技术为铁路地质勘查多源空间数据的存储、管理、分析和应用提供了强有力的技术支撑。
     本文在详细分析铁路工程地质有关信息的基础上,综合运用RS、GIS、三维可视化技术,对西部山区丽江-香格里拉、大理-瑞丽和兰州-重庆广元至重庆段三条新建铁路进行了遥感信息提取和遥感三维可视化仿真,并研制了铁路工程地质多源信息管理系统。取得了以下主要成果和认识:
     (1)针对中国西部山区恶劣的环境条件和复杂的地形、地质条件,提出了综合应用遥感、GIS和三维可视化技术进行铁路工程地质勘察信息提取和多源数据管理的技术方案,为山区铁路工程地质勘察和选线提供新思路。
     (2)以往的铁路工程地质遥感调查中,多选择Landsat卫星影像或航空相片为数据源。前者分辨率低对断裂构造有好的解译效果而对不良地质现象解译效果较差;后者可以有较高的分辨率且可以进行立体观测,但单张相片覆盖的范围较小,几何校正和图像镶嵌处理困难,且为黑白相片,信息量有限。本文主要对SPOT5影像在铁路工程地质勘察中的数字处理和信息提取的关键技术进行了研究,同时在构造提取时辅以ETM+影像,在重点滑坡解译时将航片与SPOT5影像进行融合,获得了高质量的影像图和解译效果,证明了将多源遥感影像用于铁路工程地质勘察的优越性。
     (3)利用高精度遥感影像可以直接勾绘出不良地质体的发育范围,并确定类型和性质,同时,还可以结合其他资料和不同时期的遥感图像分析其产生的原因、分布规律、危害程度和发展趋势。与传统的地面调查相比,速度快,成本低,准确率高,效果好,可以收到事半功倍的效果。遥感技术是西部山区铁路工程地质调查和选线不可或缺的手段之一。
     (4)利用三维可视化技术将高精度DEM与正射遥感影像叠加建立三维遥感模型,提供可供反复使用的真实、直观地面景观影像和连续的漫游动画,辅助铁路工程地质三维信息提取和选线决策。遥感图像三维可视化及影像动态分析方法为铁路沿线地质调查工作开拓了新的工作思路,对加快铁路地质调查工作现代化进程具有重要意义和实用价值。
     (5)针对铁路工程地质勘察信息数据量大、数据类型复杂等特点,采用LIBRARIAN分图幅数据管理技术进行铁路工程地质多源数据建库。LIBRARIAN通过对空间数据分块,并以建立空间索引的方式进行数据访问,可以方便快速地提取、查询、显示及维护空间数据,为铁路工程地质多源数据的管理提供了新思路。
     (6)以ArcGIS软件为平台,在充分利用ArcGIS软件本身强大功能的基础上,采用VB+AO方式,开发出了铁路工程地质多源信息管理系统,实现数据库的管理、查询检索、空间分析、图形输出、三维虚拟行等功能,为铁路设计施工提供了数据源和决策平台。
     本文研究表明在西部山区的铁路工程地质勘察与选线工作中,综合运用遥感技术、GIS技术和三维仿真技术可以扩大勘察范围、减少外业工作量、加快工作进度、提高地质勘察水平和质量,增强工程地质多源信息的有效管理与利用,为铁路建设的可视化、数字化、人工智能化管理提供技术支撑。
Railway is the artery of national economy. In order for the effective implementation of the policy of grand western development, our country increased the construction of western railway network. As the western railways are mainly built in the areas of first and second-order geomorphologic ladder, where there are steep mountains, bad environment, inconvenient traffic, complex engineering geological situation and numerous bad geological bodies, the general methods of geological survey seem to be inapplicable for the railway route selection of these areas, for they will result in many problems including limited field survey range, large outdoor work load, slow work progress and bad survey quality. Moreover, as the geological survey work of railway engineering needs numerous information and data and also produces numerous data, the tradition mode of file management is unable to deal with such multi-source information; and as the current railway design is carried out in the 2D map, the stereoscopic effect is lacked. The application of new technologies such as Remote-Sensing, GIS and 3D Visualization in the geological survey of railway engineering can solve the abovementioned problems. It also can speed up the working process, improve and guarantee the ability and quality of engineering geological survey. Remote-Sensing technology can provide the necessary data source for the data collection and updating required by the railway survey, planning and construction work; its application can expand the range of geological survey, overcome the limitation of ground investigation, reinforce the prediction, reduce the outdoor work load and improve the survey efficiency; by means of Remote-Sensing and 3D Visualization technologies, the general knowledge about the topography, geomorphology, ground objects and geological situation of the areas through which the planned railway passes can be obtained, and such information including the geological situation and bad geological bodies along the railway can be accurately and visually abstracted; and GIS technology can offer strong technical support to the storage , management , analysis and application of multi-source spatial data of geological survey of railway engineering.
     Based on a detailed analysis to the relevant information of railway engineering geology, this thesis carries out the Remote-Sensing information abstraction and Remote-Sensing 3D visualization simulation for the three newly built railways from Lijiang to Shangri-La, Dali to Ruili and Lanzhou to Chongqing( Guangyuan to Chongqing section) in western rural areas and developed the multi-source information management system of railway engineering geology by integrating RS,GIS and 3D Visualization technologies. The main results are shown as following:
     (1) Aiming at the bad environment, complex topographic and geological situation of western areas in China, the technical scheme of integrating RS, GIS and 3D Visualization technologies to carry out the geological survey information abstraction and the multi-source information management is put forward. This provides a new thought for the geological survey and route selection work of railway engineering in rural areas.
     (2) In current remote-sensing investigation of railway engineering geology, either Landsat satellite images or aerial photos is selected as the data source. The former has low resolution. Although it has good interpretation effect of fault structure, it has bad interpretation effect of bad geological phenomenon; the latter has high resolution and can be stereoscopically observed, but the coverage of each photo is quite small, so it's hard to conduct geometric correction and photo mosaic; and as the photos are black and white photos, the information is limited. This thesis mainly adopts the key technology of digital treatment and information abstraction of SPOT5 image in the geological survey of railway engineering. Besides, the ETM+image is also used to assist the abstraction of fault structure. The aerial photos and SPOT5image are employed together to interpret the important landslides, thus the image picture and interpretation effect of high quality are obtained, and the advantage of using multi-source remote-sensing image in the geological survey of railway engineering is demonstrated.
     (3) High-accuracy Remote-Sensing image can be used to delineate the developmental range of bad geological bodies, and define their types and nature. Besides, it can be combined with other information and the Remote-Sensing image at different time to analyze the reasons, distribution rules, damage degree and development trends of bad geological bodies. Compared with the tradition ground investigation, it has higher speed, higher accuracy rate and better effect, but its cost is quite lower. Remote-Sensing technology is an indispensable means for the geological survey of railway engineering and railway route selection in western rural areas.
     (4) The technology of 3D Visualization is adopted to superpose high-accuracy DEM with ortho Remote-Sensing image to build 3D remote-sensing model so as to provide real and visual images of ground landscape that can be used repeatedly and continuous animation, and assist the 3D information abstraction of geological survey of railway engineering and the decision-making of railway route selection. The technology of 3D visualization of Remote-Sensing image and the method of dynamic analysis open a new thought for the geological survey work along the railway. It is of great significance and of practical value to the acceleration of modernization process of railway geological work.
     (5) As the geological survey of railway engineering is featured by a large amount of information and complex data type, the technology of LIBRARIAN mass data chart division management is adopted to establish the multi-source database of railway engineering geology. LIBRARIAN technology is to divide the spatial data into parts and access data by spatial index, thus it is fast and convenient to abstract, search for, display and maintain spatial data. It provides a new thought for the multi-source data management of railway engineering geology.
     (6) With ArcGIS software as the platform, based on full utilization of the strong functions of ArcGIS software itself, VB+AO method is adopted to develop the multi-source information management system of railway engineering geology, which can realize many functions of the multi-source information database such as management, search and retrieval , spatial analysis, graphics output, 3D virtual flight,etc, and provide the data-source and the decision-making platform for the construction of railway design.
     The study of this thesis shows that in the geological survey and route selection work of railway engineering in western rural areas, the integrated use of remote-sensing, GIS AND 3D Visualization technologies can expand the range of geological survey, reduce the outdoor work load, speed up the working process, improve the ability and quality of geological survey, strengthen the effective management and utilization of multi-source information of engineering geology, and provide technical support for the visualization, digitalization, and artificial intelligence management of railway construction.
引文
[1]D Middelkoop,M Bouwman.Train Network Simulator for Support of Net Work W ide Planning of Infrastructure and Timetables[C].Computers in Railways ⅥⅠ:267-276.
    [2]GIS Based Railway Network Information System[OL].www.esri.com.
    [3]Hans-Jurgen Geisler.DB-Streckendaten—STREDA[J].Eisenbahningenieur 1998,49(12):18-21.
    [4]Peter Cook,Argha Mukerjee.India Railways GIS-based Decision-support Syst em[OL],www.esri.com
    [5]Software Speeds Up the Design of Italian HS Line[J].IRJ,2001,(9):29.
    [6]Tome Judge.Software Brings Field Data to Planning Room[J].Railway Trac k&Structures,1999,(4).
    [7]William C Vantuono.Simplifying Signal Design[J].Railway Age,2000(8):61-62.
    [8]Zlatanova S.,Rahman AA.,Pilouk M.3D GIS:Current Status and Perspectiv es[C].Proceedings of the Joint International Symposium on Geospatial Theo ry,Processing and Applications,Ottawa,Canada,2002.7:8-12.
    [9]边馥苓.地理信息系统原理和方法[M].北京:测绘出版社,1996:7-17.
    [10]戴昌达,雷莉萍.TM图像的光谱信息量特征与最佳波段组合[J].环境遥感.1989,4(4):282-292.
    [11]党安荣,王晓栋,陈晓峰,等.ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社,2003.
    [12]杜红星,周安荔.三维可视化铁路选线辅助设计系统研究[J].工程勘察,2004,(1):48-51.
    [13]龚健雅.当代地理信息技术[M].科学出版社,2004.7.
    [14]郭晓虹.浅谈地理信息系统及其应用[J].内蒙古科技与经济,2001(2),42-44.
    [15]韩玲.多源遥感信息融合技术及多源信息在地学中的应用研究[J].西北大学博士学位论文,2005.
    [16]何莉,易思蓉.铁路线路视景仿真中构造物三维模型库的研究[J].铁道勘察,2006,6:25-27.
    [17]何震宁.超前加深地质工作提高铁路勘测设计质量[J].铁道工程学报,1998,(3):81-85.
    [18]胡鹏,黄杏元,华一新.地理信息系统教程[M].武汉大学出版社,2002.2.
    [19]贾利民,王英杰,秦勇.铁路地理信息系统(RGIS)框架体系[J].中国铁道科学,2003,24(1):2-6.
    [20]蒋红斐,詹振炎.铁路线路三维可视化设计实现方法研究[J].中国铁道科学,2002,23(3):72-76.
    [21]蒋红斐,詹振炎.铁路线路三维设计模型的建立方法研究[J].长沙铁道学院学报,2000,18(2):2-4.
    [22]蒋红斐.路线三维建模及三维动画制作[J].计算机时代,2002(11):17-18.
    [23]靳海亮,高井祥.三维地形可视化技术研究进展[J].测绘科学,2006,31(6):162-164.
    [24]兰培真,金一丞.基于等高线的三维真实感地形绘制技术的研究[J].中国航海,2001, 48(1):32-36.
    [25]李德仁,刘良明,胡孝沁.1996-2000年中国摄影测量与遥感进展[A].第十二届全国遥感技术学术交流论文集[C],成都,2000.
    [26]李德仁.论地理信息科学的形成及其在跨世纪中的发展[J].世界科技研究与发展,1996(5):1-8.
    [27]李光伟.铁路地理信息系统建设若干问题的讨论[J].铁路地理信息系统专集(1),2001.
    [28]李军,周成虎.地学数据特征分析[J].地理科学.1999,19(2).
    [29]李天华,廖崇高,杨武年等.遥感数字图像处理关键技术及其在青藏高原机场建设工程中的应用[J].工程勘察,2006,(12):51-54.
    [30]李天华.“3S”技术在高原机场建设工程中的应用研究[D].成都:成都理工大学硕士学位论文,2007.
    [31]李为乐.RS和GIS在高寒山区铁路地质勘察中的应用[J].山西建筑,2008,34(9):358-359.
    [32]李玉霞,杨武年,刘汉湖等.遥感图像三维可视化技术在西部高原区机场建设工程中的应用—以昆明小哨机场为例[J].物探化探计算技术,2007,29(3):261-263.
    [33]廖丽琼.基于GIS的铁路工程地质信息系统的构建[J].四川地质学报,2001,21(1):44-47.
    [34]廖明军,王凯英,王杨.公路路线三维可视化设计研究进展[J].森林工程,2004,20(6):53-55.
    [35]刘军旗,吴冲龙,黄长青等.工程地质共用信息系统平台设计与应用[J],人民长江,2007,38(1):132-134.
    [36]刘荣高,李春来.应用遥感与地理信息系统评价公路地质背景的方法[J].地质地球化学,2001,29(1):91-93.
    [37]刘伟华,黄健.利用PHOTOSHOP进行遥感影像的色彩处理.2005数字江苏论坛—电子政务与地理信息技术论文专辑.2005:206-208.
    [38]刘艳芳.铁路GIS空间数据库的设计思想[J].北京测绘,2002(4),15-17.
    [39]刘勇.基于GIS技术的工程地质资料管理系统的开发与研究-以云万高速为例.西南交通大学硕士研究生学位论文,2005.
    [40]吕希奎,易思蓉.基于遥感数据的选线三维地理环境建模方法[J].铁道标准设计,2006(增刊):208-212.
    [41]栾骏,唐新军,严和平等.工程地质勘察信息处理系统的设计与开发[J].新疆农业大学学报,2002,25(1):54-59.
    [42]马明国,王雪梅,李新.青藏铁路信息系统数据库设计[J].冰川冻土,2002,24(5):652-658.
    [43]毛锋.综合GIS、RS、GPS技术建设铁路地理信息系统[J].GIS工程,2002(1):25-28.
    [44]梅安新,彭望碌,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    [45]欧少佳,许惠平,叶娜.基于组件体系结构的地质GIS应用系统开发研究[J].吉林大学学报(地球科学版),2002,32(4):408-412.
    [46]潘丰利,王德冬,宋清泉等.浅谈遥感三维飞行数据模型及其在自然灾害监测与评估中的作用[J].山东国土资源,2003(6).
    [47]蒲浩,宋占峰,詹振炎.铁路线路设计中三维实时交互式仿真研究[J].中国铁道科学,2003,24(5):56-60.
    [48]秦军.铁路工程地质遥感信息的处理方法研究[J].中国铁道科学,2003,24(1):28-32.
    [49]任自珍,秦军,邓芳等.泥石流遥感研究的新方法,铁道勘察,2005(1):21-27.
    [50]芮小平.空间信息可视化关键技术研究—以2.5维、三维、多维可视化为例.中国博士学位论文全文数据库,2004.
    [51]史文中,志勇,肖宁.浅析3S技术集成与公路交通建设[J].测绘通报,2003(3):12-15.
    [52]苏林.铁路线路三维设计研究与开发[J].铁道勘察2007(2):77-78.
    [53]孙宝忠,李光伟,吴为禄.三维影像合成技术在滇藏线预可行性研究中的应用[J],铁道工程学报,2002(1):9-11.
    [54]孙宝忠.基于GIS Arcview的石太线铁路工程地质病害的遥感调查[J].铁道工程学报,2001(2):73-76.
    [55]谭衢霖,沈伟,杨松林等.摄影测量与遥感在我国铁路建设中的应用综述[J].铁道工程学报,2007,1(1):13-19.
    [56]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [57]王斐,王杰生,胡德永.三个商用遥感数字图像处理软件比较[J].遥感技术与应用:1998,13(2):49-56.
    [58]王福田,刘仍奎.铁路地理信息系统平台选择[J].铁路地理信息系统专集(1),2001.
    [59]王金委,曾学贵,李家稳等.铁路线路设计中三维可视化辅助设计系统研究[J].铁路航测,2002(3):11-14.
    [60]王卫东,刘武成.基于GIS的公路地质灾害信息管理与决策支持系统[J].中南工业大学学报(自然科学版),2003,34(3):302-304.
    [61]王晓鹏,霍晓斌,李会祥等.应用三维GIS技术实现数字沙盘的制作—以中原油田濮城文留地区为例[J].河南石油,2005,19(4):72-73.
    [62]王英杰,贾利民,秦勇,等.地理信息系统在铁路上的应用[J].中国铁道科学,2002,23(5):23-27
    [63]王玉泽.铁路线路设计回顾与思考[J]铁道工程学报,2007(1):27-31.
    [64]王治华.滑坡、泥石流遥感回顾与新技术展望[J].国土资源遥感,1999(9).
    [65]邬伦,刘瑜,张晶等.地理信息系统-原理、方法和应用[M].科学出版社,2002.3.
    [66]吴冲龙,汪新庆,刘刚等.地质矿产点源信息系统设计原理与应用[M].武汉:中国地质大学出版社,1996.1-34.
    [67]吴为禄,李光伟,李振东等.基于GIS的铁路遥感工程地质信息系统建立[J].铁路地理信息系统专集(2),2001.
    [68]吴伟,唐光宇,卢浩.铁路地理信息系统开发设想[J].中国铁路,2001(12):18-21.
    [69]吴信才,白玉琪.地理信息系统(GIS)发展现状及展望[J].计算机工程与应用,2000,36(4):8,9,38.
    [70]吴信才等.地理信息系统原理与方法[M].电子工业出版社,2002.3.
    [71]许士敏.地理信息系统(GIS)的发展与前瞻.http://www.gisforum.net.2006.3.3.
    [72]杨蘅,洪英.航空摄影测量技术在公路勘测中的应用[J].科技情报开发与经济,2005,15(8):256.
    [73]杨明.GIS技术在铁路工务管理地质灾害信息系统中的应用研究.西南交通大学研究生硕士学位论文,2002.
    [74]杨松,朱衡君.铁路地形建模三维可视化研究[J].铁路计算机应用,2003,12(2):31-33.
    [75]杨武年,廖崇高,濮国梁等.遥感解译三维可视化及影像动态分析.地质通报,2003,22(1):60-64.
    [76]杨武年,徐强.数字区调新技术新方法—遥感图像地质解译三维可视化及影像动态分析[J].地质通报,2003,22(1):60-64.
    [77]易思蓉.基于虚拟环境系统的铁路选线设计技术[J].中国铁路,2001(1):46-48.
    [78]尹建忠.多源信息综合分析在矿产资源潜力评价中的应用[D].成都:成都理工大学硕士学位论文,2004.
    [79]余德清.各个遥感软件的评价—兼对国产CASM ImageInfo软件评价[EB/OL].[2007-10-23].http://niuxiaojie.bokee.com.viewdiary.19945891.html.
    [80]袁金国.遥感图像数字处理[M].北京:中国环境科学出版社,2006.2.
    [81]袁艳斌,姜晖,汪新庆.三峡坝区工程地质信息系统集成开发研究[J].地球科学,1999,24(5).
    [82]曾钱帮,刘大安,马占海,许晖.地形三维可视化在川藏公路典型路段中的应用[J].工程地质学报,2006,14(4):518-521.
    [83]曾钱帮,刘大安,潘炜.地形三维可视化在川藏公路典型路段中的应用[J].工程地质计算机应用,2004(4),13-15.
    [84]张金龙,兰艳青.数字地面模型三维地形数据制作的关键技术研究[J].铁道勘察,2006(5):29-31.
    [85]张金强,谷叶民.铁路地理信息系统(RGIS)的总体构想[J].铁路地理信息系统专集(1),2001.
    [86]张明华,薛重生.基于GIS、RS的西藏墨脱高等级公路工程地质勘察[J].干旱区地理,2004,27(3):409-413.
    [87]张明华.西藏墨脱高等级公路工程地质遥感勘察及GIS应用[J].中南公路工程,2005,30(3):43-47.
    [88]张永波,向全,张礼中等.地质灾害信息处理与决策支持系统的设计与开发[J].地理学与国土研究,2002,18(4):25-27.
    [89]张永生.遥感图像信息系统[M].北京:科学出版社,2000.
    [90]张玉清.基于遥感的成昆铁路泥石流病害的判译和治理对策[J].陕西教育学院学报,2002,18(3):54-57.
    [91]张占忠.遥感技术在铁路勘察选线中的应用[J].铁道勘察,2005(1):44-46.
    [92]赵建昌,刘世忠,吉随旺.铁路选线中的工程地质问题[J].中国地质灾害与防治学报,2001,12(1):7-9.
    [93]赵艳良.蓝新线铁路工程地质选线遥感工作方法[J].铁路航测,2002(2):20-21.
    [94]甄春相.遥感技术在铁路勘测中的作用[J].铁路航测,2000(4):23-25.
    [95]朱良峰,吴信才,刘修国.铁路地质灾害信息系统框架设计[J].铁路计算机应用,2003,12(11):22-25.
    [96]朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,105.
    [97]卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社.2002,422-513.
    [98]卓宝熙.遥感技术在工程勘测中的应用[J].工程勘察,2004(3):43-45.
    [99]卓宝熙.遥感技术在铁路建设中的实践与认识[M].北京:中国铁道出版社,2005,37-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700