三维编织复合材料性能及工艺的光纤测试技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为先进复合材料的一种,三维编织复合材料由于克服了层合复合材料层间脆弱的缺点,同时具有优异的整体性能和较高的强度、刚度、良好的抗冲击性能等优点,在航空航天等很多领域的应用日益广泛。但由于其编织工艺和固化成型工艺比较复杂,人们对它的认识还远远不够。目前对编织复合材料结构的健康状况、固化工艺的监测等相关研究还很少。
     本文探索采用光纤传感技术对三维碳纤维/环氧编织复合材料性能和工艺进行了测试研究。主要研究内容如下:
     1 对三维编织工艺进行了研究,提出光纤传感器编入编织复合材料的两种方法以及光纤的保护措施。采用四步法成功地将光纤传感器编入复合材料试件。随后研究了编织复合材料的固化成型工艺:树脂传递模塑(RTM)工艺。设计了含光纤编织试件的RTM固化成型系统,并成功地研制出编入光纤传感器的编织复合材料试件。
     2 对编入材料的光纤与编织复合材料的相容性进行了研究。将光纤编入编织复合材料中,对光纤的截止波长、数值孔径、模场直径和串音进行了检测。实验结果表明这些光学性能参数在光纤编入编织复合材料试件后以及固化成型后变化较小。研究了光纤对编织复合材料性能的影响。对编入光纤试件和无光纤试件进行拉伸和压缩对比试验。结果表明光纤的编入对材料的拉伸弹性模量和压缩弹性模量影响也较小。当光纤及保护套管占的体积比约为1%时,拉伸弹性模量下降的幅度约为6%;压缩弹性模量下降的幅度约为6.7%。另外对光纤传感器的安装和引出设计也进行了研究。
     3 研究了光纤传感技术在编织复合材料内部应变检测中的应用。用射线理论分析了光线在梯度光纤和阶跃光纤中的传播机理。并用模式理论讨论了光纤波导的标量分析和矢量分析。分析了偏振式、法布里-珀罗干涉型和微弯式光纤传感器的原理,并通过实验研究了它们在编织复合材料内部应变检测中的应用。实验结果表明编入编织复合材料的光纤传感器可以检测出材料内部的应变。这种方法对深入研究编织复合材料结构的性能、内部损伤的检测以及健康状况的监控具有重要价值。
     4 研究了碳密封涂覆光纤在编织复合材料中的应用。碳密封涂覆光纤具有强度高、抗疲劳性能高等许多优点。从实验中也发现,在编织复合材料中使用碳密封涂覆光纤具有良好的传感效果。
     5 研究了使用编入材料内部的光纤微弯传感器对编织复合材料RTM固化工艺进行监测。实验结果表明光纤微弯传感器可以监测树脂粘度的变化,并给出树脂粘度最低点以及固化结束点。内部微弯式光纤传感器可以对编织复合材料的RTM成型工艺
    
     三维编织复合材料性能及工艺的光纤测试技术研究
    进行监测。
     本文的主要创新点:
     l 首次提出光纤编入编织复合村料的方法,成功制作了编入光纤传感器的复合材
    料试件。
     2首次对编入材料的光纤与编织复合村料的相容性进行了研究。
     3首次采用偏振式、干涉型和微弯式光纤传感器对编织复合材料的内部应变进行
    了检测。
     4首次采用微弯式光纤传感器对编织复合材料的 RTM艺进行了监测。
     5首次研究了碳密封涂覆光纤在编织复合材料中的应用。
As one kind of advanced materials, 3D braided composites are used widely in many fields, such as aeronautics & astronautics, because of their high strength, stiffness and good resistance to impact. However, due to their complicated braiding and cure processes, knowledge about them is far from enough. Research of health monitoring and cure monitoring about braided composite are quite little.
    In this dissertation, internal strain and cure process of braided composites are studied using optical fiber sensing technology. The contents are as follows:
    1. Based on study of 3D braiding process, two methods for optical fiber braiding and protecting are presented. Optical fibers are successfully braided into composite testpieces by four-step method. Cure process of braided composites is also studied. Resin Transfer Molding (RTM) cure system is designed. Testpieces with braided optical fibers are successfully fabricated.
    2. Compatibility of optical fiber and braided composites is studied. Cut-off wavelength, mode field diameter, numerical aperture and cross talk are chosen as test parameters of optical fibers. Research of those parameters shows that they change just a little before, after optical fiber's being braided into the structures, and after the molding process. Contrast tests are also done to compare performances of testpiece with optical fiber with that of one without optical fiber. Tensional and compressive elastic moduli are researched. Results show that co-braided optical fibers have just a small quantity of effect on the elastic modulus of the braided composites. If volume ratio of optical fibers and their jackets to the braided testpiece is about one per cent, the tensional and compressive elastic moduli will decrease respectively by six and six point seven per cent. The fixing and lead-out design of optical fiber sensor are also studied.
    3. Optical fiber sensing technology is applied in internal strain measurement of braided composites. First, transmission mechanism of light wave in graded index fiber and step
    
    
    index fiber is analyzed using ray method. Scalar analysis and vector analysis are discussed using mode method. Mechanism of polarized, interferential and micobend optical fiber sensor is analyzed. Applications of these sensors in internal strain measurement of braided composites are experimentally studied. Results show that these sensors are effective for internal strain measurement. Method of internal parameter measurement based on co-braided optic fiber sensor is very valuable for further research to study structural features and monitor structural health condition.
    4. The RTM cure process of braided composites is monitored using microbend fiber optic sensor. Experimental results show the sensor is able to monitor variation of resin viscosity and to indicate time that resin viscosity is lowest and cure ends.
    5. Applications of optical fiber with carbon coating are also studied. This kind of optical fiber has advantages of high strength and antifatigue performance. Experimental results show that the optical fiber has good sensing features.
    The original researches done in this dissertation are as follows:
    1. The braiding and cure process for braided composites with monomode optical fiber are presented. Testpieces are successfully fabricated.
    2. The compatibility between optical fibers and braided composites is studied
    3. Internal strain of braided composites is measured by devising three kinds of optical fiber sensors. The sensors are polarimetric sensor, interferential sensor and microbend sensor.
    4. The RTM process is monitored using co-braided microbend fiber optic sensor.
    5. Applications of carbon hermetically coated optical fiber in braided composites are studied.
引文
1.黄家康,岳红军,董永祺主编,复合材料成型技术,化学工业出版社,1999
    2.杨桂,敖大新,张志勇等,编织结构复合材料制作、工艺及工业实践,北京:科学出版社,1999
    3.陶肖明,冼杏娟,高冠勋(F.K.Ko),纺织结构复合材料,科学出版社,2001
    4. Marvin B. Dow and H. Benson Dexter, Development of Stitched, Braided and Woven Composite Structures in the ACT Program and at Langley Research Center (1985 to 1997) Summary and Bibliography, NASA TP-97-206234, November 1997
    5. C.C.Poe, Jr,H.B.Dexter and I.S. Raju, A review of the NASA textile composites research, 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit Adaptive Structures Forum, Kissimmee, FL, AIAA Paper No. 97-1321, April 7-10, 1997
    6. H. Benson Dexter, Development of Textile Reinforced Composites for Aircraft Structures, Fourth International Symposium for Textile Composites, Kyoto, Japan, October 12-14, 1998
    7.张志鹏,W A Gambling著,光纤传感器原理,中国计量出版社,1991
    8.姜德生,我国光纤传感器的发展与产业化,世界仪表与自动化,2001,2
    9.皮广禄,国外传感器技术的现状和发展,传感器世界,1999,(1)
    10.原荣主编,光纤通信网络,电子工业出版社,1999
    11.陶宝祺,熊克,袁慎芳等.智能材料结构.北京:国防工业出版社,1997.135~140
    12.杨大智主编,智能材料与智能系统,天津大学出版社,2000
    13. Udd E Fiber optical sensor overview, Fiber Optic Smart Structures ed E Udd (New York: John Wiley & Sons Inc.) 1995.155~70
    14. K.H. Wood, T. L. Brown, M-C. Wu and C. B. Gause, Fiber Optic Sensors for Cure/Health Monitoring of Composites Materials, 3rd International Workshop on Structural Health Monitoring, Stanford, California, September 12-14, 2001
    15. Thomas E. Munns, Renee M. Kent, Antony Bartolini, Charles B. Gause, Jason W. Borinski, Jason Dietz, Jennifer L. Elster, Clark Boyd, Larry Vicari, Kevin Cooper, Asok Ray, Eric Keller, Vadlamani Venkata and S. C. Sastry, Health Monitoring for Airframe Structural Characterization, NASA/CR-2002-211428, February 2002
    16. Xu M G, Discrimination between strain and temperature effects using dual-wavelength fiber grating sensor, Elect. Lett.,1994,30(13):1085~1087
    17. D. Betz, M. N. Trutzel, et al, Fiber-optic Smart Sensing of Aviation Structures, 3rd International Workshop on Structural Health Monitoring, Stanford, California, September 12-14, 2001
    18. Timothy Brown, Karen Wood, Brooks Childers, Roberto Cano, Brian Jensen and Robert Rogowski, Fiber Optic Sensors for Health Monitoring of Morphing Aircraft, SHE 6th Annual International Symposium on Smart Structures and Materials, Newport Beach, California, March 1-5, 1999
    19. Keji Shiba, Hitoshi Kumagai et al, Fiber Optic Distributed Sensor for Monitoring of Concrete Structures, International Workshop on Structural Health Monitoring, Stanford, California, September 12-14, 2001
    20. 张如一,陆耀桢 主编,实验应力分析,机械工业出版社,1981
    21. Tang L Q, Tao X M, Choy C L. Effectiveness and optimization of fiber Bragg grating sensors as embedded strain sensor. Smart Materials and Structures. 1999, 8(1): 154~160
    
    
    22. Tang L Q, Tao X M,Choy C L, et al. Reliability of fiber Bragg grating sensors embedded in textile composites. Composite Interfaces, 1998,5(5):421~435
    23. Tao Xiaoming,Tang Liqun,Du W C,et al. Internal strain measurement by fiber Bragg grating sensors in textile composites, Composite Science and Technology.2000,60(5): 657~669
    24. M A El-sherif and Frank K Ko, Co-braiding of sensitive optical fiber sensor in 3-d composite fiber network[J], SPIE Vol 1798, 1992, 2-10
    25. Grossman B, Composite damage assessment employing an optical neural network processor and an embedded fiber optic sensor array. SPIE,1991, vol 1588:64~75
    26.陶宝祺,梁大开等,强度自适应复合材料结构,航空学报,1994,15(3)
    27.袁慎芳,陶宝祺等,自诊断损伤区域和级别的智能复合材料结构,复合材料学报,1997,.14(1),96—100。
    28.梁大开,陶宝祺.智能复合材料结构中偏振式光纤传感器系统的研究.航空学报,1998,19(3):335~337
    29.熊克,自适应复合材料结构的研究进展,1996中国材料研讨会论文集
    30.黄尚廉,光纤机敏结构评述,半导体光电,95,16(3)
    31.张博明,(?)多功能光纤传感器智能材料与结构研究,哈尔滨工业大学博士学位论文,1998
    32.杨建良:郭照华等,机敏材料与结构中传感光纤集成技术初探,光纤与电缆及具应用技术,97(3)
    33.徐宁光,孙良新,孙义林等,机织复合材料内部损伤的图像检测方法研究.数据采集与处理,1998,13(4)335~338
    34. Alexis Mendez, Ted F. Morse, Application of embedded optical fiber sensor in reinforced concrete building structures, SPIE 1170, 1989
    35. Alexis Mendez, Ted F, Morse, Overview of optical fiber sensors embedded in concrete, SPIE Proceedings Vol. 1798, 1993
    36. Peter L. Fuhr, Dryver R. Huston, Intelligent civil structures efforts in Vermont: an overview, SPIE Vol 1918, 1993
    37. Peter L. Fuhr, Dryver R. Huston, Timothy P. Ambrose, Radio telemetry interrogation of multiple fiber sensors in civil structures, SPIE Vol. 1797, 1993
    38. Peter L. Fuhr, Dryver R. Huston, William B. Spillman, Jr., Multiplexed fiber optic pressure and vibration sensors for hydroelectric dam monitoring, SPIE Vol. 1798, 1993
    39. Daniele Inaudi. Laurent Vulliet et al, Low-coherence sensors for the monitoring of underground works, SPIE Vol. 2444, 1995
    40. A.A. Mufti, Structral Health Monitoring of Innovative Canadian Civil Engineering Structures, 3rd International Workshop on Structural Health Monitoring, Stanford, California, September 12-14, 2001
    41.曹照平,王社良,马胜利,光纤传感器在土木工程中的应用,南京建筑工程学院学报,2000,55(4)。
    42.高巍,基于光纤传感器的大坝监测仪器,大坝观测与土工测试,2000,24(4)
    43. Powell G R, Crosby P A Waters D N et al. In-situ cure monitoring using optical fiber sensors -- a comparative study, Smart Materials and Structures. 1998 7(7): 557~568
    44. Chen J Y,Hoa S V,Jen C K, et al. Fiber-optic and ultrasonic measurements for in-situ cure monitoring of graphite/epoxy composites. Journal of Composite Materials, 1999,30(20): 1860~1881
    45. Davis A, Ohn M M, Liu K X, et al. Composite cure monitoring with embedded optical fiber sensors, SPIE, 1991,1489: 33~43
    46.杨春,骆飞,沈超等.用光纤进行树脂基复合材料的成型过程监测.材料工程,1999,3(7):36~39
    47.周光明,三维编织复合材料力学性能与成型研究,南京航空航天大学博士学位论文,1994
    
    
    48.孙慧玉,编织结构复合材料的力学性能预报和成型工艺研究,南京航空航天大学博士学位论文,1996
    49.肖翠蓉,唐羽章,复合材料工艺学,北京:国防科技大学出版社,1991。
    50.陈祥宝,包建文等,树脂基复合材料制造技术,化学工业出版社,2000。
    51. P Sansonetti et al, Intelligent composite containing measuring fiber optic networks for continuous self-diagnosis, SPIE Vol 1170, 1989, 211~218
    52. D. W. Jensen et al, Degradation of graphite/bismaleimide laminates with multiple embedded fiber-optic sensors, SPIE Vol 1307, 1990, 228~233
    53. S Roberts, R Davidson, Mechanical properties of composite materials containing embedded fiber optic sensors, SPIE, Fiber Optic Smart Structures & Skins Ⅳ, 1991; 1558:326~340
    54. W.B. Spillman, Jr. et al, Method of fiber optic ingress/egress for smart structures, fiber optic smart structures, ed Eric Udd (New York: John Wiley & Sons, Inc.) 1995.
    55.唐见茂,光纤智能复合材料光纤引出方案考虑,第9届全国复合材料学术会议论文集,688~690
    56.冷劲松,王殿富,杜善义,光纤传感器对机敏复合材料结构性能的影响,实验力学,1995,10(4):309~314
    57.赵志敏,邱振芳,林有义,光纤埋入对复合材料刚度的影响,航空学报,1998,19(1):98~102
    58.杨建良,郭照华,向清等,智能复合材料内光纤的埋置技术,纤维复合材料,1998,(1):33~35
    59.梁大开,陶宝祺,光纤埋入碳纤维复合材料结构的试验研究,材料工程,2000,44(2),16~18
    60.赵梓森等编著,光纤通信工程,人民邮电出版社,1987
    61.Charles K Kao(高锟)著,梁郭泰,孙崇善等译,光纤系统——工艺、设计与应用,中国友谊出版公司,1987。
    62.李泽民,光纤通讯(原理和技术),科学技术文献出版社,1992。
    63.李玲主编,光纤通信,人民邮电出版社,1995。
    64.张延荣等编,英汉光纤通信词典,人民邮电出版社,1995。
    65.白崇恩,刘百信,光纤测试,人民邮电出版社.1988.
    66.D.Marcuse著,杜柏林,于耀明译,光纤测量原理,人民邮电出版社,1986。
    67.欧阳国恩,欧阳荣主编,复合材料试验技术,武汉工业大学出版社,1993
    68.关铁梁,智能材料中特种光纤的研究进展,光通信技术,1994,18(4):329~333
    69.关铁梁,智能材料中的光纤传感系统,智能材料与智能系统(杨大智主编)天津大学出版社,2000
    70.史锐,刘有信,郑先华等,碳密封涂覆光纤制造及其性能测试,全国第七次光纤通信学术会议论文集,1996 401~404
    71.吴静,碳密封涂覆光纤的特性与应用,全国第六次光纤通信学术会议论文集 562~564
    72.宁鼎,赵金岐,碳密封涂覆光纤制造及特性,全国第六次光纤通信学术会议论文集 518~519
    73. Clark T, Smith H, Microbend fiber optic sensors, Fiber Optic Smart Structures, ed E Udd (New York: John Wiley & Sons, Inc.) 1995. 319~331
    74. Kamiya R, Cheeseman B A, Proper P and Chou TW, Some recent advances in the fabrication and design of three-dimensional textile preforms: a review, Composite Science and Technology, 2000, 60,. 33~47
    
    
    75. Urruti E H et al, Optical fiber sensing considerations for a smart aerospace structures, SPIE 1988 Vol 986:158~167
    76. Difrancia C. et al, Structure/property correlation of several polymide optical fibercoatings for embedding in an epoxy matrix, SPIE 1989 Vol 1170:505~512
    77. Measures R M Fiber optical strain sensing, Fiber Optical Smart Structures ed E Udd (New York: John Wiley & Sons Inc.) 1995. 171~248
    78. Measures R M, Glossop N D W, Tennyson R C, Structurally integrated fiber optic damage assessment system for composite materials, SPIE 1988, Vol 986,120~129
    79. E Tapanes, S Galea. Use of optical fiber sensors to detect & monitor damage in bonded composite repairs of cracked metallic composite. Proceedings of ICCM-11, 1997;Ⅵ-421.
    80. S.M.Yang, C.W.Chen, Application of single mode optical fiber sensors in structural vibration suppresion. Intelligent Material Systems and Structure. 1996,7(1):71-77
    81. M Davis, A Kersey, Shape and vibration mode sesing using a fiber optic Bragg grating array. Smart Materials & Structures. 1996,5(6):759-765
    82.林钧岫,彭伟.光纤布拉格光栅及其应用.光学技术,1999,(2):50~53
    83.江毅,李建蜀,陈伟民,等.光纤布喇格光栅应变传感器.压电与声光,1995,17(2):9~13
    84.G.Cancellieri and U.Ravaioli著,于耀明,王洪生译,光纤和光器件的测量,宇航出版社,1990 267~272
    85.郭凤珍,于长泰,光纤传感技术与应用,浙江大学出版社,1992.116~117
    86.王惠文主编,光纤传感技术与应用,北京:国防工业出版社,2001
    87.Butter C.D.,Hocker G.B.,Fiber optics strain gauge,Applied Optics,1978,17(18).
    88.骆飞等,应用高双折射光纤的分布力传感技术的研究,仪器仪表学报,1993,14(3):292~297
    89.梁大开,光纤智能复合材料自诊断结构的研究,南京航空航天大学博士学位论文,1995
    90.姚学锋,杨桂等,编织结构复合材料热膨胀特性的实验研究,复合材料学报,2000,17(4)
    91.张兴周,李绪友 包建新.微弯型光纤传感器.传感器技术,1998,17(5):58~60
    92.宋焕成,赵时熙,聚合物基复合材料,国防工业出版社,1986
    93.中国腐蚀与防护学会主编,合成树脂及玻璃钢,化学工业出版社,1995
    94.上海化工学院玻璃钢教研室编,合成树脂,中国建筑工业出版社,1980
    95.陈祥宝,高性能基体树脂,化学工业出版社,1999
    96.杨爱玉等,高级复合材料最新固化监控,宇航材料工艺,1996,(2):59~62
    97.李玉华,动态介电法在航空结构制造工艺参数指定中的应用,第9届全国复合材料学术会议论文集,1996,555~560
    98.李辰砂,冷劲松等,光纤传感技术用于监测纤维复合材料固化过程的研究,纤维复合材料,1999,(6):37~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700