玉北地区鹰山组岩溶型储层地质—地震综合预测技术及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦盖提斜坡玉北地区多口探井的中下奥陶统鹰山组岩溶型储层见到良好油气显示,展现出该区奥陶系碳酸盐岩储层良好的油气勘探前景。但是由于工区经历多期构造运动,断裂体系发育,使得该区鹰山组岩溶型储层的缝洞发育规模、空间分布变化较大,储层非均质性很强。这也使得后续布置探井接二连三的失利,该区的勘探陷入举步维艰的境地。因此对玉北地区奥陶系碳酸盐岩岩溶储层主控因素、储层纵横向展布规律及岩溶发育模式需要全面的分析研究。文中提出地质地震综合预测的思路,以地质模式与认识为宏观指导与约束,充分发挥地震资料的空间连续展布优势,开展多种技术方法的地质地震储层综合预测。
     通过对玉北1井三维研究工区奥陶系鹰山组储层的地质特征研究分析,鹰山组岩溶储层储集空间多样化,以裂缝、溶孔及小型溶洞为主,发育储层类型主要包括裂缝-溶孔型、裂缝型及溶孔型三类。断裂体系、古地貌、构造运动、岩溶作用、不整合面共同控制着岩溶储层的发育,对储层有建设性改造作用。构造运动的破裂作用造成研究区断裂体系及区域性裂缝广泛发育,它们为岩溶储层发育所需要的流体提供了渗滤通道,进而控制了地表、地下径流方向,使得岩溶储层沿断裂带发育;构造运动控制地壳的隆升和沉降,决定了研究区的岩溶古地貌形态及地层暴露程度,古地貌控制岩溶发育的有利相带分布;不整合面控制岩溶发育期次。缝洞充填作用属于破坏性成岩作用的一种,降低了储层内部的油气储集空间。通过研究区储层发育控制因素的讨论及储层发育特征的对比分析,认为鹰山组储层最主要的控制因素是断裂体系和岩溶古地貌,因此裂缝检测与古地貌恢复是对研究区岩溶储层预测的核心。
     古地貌岩溶斜坡上的岩溶高地残丘区是岩溶储层发育有利区带,岩溶发育范围与潜水面位置有关,古地貌恢复与分析为寻找储层发育区带指明了宏观方向;具体的储层展布特征需要利用包含丰富地质信息的地震资料,采用多种地震储层预测技术综合进行研究分析。频谱分解技术通过不同频率调谐振幅值反映缝洞储层的展布;倾角方位角属性可以识别规模较大的断裂系统,体曲率属性能反映地层因构造弯曲变形破裂产生的裂缝,精细相干体技术能够高精度地识别地层的不连续性,改进的蚂蚁追踪算法能有效检测因地层挤压而产生的构造剪破裂缝、扩张裂缝,综合四种方法研究结果,划分裂缝发育区带;鹰山组储层基质孔隙度低,溶蚀孔、洞对该段储层孔隙度的贡献最大,通过孔隙度反演,识别溶蚀孔洞发育区带;最后以古地貌及断裂带作为研究区储层预测参考因素之一,裂缝及溶蚀孔洞作为判定储层发育优劣的重要标准之一,测井储层评价的结果作为重要的评价参考,同时还结合已钻井油气显示的情况进行地震储层综合预测,确定有利勘探区域。
     从地质角度考虑,对玉北地区鹰山组岩溶型储层地震综合预测结果进行讨论,并给予地质合理性解释,实现完整的地质-地震储层综合预测。储层预测技术方法在研究区应用的有效性也得到充分体现。在此基础上建立鹰山组岩溶储层发育模式,为玉北地区下一步勘探提供借鉴和参考。
     不同类型的储集体受控于不同的主控因素,有不同的地质特征,对应着不同的地震响应特征。通过不同地区、不同主控因素在地震上的响应特征对比分析,认为地球物理信息可以辅助储层主控因素的分析,同时在地震响应特征与主控不能匹配及合理解释时,能帮助及时发现问题,指导地质-地震储层综合预测。
Karst reservoirs in Yingshan formation of Lower Ordovician have a good showof oil and gas on Markit slope in Yubei area, showing good prospects of oil and gasexploration of these Ordovician carbonate reservoirs. However, the fracture-cavedevelopment scale and spatial distribution of karst reservoir in Yingshan formationchanged severely, and reservoir heterogeneity is very strong because of the repeatedlytectonic movements and the development of the fracture system. This makes theexploration into a difficult situation in the area. Therefore, the main controllingfactors, the vertical and horizontal distribution patterns and development mode ofthese karst reservoirs need furture research. Comprehensive prediction of Geologicaland seismic information is presented in this paper, based on geological model andunderstanding macro guidance and constraint, the advantage of continuous spacedistribution of seismic data is given full play, and comprehensive prediction ofgeological and seismic reservoir are carry out with a variety of seismic technicalmethods
     This paper studied the geological characteristics of Yingshan karst reservoir inlower Ordovician in the3D seismic research area of YuBei1Well, and point out thatthe reservoir space is multiplicity, which mainly consists of cracks, dissolved poresand holes. The reservoir types mainly contain cracks-dissolved hole reservoir, cracksreservoir and dissolved hole reservoir. These constructive transformations of fracturesystem, paleotopography, tectonic movement, karstification, unconformity surfacecontrolled the development of karst reservoirs together. The tectonic movementbrought about the fracture system and regional development of fractures, providingpercolation channel for karst reservoir development, and then controlled the flowdirection of surface and ground water, so as to the karst reservoir development along the fault zone; Tectonic movements control the uplift and subside of the crustal, anddetermine the paleotopography and the degree of stratigraphic exposure. Thepaleotopography regulate the distribution of favorable karst development zones;Unconformity surface controls the period of karst development. Crake-hole filling is adestructive diagenesis, and reduces the reservoir space within the oil and gas. Basedon the discussion of the controlling factors of reservoir development and comparativeanalysis of the characteristics of reservoir development, fracture system and karstpaleotopography are the most important main factors in Yingshan reservoirs, andfracture detection and paleotopography restoration should be the core of karstreservoir prediction.
     The highlands unaka area on paleo-geomorphic karst slope is the favorable zonesof karst reservoir development, and the range of karst development is related to theground water table, Paleo-morphologic restoration and analysis define our researchdirections to find the favorable reservoir development area. Seismic data with awealth of geological information and a series of seismic reservoir predictiontechnology are required to make comprehensive research and analysis for thedistribution characteristics of reservoirs. Spectral decomposition is adopted to reflectthe distribution of the fracture-cavity reservoir based on the different frequency tuningamplitude value; dip azimuth attribute can identify large-scale fault system; curvatureattribute reflects rupture cracks caused by stratum structure bending deformation;structure cube technology can accurately identify the discontinuities of formation; theimproved ant tracking algorithm can effectively detect tectonic shear cracks andexpansion cracks caused by the effect of formation extrusion; the comprehensiveresearch and analysis results of four methods can define the fracture developmentzone. The matrix porosity of the reservoir of Yingshan formation is low, anddissolution pores and caves make great contribution to the formation porosity, andporosity inversion can be used to identify the development zone of dissolution poresand caves. Finally, paleotopography and fault zone as one reference factor of reservoirprediction in study area; cracks and dissolved pores as one important criterion todetermine the pros and cons of reservoir development; logging reservoir evaluationresults as one important evaluation reference, and also combined with drilling oil andgas shows, seismic reservoir prediction is made to find the favorable exploration area.
     In the geological point of view, seismic prediction results of karst reservoir ofYingshan formation in Yubei area are discussed, and a reasonable interpretation ofgeology is given, and the completed geological-seismic reservoir prediction is realized. The effectiveness of reservoir prediction methods applied in the study areahas also been fully reflected. On this basis, karst reservoir development mode ofYingshan formation is established, which provides reference for the furtherexploration of the research area.
     Different types of reservoir, which have different geological characteristics, arecontrolled by different main factors, corresponding to different seismic responsecharacteristics. Through comparative analysis of the seismic response characteristicsof reservoirs with different main factors in different regions, geophysical informationcan assist the analysis of the main factors in reservoirs, and once the seismic responsecharacteristics are not matched with the main factors, problems are detected timely,which guide the geological-seismic reservoir comprehensive prediction.
引文
[1]朱光有,杨海军,苏劲等.塔里木盆地海相石油的真实勘探潜力[J].岩石学报,2012,28(4):1333-1347.
    [2]丁文龙,漆立新,云露等.塔里木盆地巴楚-麦盖提地区古构造演化及其对奥陶系储层发育的控制作用[J].岩石学报,2012,15(2):242-252.
    [3]黄思静.碳酸盐岩的成岩作用[M].地质出版社,2010.
    [4]陈强路,何治亮,李思田.塔中地区奥陶系碳酸盐岩储层与油气聚集带[J].石油实验地质,2007(4):367-372.
    [5]袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1994.
    [6]兰光志,江同文,张迁山,等.碳酸盐岩古岩溶储层模式及其特征[J].天然气工业,1996,16(6):13-17.
    [7] Choqutte and Steinen.Mississippian oolite and non-supratidal dolomite reservoirs in theGenevieve Formation,North Bridgeport Field,Illinois Bas in[M]//Roehl P.O., Carbonatepetroleum reservoir,New York, Springer-Verlag,1985:207-225.
    [8] Loucks. Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity,and reservoir implications[J]. AAPG Bulletin,1999,83:1795-1834.
    [9]龚福华,刘小平.塔里木盆地轮古西地区断裂对奥陶系古岩溶的控制作用[J].中国岩溶,2003,22(4):313-317.
    [10]陈学时,易万霞,卢文忠.中国油气田古岩溶与油气储层[J].沉积学报.2004,22(2):244-253.
    [11]徐国强.塔里木盆地早海西期风化壳岩溶洞穴层研究[D].成都:成都理工大学,2007.
    [12]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008,15(1):36-50.
    [13]侯方浩,方少仙,何江,等.鄂尔多斯盆地靖边气田区中奥陶统马家沟组五1~五4亚段古岩溶型储层分布特征及综合评价[J].海相油气地质.2011,16(1):1-13.
    [14]李泽敏,苗建宇.鄂尔多斯盆地中东部奥陶系风化壳储层稀土元素配分特征及其油气地质意义[J].海相油气地质.2012,17(3):55-61.
    [15]夏日元,唐建生,邹胜章,等.碳酸盐岩油气田古岩溶研究及其在油气勘探开发中的应用[J].地球学报,2006,27(5):503-509
    [16]叶德胜.塔里木盆地北部寒武-奥陶系碳酸盐岩的深部溶蚀作用[J].沉积学报,1994,12(1):66-71.
    [17]朱东亚,金之钧,胡文瑄,等.塔里木盆地深部流体对碳酸盐岩储层影响[J].地质论评.2008,54(3):348-356
    [18]王恕一,陈强路,马红强.塔里木盆地塔河油田下奥陶统碳酸盐岩的深埋溶蚀作用及其对储集体的影响[J].石油实验地质,2003,25(增刊):557-561.
    [19] Wierzbicki R., J. J. Dravis, I. Al-Aasm, and N. Harland, Burial dolomitization and dissolutionof Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia,Canada[J].AAPG Bulletin,2006,90:1843–1861.
    [20]Cantrell, D. L., P. K. Swart, and R. M. Hagerty. Genesis and characterization of dolomite,Arab-D reservoir, Ghawar field,Saudi Arabia[J]. GeoArabia,2004,9(2):1–26.
    [21] Conxita, James. Celestite formation,bacterial sulphate reduction and carbonate cementationof Eocene reefs and basinal sediments (Igualada,NE Spain)[J],Sedimentology,2002,49(2):171-190.
    [22] Kharaka, Lungedard, Ambats,et al. Generation of aliphatic acid anions and carbon dioxide byhydrous pyrolysis of crude oils[J].Applied Geochemistry,1993,8:317-324.
    [23] Barth and Bj rlykke, Organic acids from source rock maturation: generation potentials,transport mechanism and relevance for mineral diagenesis[J].Applied Geochemistry1993,8:325-337.
    [24]黄思静,QING Hairuo,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J].沉积学报,2007,25(6):815-824.
    [25] Worden, Smalley. Gas souring by thermochemical sulfate reduction at140℃[J]. AAPGBulletin,1995,79(6):854-863.
    [26] Cai, Hu, Worden. Thermochemical sulphate reduction in Cambro-Ordovician carbonates inCentral Tarim[J].Marine and Petroleum Geology,2001,18(6),729-741.
    [27] Machel. Bacterial and thermochemical sulfate reduction in diagenetic settings:Old and newinsights[J].Sedimentary Gelology,2001,140:143-175.
    [28] Ehrenberg, Porosity destruction in carbonate platforms[J]. Journal of Petroleum Geology,2006,29(1):41-52.
    [29] Davies, Smith. Structurally controlled hydrothermal dolomite reservoir facies: AnOverview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [30]潘文庆,刘永福,Dickson,等.塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J].沉积学报,2009,27(5):1-7.
    [31] Bagdasarova. The role of hydrothermal processes in oil and gas reservoirs formation[J].GeolNefti Gaza,1997,322(9):42-46.
    [32]吴茂炳,王毅,郑孟林,等.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J].中国科学(D辑:地球科学),2007(增刊I):83-92.
    [33] Wardlaw.Pore geometry of carbonate rocks as revealed by pore casts and capillarypressure[J]. AAPG Bulletin,1976,60(2):245-257.
    [34]朱井泉,吴仕强,王国学,等.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
    [35] Duggan J P,Mountjoy E W,Stasiuk L D. Fault-controlled dolomitization at Swan HillsSimonette oil field (Devonian),deep basin west-central Alberta,Canada. Sedimentology,2001,48:301—323
    [36] Green D,Mountjoy E W. Fault and conduit controlled burial dolomitization of the Devonianwest-central Alberta Deep Basin. Bull Can Petrol Geol,2005,53(2):101—129
    [37] Patterson and Kinsman. Formation of diagenetic dolomite in coastal sabkha along Arabian(Persian) Gulf[J]. AAPG Bulletin,1982,66:28-43.
    [38]于炳松,董海良,蒋宏忱,等.青海湖底沉积物中球状白云石集合体的发现及其地质意义[J].现代地质,2007,21(1):66-70.
    [39] Wacey, Wright and Boyce. A stable isotope study of microbial dolomite formation in theCoorong region, South Australia[J], Chemical Geology,2007,244(1-2):155-174.
    [40] Pisciotto and Mahoney. Authigenic dolomite in Monterey Formation, California, and relatedrocks from offshore California and Baja California[J]. AAPG Bulletin,1981,65(5):972-973.
    [41] Folk R L,Land L S.Mg/Ca Ratio and Salinity:Two Controls on Crystallization ofDolomite[J].AAPG Bulletin,1975,59:6O-68.
    [42] Land L S. The origin of massive dolomite[J].Journal of Geological Education,1985,33:112-125
    [43] Warren J.Dolomite:Occurrence,Evolution and Economically Importent Associations[J].Earth-Science Review,2000,52:1-81
    [44] Land, Failure to precipitate dolomite at25degrees C from dilute solution despite1000-foldoversaturation after32years[J].Aquatic Geochemistry1998,4(3-4):361-368.
    [45] Warthmann, Lith, Vasconcelos, et al.,Bacterially induced dolomite precipitation in anoxicculture experiments[J]. Geology,2000,28:1091-1094.
    [46] Vasconcelos, McKenzie, Warthmann, et al., Calibration of the δ18O paleothermometer fordolomite precipitated in microbial cultures and natural environments[J]. Geology,2005.33:317-320.
    [47] Warren, Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews,2000,52:1-81.
    [48] Boni, Parente, Bechstadt et al., Hydrothermal dolomites in SW Sardinia (Italy): evidence fora widespread late-Variscan fluid flow event[J], Sedimentary Geology,2000,(131):181-200.
    [49] Swennen, Vandeginstea and Ellam. Genesis of zebra dolomites (Cathedral Formation:CanadianCordillera Fold and Thrust Belt, British Columbia)[J].Journal of GeochemicalExploration,2003,78:571-577.
    [50] Kyser, James and Bone.Shallow burial dolomitization and dedolomitization of Cenozoiccool-water limestones[J]. Journal of Sedimentary Research,2002,72:146-157.
    [51] Alex, Jones, Dolomitization of the Pedro Castle formation (Pliocene),Cayman Brac, BritishWest Indies, Sedimentary Geology,2003,162:219-238.
    [52] Machel. Concepts and models of dolomitization:A critical reappraisal[C]//The Geometry andPetrogenesis of Dolomite Hydrocarbon Reservoirs.London:Geological Society SpecialPublication,2004,235:7-63.
    [53] Borkhataria, Aigner and Pipping. An unusual, muddy, epeiric carbonate reservoir: The LowerMuschelkalk (Middle Triassic) of the Netherlands[J]. AAPG Bulletin,2006,90(1):61-89.
    [54] Davies,Smith. Structurally controlled hydrothermal dolomite reservoir facies:An Overview[J].AAPG Bulletin,2006,90(11):1641-1690.
    [55] Luczaj J A. Evidence against the Dorag(mixing-zone)model for dolomitization along theWisconsin arch—A case for hydrothermal diagenesis[J].AAPG Bulletin,2006,90(11):1719-1738.
    [56]黄思静,QING Hairuo,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J].沉积学报,2007,25(6):815-824.
    [57]张学丰,胡文瑄,张军涛,等.塔里木盆地下奥陶统白云岩化流体来源的地球化学分析[J].地学前缘.2008,15(2):80-89
    [58] McLeod, A. E., N. H. Dawers, and J. R. Underhil. The propagation and linkage of normalfaults; insights from the Strathspey-Brent-Statfjord fault array, northern North Sea, processesand controls in the stratigraphic development of extensional basins: Oxford, UnitedKingdom[G].Blackwell Science,2000,12(3):263–284.
    [59] Meyer, V., A. Nicol, C. Childs, J. J. Walsh, and J. Watterson. Progressive localisation ofstrain during the evolution of a normal fault population[J].Journal of Structural Geology,2002,24(8):1215–1231.
    [60] Walsh, J. J., A. Nicol, and C. Childs. An alternative model for the growth of faults[J]. Journalof Structural Geology,2002,24(11):1669–1675
    [61] Gauthier, B. D. M., and S. D. Lake. Probabilistic modeling of faults below the limit ofseismic resolution in Pelican field, North Sea, offshore United Kingdom[J]. AAPGBulletin.1993,77(5):761–777.
    [62] Yielding, G., T. Needham, and H. Jones. Sampling of fault populations using sub-surfacedata: A review[J]. Journal of Structural Geology,1996,18(3):135–146
    [63] Ferrill, D. A., A. P. Morris, J. A. Stamatakos, and D. W. Sims. Crossing conjugate normalfaults[J]. AAPG Bulletin,2000,84(10):1543–1559.
    [64] Mauthe, G. Kompartmentbildende verwerfungen infolge kataklase (Rotliegend, NW-Deutschland)[J]. Erdo¨l Erdgas Kohle,2002,17(5):142–150.
    [65] Parnell, J., G. R. Watt, D. Middleton, J. Kelly, and M. Baron. Deformation band control onhydrocarbon migration[J]. Journal of Sedimentary Research,2004,74(7):552–560.
    [66] Bahorich M S, Farmer S L.3D seismic discontinuity for faults and stratigraphicfeatures[J].The leading Edge,1995,14(2):1053-1058
    [67] Marfurt K J, Kirlin R L,Farmer S L.3D seismic attributes us ing a semblance-basedcoherency algotirhm[J].Geophysics,1998,63(4):1150-1165
    [68] Marfurt K J,Sudhaker V,Gersztenkorn A,et al. Coherency calculations in the presence ofstructureal dip[J].Geophysics,1999,64(1):104-111
    [69] TrapPeH,HallmiehG,Foell M.Potential Powerin theap Plieation of seismic volumeattributes, FirstBreak,2000,18(9):397-402.
    [70] Murray, G. H. Jr..Quantitative fracture study-Sanish Pool,McKenzie County, North Dakota[J].AAPG Bulletin,1968,52(1):57-65.
    [71] Andy Roberts.曲率属性及在3D层位解释中的应用.勘探地球物理进展,2002,25(1):67-77
    [72] Bergbauer, S., T. Mukerji, and P. Hennings. Improving curvature analyses of deformedhorizons using scale-dependent fltering techniques[J]. AAPG Bulletin,2003,87(8):1255–1272,
    [73] Al-Dossary, S. and K. J. Marfurt.3D volumetric multispectral estimates of refector curvatureand rotation[J]. Geophysics,2006,71(5):41–51
    [74] Roberts, A.. Curvature attributes and their application to3D interpreted horizons[J]. FirstBreak,2001,19(2):85-99.
    [75]史军.蚂蚁追踪技术在低级序断层解释中的应用[J].石油天然气学报,2009,31(2):257-258
    [76]唐琪凌,苏波,王迪等.蚂蚁算法在断裂系统解释中的应用[J].特种油气藏,2009,16(6):31
    [77] Russell, B., Hampson, D., Schuelke, J., and Quirein, J.. Multi attribute seismic analysis[J].The Leading Edge,1997,16():1439–1443.
    [78] Hart, B. S., and Balch, R. S.. Approaches to defning reservoir physical properties from3-Dseismic attributes with limited well control: An example from the Jurassic SmackoverFormation, Alabama[J]. Geophysics,2000,65():368–376.
    [79] Schultz P S, Ronen S, Hattori M et al. Seismic-guided estimation of reservoir properties[J].SPE annual Technical Conference and Exhibition,1994,():235-250.
    [80] M.T. Taner. Seismic attribute[J]. CSEG Recorder,2001,9():48-56.
    [81] Kalkomey C T. Potential risks when using seismic attributes as predictions of reservoirproperties[J]. The Leading Edge,1997,16(3):217-251.
    [82] Hampson D, Schuelke J S and Quirein J A. Use of multiattribute transforms to predict logproperties from seismic data[J]. Geophysics,2001,66(1):220-231
    [83] Tonn R. Neural network seismic reservoir characterization in a heavy oil reservoir[J]. TheLeading Edge,2002,21(3):309-312
    [84] Russell B,H am pson D,L ines L R et al. Combining geostatistics and multiattributetransforms-A channel sand case study[J].CRE WES Res earch Rep or t,2001,13():827-842
    [85] Pramanik A G,Singh V,V ig R et al. Estimation of effective porosity using geostatistics andmultiattribute t ransfo rms-A case study.Geop hy sics,2004,69(2):352-372
    [86] A hmed O A, Abdel Aa l R E and AlM ustafa H. Reservoir property prediction usingabductive netw orks[J].Geop hy sics,2010,75(1):1-9
    [87] McCormack, M. D.. Neural computing in geophysics[J]. The Leading Edge,1991,10():11–15.
    [88] Schultz, P. S., Ronen, S., Hattori, M., and Corbett, C.., Seismic guided estimation of logproperties, parts1,2, and3[J]. The Leading Edge,1994,13():305–310,674–678and770–776.
    [89] Schuelke, J. S., Quirein, J. A., and Sarg, J. F.. Reservoir architecture and porosity distribution,Pegasus feld, West Texas—An integrated sequence stratigraphy–seismic attribute studyusing neural networks[J].67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,1997,():668–671.
    [90] Liu, Z., and Liu, J.. Seismic-controlled nonlinear extrapolation of well parameters usingneural networks[J]. Geophysics,1998,63():2035–2041.
    [91] de Groot, P.. Seismic reservoir characterisation using artific ial neural networks[J].19thMintrop Seminar,1999,():16–18.
    [92] Oldenburg, D. W., Scheuer, T., and Levy, S.. Recovery of the acoustic impedance fromrefection seismograms[J].Geophysics,1983,48():1318–1337.
    [93] Aminzadeh, F., J. Barhen, C. W. Glover, and N. B. Toomarian. Reservoir parameterestimation using a hybrid neural network[J]. Computers and Geosciences,2000,26(8):869–875.
    [94]]Saggaf, M. M., M. N. Toksoz, and M. I. Marhoon. Seismic facies classification andidentification by competitive neural networks[J]. Geophysics,2003,68():1984–1999,
    [95] Masters, T., Signal and image processing with neural networks[M].John Wiley&Sons, Inc.1994.
    [96] Specht, Donald. Probabilistic neural networks[J]. Neural Networks,1990,3(1):109–118.
    [97]张年春.塔西南古隆起迁移与油气分布规律研究[].成都理工大学.2012
    [98]聂刚.塔里木盆地巴楚隆起断裂样式及演化过程研究[硕士论文].中国地质大学(北京).2006
    [99]吴仕强,朱井泉,王国学等.塔里木盆地寒武一奥陶系白云岩结构构造类型及其形成机理[J].岩石学报,2008,24(06):13900-1400
    [100]徐伯勋,白旭滨等.地震勘探信息技术.北京:地质出版社,2001
    [101]韩翀,纪学武,尹晓贺.曲率体属性在碳酸盐岩生物礁储层中的应用[J].石油天然气学报,2010,58(4):283-287.
    [102]李忠;贺振华;巫芙蓉;王玉雪;巫盛洪.地震孔隙度反演技术在川西砂岩储层中的应用与比较[J].天然气工业,2006,26(3):50~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700