螺旋椭形管管束空间内流体流动及换热的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋椭形管是在普通圆管基础上进行压扁、扭曲而成型的,已有的研究表明螺旋椭形管管内流体对流换热性能强于普通圆形换热管,尽管流体阻力有所增加,但其综合性能依然更优。螺旋椭形管管束空间也形成了类似管内的螺旋形流道,其换热器壳体由于管束的自支撑结构不设折流板,流体在管束空间内呈纵向流动。针对目前相关研究的缺乏,本文通过实验与模拟的方法,探讨螺旋椭形管管束结构对于管外液相/气液两相的对流换热性能的强化机理以及对流动特性的影响,主要内容及结论如下:
     1.从三场协同的角度对于螺旋椭形管管束空间内流体流动及换热特性进行分析,得到螺旋椭形管管束结构有利于增强速度矢量与温度梯度、压力梯度的场协同程度,即在较小的压降下,尽可能提高管外流体的对流换热系数。并且管型尺寸如长短轴比值以及扭程长度的改变对于三场协同程度的影响有差异性。
     2.通过实验对比了弓形折流板油冷却器与螺旋椭形管油冷却器的管束空间内流体流动及换热特性,得到两种油冷却器管外流体对流换热系数,结果表明在相同的冷、热流体入口温度以及冷流体流量的条件下,弓形折流板油冷却器壳程流体的对流换热系数比螺旋椭形管油冷却器的高17%-26%,但在同样的实验条件下,螺旋椭形管油冷却器壳程具有更好的流阻性能,其压降仅为弓形折流板油冷却器壳程压降的40%左右。从综合性能来看,螺旋椭形管油冷却器是弓形折流板油冷却器的1.87-2.15倍,并且管外流体流量越低,螺旋椭形管油冷却器的换热流阻性能比越好。最后通过热力学性能评价指标指出了两台油冷却器的优化方向。
     3.根据对螺旋椭形管管外液相流动及换热特性的数值模拟,比较了在相同的流速范围内,分别改变换热管长短轴比值以及扭程长度对于流体换热与流动特性影响的大小,结果表明在相同的流速范围内,通过增大长短轴比值或者缩短扭程长度可以使得管外流体对流换热效果增强,但同时会增大流动阻力。并且上述两种参数的改变到了一定值时,对于换热性能的作用有限。分析管束空间内流体流动状态发现,管壁附近流体的流动在充分发展段后并非沿壁面均匀分布,而是趋向于管壁表面螺旋线最低点处,即管间间隔最大处。并绕着管壁呈螺旋式流动。螺旋椭形管的管壁能够改变管外流动边界层的形态,增加其在主流方向以外的扰动,从一定程度上增强了对流换热效果。因管壁形状变化产生的流体二次流集中分布在两管之间间距最大处。并且靠近管壁的地方二次流越明显。管束间的螺旋流道使流体在垂直于主流方向上产生了二次流,从而加强了流体径向混合,增加流体湍动程度,强化了对流换热。同时在远离壁面的主流区,是产生二次流最小的区域,此区域对流换热速率远大于近壁区,并且纵向流的流阻也大大的减小。
     4.通过对螺旋椭形管管束空间内气液两相流动特性的准三维研究,分析了不同直径的汽泡,以及螺旋椭形管螺旋表面对于气液两相流动特性的影响;对螺旋椭形管满液式蒸发器的池沸腾换热性能进行了实验研究,并将其应用于螺杆式冷水机组中,与普通满液式蒸发器在相同工况下进行测试对比。得到在相同的管内雷诺数范围内,螺旋椭形管满液式蒸发器的管外沸腾换热系数可以达到普通满液式蒸发器的1.27-1.31倍。在热负荷相同的条件下,螺旋椭形管满液式蒸发器的换热效果无疑更好。其总的换热系数为普通满液式蒸发器的1.15倍左右。
     5.运用数值模拟的方法,分析螺旋椭形管管壁外自由上升汽泡的运动特性以及对周围液相的影响。结果表明:(1)汽泡对液相的扰动作用随着上升速度的增快,而逐渐变强,使得液相的湍动程度不断增强,受影响的范围也逐渐变大。(2)汽泡在自由上升以及碰到管壁后,整个过程并非竖直向上运动,而是有横向位移,这是由于流场不均以及螺旋椭形管交变曲面的影响而造成的,并且管壁对于汽泡上升轨迹的影响更明显。(3)汽泡的横向位移使得上升过程中增加了与管壁的接触时间,破坏了管壁附近流动边界层,增强了近壁处流体的对流换热效果。(4)随着扭程的增大,管壁对于汽泡水平方向速度分量的改变越大,尽管增大了近壁面流体扰动,但另一方面汽泡与管壁的接触时间也变得越短。
The twisted elliptical tube (TET) is acquired by flattening and twisting the ordinarycircular tube. According to the existing literatures, the TET has stronger convective heattransfer performance and overall performance than the ordinary circular tube while the TEThas larger flow resistance. The space of TET bundle can be considered to consist of severalspiral flow channels. And in the shell side of a TET heat transfer, the tubes get aself-supporting structure without the conventional segmental baffles. Thus the shell-side fluidflows spirally and longitudinally in the TET bundle space. For the lackness of relevantresearches, the present work analyzes the heat transfer and fluid flow characteristics of liquidphase/gas-liquid two-phase flow in the space of TET bundle based on the experimental andnumerical methods. The main contents and conclusions are as follows:
     1. The field synergy principle is used to analyze fluid heat transfer and flowperformances in the space of the TET bundle. It is found that the structure of TET bundleimproves the synergy degree between velocity vector and temperature gradient or pressuregradient. In other words, it can obtain a better heat transfer enhancement performance with abit of increase of pressure drop. Moreover, the major axis to minor axis ration of oval crosssection and the twisted pitch of the TET have different influences on improving the synergydegree between velocity vector and temperature gradient or pressure gradient, respectively.
     2. An experimental comparison is conducted to study the heat transfer and flowresistance performances of a conventional oil cooler with segmental baffles and a TET oilcooler, respectively. Results show that under the same test conditions, the shell-sideconvective heat transfer coefficient of conventional oil cooler is17%-26%higher than that ofTET oil cooler. However, the TET oil cooler has a40%less pressure drop in the shell sidethan that of conventional oil cooler. And the overall performance of TET oil cooler is muchbetter especially with a low inlet velocity.
     3. Using a numerical simulation to change the major axis to minor axis ratios and twistedpitches, and analyze the impacts on the heat transfer and fluid flow characteristics within asame range of flow rates. Results show that the heat transfer can be enhanced by increasingthe major axis to minor axis ratio and decreasing the twisted pitch. But when the twoparameters are at certain values, their impacts on heat transfer will become unapparent. Thecontours of secondary flow of fluid outside the TET bundle provide the intensities of radialmixing of fluid. It is found that the secondary flow concentrate in the place where the intervalof two tubes is the largest. This is due to the spiral curved wall of the TET. The geometricconstruction of TET bundle induces the secondary flow of fluid in the space of TET bundle.And this effect leads to a radial mixing of fluid and breaks up the boundary layer. Meanwhilethe increasing of fluid flow is minor.
     4. A quasi3D video and a system test are conducted to study the heat transfer and fluidflow characteristics of the TET bundle in pool boiling. It is argued that the radial crosssections with different angles have different influences on bubbles of several diameters. ATET flooded evaporator is manufactured and installed to a water-cooled screw chiller. Theresults of system test show that the shell-side heat transfer coefficients of the TET floodedevaporator is1.27-1.31times that of a conventional flooded evaporator within a sametube-side Reynolds numbers. When the heat transfer capacities are same, the test results showthat the overall heat transfer coefficient of the TET flooded evaporator is about1.15times thatof the conventional flooded evaporator.
     5. A numerical simulation method is used to analyze the impacts of a rising bubble nearthe TET wall to the surrounding liquid phase. The results show that:(1) The rising of bubbleleads to a turbulence of liquid phase. And the influenced region will gradually become extent.(2) The motion path of a bubble is not going straight up either contacting the TET wall or not.Firstly it is due to the ununiformity of flow field around the TET bundle. And once the bubblecontact the spiral curved wall, its directions of body forces become varing.(3) The lateralmovement of bubble on the TET wall increases the time of contacting and destroys theboundary layer.(4) With the increase of twisting pitches, the horizontal velocity component of bubble rising become larger. Although this can increase the turbulent degree of near-wall fluid,the time of contact between bubble and the TET wall decreases.
引文
[1]中华人民共和国国务院新闻办公室.中国的能源政策(2012)[M].北京:人民出版社,2012:5-8
    [2]崔民选,王军生,陈义和.能源蓝皮书:中国能源发展报告(2012)[M].北京:社会科学文献出版社,2012:87-102
    [3]夏红德,张华良,徐玉杰,等.我国工业节能潜力与对策分析[J].工程热物理学报,2011,32(12):1992-1996
    [4]朱冬生,钱颂文,马小明,等.换热器技术及进展[M].北京:中国石化出版社,2008:79-95.
    [5]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002:111-125
    [6] Gentry C.C.,郭崇志.折流杆换热器技术[J].化工设备技术,1991,3:47-55
    [7]马有福,袁益超,刘聿拯,等.管壳式换热器壳侧强化换热技术的研究与进展[J].电站系统工程,2005,21(3):41-43
    [8]胡明辅,杨波涛,戚冬红,等.折流栅抗振型换热器结构及其抗振特性研究[J].压力容器,1999,16(2):16-19
    [9]严良文,王志文.一种新型纵向流管壳式换热器管束支撑结构[J].压力容器,2003,20(4):20-22
    [10] Gentry C.C.. ROD baffle heat exchanger technology[J]. CEP,1990,86(7):48-57
    [11]钱颂文,岑汉钊,江楠,等.换热器管束流体力学与换热[M].北京:中国石化出版社,2001:46-50
    [12]邓先和,邓颂九.管间支撑物的结构对横纹槽管管束换热强化性能的影响[J].化工学报,1992,43(1):62-68
    [13]邓先和,陈详明.空心环管壳式换热器工业化应用回顾[J].硫酸工业.2000,6:23-25
    [14]李雪梅,江楠,岑汉钊.变截面管换热器的流体力学性能研究[J].仲恺农业技术学院学报.2005,18(2):28-31
    [15]江楠,李伟军,任佩琳.变截面管换热器换热与阻力性能[J].石油炼制与化工,2001,32(6):33-36
    [16] Butterworth D.. Process heat transfer[J]. Applied Thermal Engineering,2004,24(8-9):1395-1407
    [17] Butterworth D., Guy AR, Welkey JJ. Design and application of twisted-tubeexchangers[J]. IChemE: Advances in industrial heat transfer,1996:87-95
    [18] Asmantas L.A., Nemira M.A., Trilikauskas W. Coefficients of heat transferand hydraulic drag of a twisted oval tube [J]. Heat Transfer-Soviet Research,1985,17(4):103-109
    [19] Dzyubenko B.V.. Investigation of the transfer properties of a stream ina heat exchanger with spiral tubes[J]. Inzhenerno-Fizicheskii Zhurnal,1980,38(6):965-971
    [20] Dzyubenko B.V.,Sakalauskas A.V., Vilemas Y.V., et al.. Local heat transferin the intertube space of a heat exchanger with spiral tubes[J]. Inzhenerno-Fizicheskii Zhurnal,1981,41(2):197-202
    [21] Dzyubenko B.V.. Heat exchanger along the initial segment in a heat exchangerwith a helical flow [J]. Inzhenerno-Fizicheskii Zhurnal,1982,42(2):230-235.
    [22] Ievlev V.M.,Dzyubenko B.V.,Dreitser G.A., et al.. In-line and Cross-flowHelical Tube Heat Exchangers[J]. International Journal of Heat and MassTransfer,1982,25(3):317-323
    [23] Dzyubenko B.V.. Features of heat and mass transfer in bundles of spiraltubes[J]. Inzhenerno-Fizicheskii Zhurnal,1986,50(4):535-542
    [24] Dzyubenko B.V., Stetsyuk V.N.. Effect of flow twisting intensity on themixing of a heat transfer agent in bundles of twisted tubes[J],Inzhenerno-Fizicheskii Zhurnal,1987,55(5):709-715.
    [25] Dzyubenko B.V.. Influence of flow twisting on convective heat transfer inbanks of twisted tubes[J]. Heat Transfer Research,2005,36(6):449-459
    [26] Dzyubenko B.V., Yakimenko R.I.. Efficiency of heat transfer surfaces usingthe method of effective parameters[J]. Heat Transfer Research,2001,32(7-8):447-454
    [27] Dzyubenko B.V.. Estimation of the thermohydraulic efficiency of heatexchanging apparatuses with twisted tubes[J]. Heat Transfer Research,2006,37(4):349-363
    [28] Dzyubenko B.V., Dreitser G.A., Yakimenko R.I.. Thermohydraulic Efficiencyof Heat Exchangers with Flow Swirling by Helical Tubes[J]. InternationalJournal of Heat Exchanger,2006,VE:145-162
    [29] Ljubicic B.. Testing of Twisted-Tube Exchangers in Transition FlowRegime[A]. Compact Heat Exchangers and Enhancement Technology for theProcess Industries: Proceedings of the International Conference on CompactHeat Exchangers and Enhancement Technology for the Process Industries Heldat the Banff Centre for Conferences[C]. Banff, Canada: Begell HousePublishers,1999:135-137
    [30] Dzyubenko B.V., Ashmantas L.V.,Segal M.. Modeling and Design of TwistedTube Heat Exchangers[M], USA: Begell House, Inc.,2000:215-221
    [31] Bishara F., Jog M.A., Manglik R.M.. Computational simulation of swirlenhanced flow and heat transfer in a twisted oval tube[J]. Journal of HeatTransfer,2009,131
    [32] Butterworth D.,Guy A.R., Welkey J.J.. Design and Application of TwistedTube Heat Exchangers[Z]. USA: Brown Fintube Company.
    [33] Covey R.. Exchanger with a twist[J]. Hydrocarbon Engineering,2004,9(3):83-84
    [34]顾维藻,神家锐,马重芳,等.强化换热[M].北京:科学出版社,1990:124-135
    [35]高学农,邹华春,王端阳,等.高扭曲比螺旋扁管的管内换热及流阻性能[J].华南理工大学学报(自然科学版),2008,36(11):17-21
    [36] Gao X. N., Yin H. B., Huang Y. Y., et al.. Nucleate pool-boiling enhancementoutside a horizontal bank of twisted tubes with machined porous surface.Applied Thermal Engineering,2009,29(14-15):3212-3217
    [37]孟继安,李志信,过增元.螺旋扭曲椭圆管层流换热与流阻特性模拟分析[J].工程热物理学报,2002,23:117-120
    [38]黄德斌,邓先和,王扬君,等.螺旋椭圆扁管强化换热研究[J].石油化工设备,2003,32(3):1-4
    [39]梁龙虎.螺旋形变管换热器的性能及工业应用研究[J].炼油设计,2001,31(8):28-33
    [40]张杏祥.螺旋形变管换热器换热与流阻特性研究[D].江苏:南京工业大学,2006
    [41]张杏祥,桑芝富.螺旋形变管管内流动与换热的三维数值研究[J].南京工业大学学报,2005,27(4):71-75
    [42]谭祥辉,孙赫,张立振,朱冬生.扭曲椭圆管换热的壳程强化换热特性[J].化工学报,2012,63(3):713-720
    [43] Tan X. H., Zhu D. S., Zhou G.Y.,et al.. Experimental and numerical studyof convective heat transfer and fluid flow in twisted oval tubes[J].International Journal of Heat and Mass Transfer,2012,55(17-18):4701-4710
    [44] Tan X. H., Zhu D. S., Zhou G. Y., Zeng L. D.. Heat transfer and pressuredrop performance of twisted oval tube heat exchanger. Applied ThermalEngineering,2013,50:374-383
    [45]卿德藩,段小林,刘尹红.螺旋形变管冷凝器强化换热及污垢特性实验研究[J].制冷学报,2007,28(6):47-50
    [46]蒋翔,王长宏,张景卫,等.扭曲管蒸发式冷凝器的性能与工业应用[J].流体机械,2008,36(12):1-6
    [47] Zhang L., Yang S., Xu. H., Experimental study on condensation heat transfercharacteristics of steam on horizontal twisted elliptical tubes. AppliedEnergy,2012,97:881-887
    [48] Gao X. N., Yin H. B., Huang Y. Y., et al.. Nucleate pool-boiling enhancementoutside a horizontal bank of twisted tubes with machined porous surface.Applied Thermal Engineering,2009,29(14-15):3212-3217
    [49]高学农,邹华春,王端阳,等.高扭曲比螺旋扁管的管内换热及流阻性[J].华南理工大学学报(自然科学版),2008,36(11):17-26
    [50] Lutcha J.,Nemcansky J.. Performance improvement of tubular heat exchangersby helical baffles[J]. Trans. IChemE,Part A,1990,68(5):263-270
    [51] Stehlik P., Swanson L. W., Nemcansky J., et al.. Comparison of correctionfactors for shell-and-tube heat exchangers with segmental or helicalbaffles[J]. Heat Transfer Engineering,1994,15(1):55-65
    [52]杜文静,袁晓豆,王红福,等.椭圆管连续螺旋折流板换热器壳侧性能评价及三场协同分析[J].化工学报,2013,64(4):1145-1150
    [53]王斯民,文键.无短路区新型螺旋折流板换热器换热性能的实验研究[J].西安交通大学学报.2012,46(9):12-15
    [54]褚家瑞.当代管壳式和板式换热设备的技术进展[J].石油化工设备,1992,21(2):3-7
    [55]杨世铭,陶文铨.换热学[M].北京:高等教育出版社,2006:137-140
    [56] Browne M.W., Bansal P.K.. Heat transfer characteristics of boilingphenomenon in flooded refrigerant evaporators[J]. Applied ThermalEngineering,1999,19:565-624
    [57] Katz D.L., Myers J.E., Young E.H., et al.. Boiling outside finned tubes[J].Petroleum Refiner,1955,34(2):113-116
    [58]王利,黄兴华,陆震.满液式蒸发器壳侧沸腾换热的研究进展(Ⅱ)[A].上海市制冷学会2001年学术年会论文集[C].上海:上海市制冷学会,2001:107-111
    [59] Webb R.L., Gupte N.S.. A critical review of correlations for convectivevaporization in tubes and tube banks[J]. Heat Transfer Engineering,1992,13(3):58-81
    [60] Fujita Y., Ohta H., Yoshida K., et al.. Boiling heat transfer on horizontaltube bundles[J]. Heat Transfer Science and Technology,1987,393-400.
    [61] Nakajima K., Shiozawa A.. An experimental study on the performance of aflooded type evaporator[J]. Heat Transfer-Japanese Research,1975,4(3):49-66
    [62] M.K. Jensen, J.T. Hsu, A parametric study of boiling heat transfer in atube bundle[A]. Proceedings of the ASME-JSME Thermal Engineering JointConference[C]. ASME, New York,1987,3:133-140
    [63] Yilmaz S., Palen J.W., Taborek J.. Enhanced boiling surfaces as single tubesand tube bundles[J]. Advances in Enhanced Heat Transfer,1981,18:123-124.
    [64] Arai N., Fukushima T., Arai A., et al.. Heat transfer tubes enhancing boilingand condensation in heat exchangers of a refrigerating machine[J]. ASHRAETransactions,1977,83(2):58-70
    [65] Wallner R.. Boiling heat transfer in flooded shell and tube evaporators,Proceedings of the13th International Congress of Refrigeration[A]. IIR[C],Paris,1971,2:185-191
    [66] Gupta A., Saini J.S., Varma H.K.. Boiling heat transfer in small horizontaltube bundles at low cross-flow velocities[J]. International Journal of HeatMass Transfer,1995,38:599-605
    [67] Marto P.J., Anderson C.L.. Nucleate boiling characteristics of R-113ina small tube bundle[J]. Journal of Heat Transfer,1992,114:425-433
    [68] Hahne E., Qiu R. C., Windisch R.. Pool boiling heat transfer on finnedtubes-an experimental and theoretical study[J]. International Journal ofHeat Mass Transfer,1991,34(8):2071-2079
    [69] Cornwell K., Schuller R.B.. A study of boiling outside a tube bundle usinghigh speed photography[J], International Journal of Heat Mass Transfer,1982,25(5):683-690
    [70] Palen J.W., Yarden A., Tarborek J. Characteristics of boiling outsidelarge-scale multitube bundles[J]. AIChE Symposium Series,1972,68:50-69
    [71] Zhang J., Orozco J.. Subcooled nucleate boiling from a horizontal bundlein pool boiling[J]. International Comm. Heat Mass Transfer,1991,18:321-331
    [72] Hwang T.H., Yao S.C.. Forced convective boiling in horizontal tubebundles[J]. International Journal of Heat Mass Transfer,1986,29(5):785-795
    [73] Chen J.C.. Correlation for boiling heat transfer to saturated fluids inconvective flow[J]. Industrial Engineeringand Chemical Process Design andDevelopment,1966,5(3):322-329
    [74] Cornwell K.. The role of sliding bubbles in boiling on tube bundles[A].Proceedings of the9th International Heat Transfer Conference[C]. New York:Hemisphere Publishing Corp,1990:455-460
    [75] Cornwell J.G., Scoones D.S.. Analysis of low quality boiling on plain andlow finned tube bundles[A]. IMechE/IChemE.2nd UK Heat TransferConference[C], Rugby, UK: IChemE,1988:21-32
    [76] Wang S. P., Chato J. C.. Review of recent research on heat transfer withmixtures Part2: Boiling and evapor-ation[J]. ASHRAE Transactions,1995,100(1):1387-1401
    [77] Webb R.L., Menze K.W., Apparao T.V.V.R.. Comparison of enhanced and standardfinned tubes: field test of250-ton centrifugal water chillers[J]. HeatTransfer Engineering,1990,11(2):19-28
    [78] Webb R.L., Apparao T.V.V.R.. Performance of flooded refrigerant evaporatorswith enhanced tubes[J]. Heat Transfer Engineering,1990,11(2):29-43
    [79] Webb R.L., Apparao T.R., Choi K.D.. Prediction of the heat duty in floodedrefrigerant evaporators[J]. ASHRAE Transactions,1989,95(1):339-348
    [80] R.L. Webb, K.D. Choi, T.R. Apparao, A theoretical model to predict the heatduty and pressure drop in flooded refrigerant evaporators[J]. ASHRAETransactions.1989,95(1):326-338.
    [81] Bukin V.G., Danilova G.N., Dyundin V.A.. Heat transfer from freons in afilm flowing over bundles of horizontal tubes that carry a porous coating[J].Heat Transfer-Soviet Research,1982,14(2):98-103
    [82] Hahne E., Muller J.. Boiling on a finned tube and a finned tube bundle[J].International Journal of Heat Mass Transfer,1983,26(6):849-859
    [83] Memory S.B.. Nucleate pool boiling of R-114and R-114-oil mixtures fromsmooth and enhanced surfaces-2: tube bundles[J]. International Journal ofHeat Mass Transfer,1995,38(8):1363-1376
    [84] Memory S.B.. Nucleate pool boiling of R-114and R-114-oil mixtures fromsmooth and enhanced surfaces-1:single tubes[J]. International Journal ofHeat Mass Transfer.1995,38(8):1347-1361.
    [85] Danilova G.N., Dyundin V.A.. Heat transfer with freons12and22boilingat bundles of finned tubes[J]. Heat Transfer-Soviet Research,1972,4(4):48-54
    [86] Memory S.B., Chilman S.V., Marto P.J.. Nucleate pool boiling of a TURBO-Bbundle in R-113[J]. Journal of Heat Transfer,1994,116:670-678
    [87] Chisholm D.. Two-phase vertical up flow through tube banks with bypasslanes[J]. International Journal of Heat and Fluid Flow,1984,5(1):51-53
    [88] Hahne E., Spindler K., Chen Q., et al.. Local void fraction measurementsin finned tube bundles[A]. Proceedings of the9th International HeatTransfer Conference[C]. New York: Hemisphere Publishing Corp,1990:41-46
    [89] Schrage D.S., Hsu J.T., Jensen M.K.. Void fractions and two-phase frictionmultipliers in a horizontal tube bundle[J]. Heat Transfer-Pittsburg1987.AIChE Symposium Series,1987,83(257):1-8
    [90] Dowlati R., Kawaji M., Chan A.M.C.. Void fraction and friction pressuredrop in two-phase flow across a horizontal tube bundle[J]. HeatTransfer-Houston1988. AIChE Symposium Series,1988,84(263):126-132
    [91] Ishihara K., Palen J.W., Taborek J.. Critical review of correlations forpredicting two-phase flow pressure drop across tube banks[J]. Heat TransferEngineering,1980,1(3):23-32
    [92] Dowlati R., Kawaji M., Chan A.M.C.. Two-phase cross flow and boiling heattransfer in horizontal tube bundles[J]. Journal of Heat Transfer,1996,118:124-131
    [93] Schrage D.S., Hsu J.T., Jensen M.K.. Two-phase pressure drop in verticalcross flow across a horizontal tube bundle[J]. AIChE Journal,1988,34(1):107-115
    [94] Rahman F.H., Gebbie J.G., Jensen M.K.. An interfacial friction correlationfor shell-side vertical two-phase cross flow past horizontal in-line andstaggered tube bundles[J]. International Journal of Multiphase Flow,1996,22(4):753-766
    [95] Joo Y., Dhir V.K.. An experimental study of a drag on a single tube andon a tube in an array under two-phase cross flow[J]. International Journalof Multiphase Flow,1994,20(6):1009-1019
    [96]钱颂文,朱冬生,李庆领,等.管式换热器强化换热技术[M].北京:化学工业出版社,2003:79-85
    [97]过增元,黄素逸.场协同原理与强化换热新技术[M].北京:中国电力出版社,2004:74-80
    [98]何雅玲,雷勇刚,田丽亭,等.高效低阻强化换热技术的三场协同性探讨[J].工程热物理学报,2009,30(11):1904-1906
    [99]古新,刘冰,王永庆,等.三角形布管方式下2种换热器的场协同分析[J].化学工程,2012,40(7):21-25
    [100]严良文,王志文.折流板换热器的数值模拟及场协同分析[J].石油机械,2005,33(4),13-15
    [101]杨胜.螺旋形变管强化换热与流阻特性研究[D].上海:华东理工大学,2012.
    [102]王镭.滑油冷却器强化换热实验研究[D].哈尔滨:哈尔滨工程大学,2009.
    [103]邓先和,王世平,林培森,等.油冷器强化换热研究[J].化工学报,1995,46(2):245-248
    [104]刘潇博,江楠,刘腾霄.关于油冷却器流程选择的探讨[J].石油化工设备技术,2007,28(4):7-10
    [105]Chisholm D.. Developments in Heat Exchanger Technology-1[M]. London:Applied Science Publishers,1980:371-376
    [106]董其武,刘敏珊,徐广辉.管壳式换热器干式支撑结构的研究与应用[J].石油机械,2005,33(11):4-6
    [107]吴金星,魏新利,董其伍.纵向流管壳式换热器强化换热研究与发展[J].石油机械.2002,30(4):49-52
    [108]欧阳新萍,黄海英,陶乐仁.修正威尔逊法在管壳式换热器换热性能试验中的应用[J].工业锅炉,1999,1:24-26
    [109]张建彭.物理实验中测量不确定度的表示[J].科技信息,2010,02:104
    [110]Witte L. C., Shamsundar N.. A Thermodynamic Efficiency Concept for HeatExchanger Devices[J]. Journal of Engineering for Power,1983,105:199-203
    [111]韩小良,刘毓骅.换热器换热过程火用分析[A].热力学分析与节能论文集[C].北京:科学出版社,1991:19-24
    [112]项新耀.工程火用分析方法[M].北京:石油工业出版社,1990:34-39
    [113]Bejan A.. Entropy Generation through Heat and Fluid Flow[M]. NewYork:Wilely,1982:112-114
    [114]Bejan A.The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchanger for Gas-to-Gas Application[J]. ASME: Journal of HeatTransfer Transfer,1977,99(3):374-380
    [115]Sarangi S., Chowdhury K.. On the Generation of Entropy in a Counter flowHeat Exchanger[J]. Cryogenics,1982,22:63-65
    [116]吴双应,李友荣.关于换热器热力学性能评价指标的分析与讨论[J].重庆大学学报(自然科学版),1997,20(4):54-59
    [117]Lander B. E., Spalding D. B.. The numerical computation of turbulentflows[J]. Computer method in applied mechanics and engineering,1974,3(2):269-289
    [118]Yakhot V., Smith L. M.. The renormalization group, the-expansion andderivation of turbulence models[J]. Journal of Scientific Computing,1992,7(1):35-61
    [119]Yakhot V., Orszag S. A.. Renormalization group analysis of turbulence[J].Basic theory. Journal of Scientific Computing,1986,1(1):3-51
    [120]VersteegH. K., Malalasekera W.. An introduction to computational dynamics:The finite volume method[M]. England: Longman Scientific&Technical,1995:123-131
    [121]Akimi S., Khoirul H.. Experiment and numerical simulation of bubblytwo-phase flow[J]. Nuclear Engineering and Design,1997,175:131-146
    [122]Hahne E., Chen Q. R., Windisch R.. Pool boiling heat transfer on finnedtubes—an experimental and theoretical study[J]. International Journal ofHeat Mass Transfer,1991,34(8):2071-2079
    [123]Yoon P. H., Jeong J. H., Kang, Y.T.. Boiling hysteresis at low temperatureon enhanced tubes[J]. International Journal of Refrigeration,2004,27:4-9
    [124]Browne M.W., Bansal P.K.. Heat transfer characteristics of boilingphenomenon in flooded refrigerant evaporators[J]. Applied ThermalEngineering,1999,19:595-624
    [125]Zu Y.Q., Yan Y.Y.. A numerical study of quasi-nucleate boiling in mini-and micro channels[A]. Proceedings of the6th International Conference onNanochannels, Microchannels, and Minichannels, ICNMM2008(PART A)[C],Canada: Venkatachalam Chokkalingam,2008:585-591
    [126]Zu Y.Q., Yan Y.Y.. A numerical investigation of electrohydrodynamic(EHD)effects on bubble deformation under pseudo-nucleate boilingconditions[J], International Journal of Heat and Fluid Flow,2009,30:761-767.
    [127]Hirt C. W., Nichols B. D., Volume of Fluid (VOF) Method for the Dynamicsof Free Boundaries[J]. Journal of Computational Physics,1981,39:201-206
    [128]Swapna S.. Rabha, Vivek V., et al.. Volume-of-fluid (VOF) Simulations ofRise of Single/multiple Bubbles in Sheared Liquids[J]. ChemicalEngineering Science,2010,65:527-537
    [129]Brackbill J. U., Kothe D. B., Zemach C.. A continuum method for modelingsurface tension[J]. J. Comput. Phys.,1992,100:335-354
    [130]Ellingsen K., Risso F.. On the Rise of an Ellipsoidal Bubble in Water:Oscillatory Paths and Liquid-Induced Velocity[J]. Journal of FluidMechanics,2001,440(1):235-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700