钼/钨杂多酸与稀土和过渡金属离子的自组装以及结构、性能的表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于同多酸或杂多酸化合物不仅具有丰富的拓扑结构,而且在吸附、催化、导电、能量存储、光学材料和主客体化学等领域中具有重要的应用价值。因此,同多酸或杂多酸化合物的合成与制备成为近十年来研究的重要领域之一。通过溶剂热和传统的溶液法,成功地合成出了十八个结构新颖的三维杂多酸化合物。通过元素分析、红外和TGA等进行了表征,同时对部分化合物的EPR和变温磁化率进行了测定。论文工作概述如下:
     1.简要的概述了近年来同多酸或杂多酸类化合物的最新研究发展动态,并归纳和总结了部分具有代表性化合物的结构类型、性能以及应用等。
     2.通过铝离子的诱导作用,合成了系列含稀土离子的三维结构化合物H_2{K(H_2O)_2Ln(H_2O)_5[H_2M_(12)O_(42)])·nH_2O(Ln=La,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu;M=W or W/Mo)(1-10)。该类化合物具有非常漂亮的结构构型,并且表现出了稀土离子双核结构间的顺磁性相互偶合作用。
     3.三个含锰(Ⅱ)离子的三维杂多酸化合物的合成以及结构、磁性、ESR和TGA的描述和表征。通过铝离子的诱导作用,合成了化合物H_(22.5)K_2Mn_(1.5)W_(5.65)Mo_(1.35)O_(34)Cl_(1.5)(XI);而利用SeO_3~(2-)离子的诱导作用,却得到了具有不同结构的化合物H_(59)NaK_2Mn_2W_(9.52)Mo_(2.48)O_(68)Cl_2(Ⅻ);在不加诱导离子的情况下,得到H_(31)Mn_2NaO_(36)W_6(ⅩⅢ)。
     4.引入有机配体3-(2-Pyridyl)pyrazol,利用水热法得到了五个含有第一过渡金属离子锰、铁、钴、镍和锌的三维结构化合物:[H_2(MnL_2)Mo_3O_(10)]_n(ⅩⅣ)、[H_2(FeL_2)Mo_3O_(10)]_n(ⅩⅤ)、(HL){H_4[Co(L)_2]_2Mo_2O_8]}(H_2O)_3(ⅩⅥ)、[H_2(NiL_2)Mo_3O_(10)]_n(ⅩⅦ)、和H_4[Zn_2(L)_4]_2Mo_8O_(26)](ⅩⅧ)。化合物(ⅩⅣ)、(ⅩⅤ)和(ⅩⅦ)拥有类似的一维链状结构[H_2(ML_2)Mo_3O_(10)]。在氢键的连接作用下,形成三维空间结构。
     通过诱导离子Al~(3+)和SeO_3~(2-)离子作用,杂多酸的亚结构单元经过重新自组装后,通过和稀土离子或第一过渡金属离子的连接,得到三个系列十八个新颖的化合物。某些离子对杂多酸亚结构单元的诱导重组作用的研究还仅仅是个开始,我们在以后的研究中,将继续努力完善和深入这方面的工作。同时,我们首次将有机配体3-(2-Pyridyl)pyrazol引入了杂多酸的溶剂热合成,以后,我们将继续深入这方面的工作。
The design of polyoxometalate clusters has attracted long-lasting research interest not only because of their appealing structural and topological novelty but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application due to their antiviral and inhibition of angiogenesis. Enighting novel compounds have been synthesized by the hydrothermal or conventional solution synthetic method in this thesis, which have been further characterized by X-ray single crystal diffraction and spectroscopes. Their single crystal molecular structures, as well as the magnetic properties for some compounds have also been systematically investigated. The major work of this thesis are outlined as following:
     1. In the first charter, the recent development of the iso- or heterometallates and the hybrid materials is reviewed. Some representative structures and applicable properties are also summarized.
     2. In the second charter, we describe the synthesis of a series of novel polyoxo(mixed-metalate) (W/Mo) compounds connected via trivalent lanthanide cations, namely H_2{K(H_2O)_2Ln(H_2O)_5[H_2M_(12)O_(42)]}·nH_2O (Ln = La, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb. Lu; M = W or W/Mo) (Ⅰ-Ⅹ), with three dimensional framework. Their single crystal molecular structures, as well as the magnetic properties for compoundsⅡandⅣ-Ⅺ, have also been systematically investigated.
     3. In the third one, we describe the synthesis of three novel tungstate-molybdenum polyoxometalate compounds, namely H_(2.5)K_2[Mn_(1.5)W_(5.65)Mo_(1.35)O_(24)(H_2O)_4]Cl_(1.5)·6(H_2O) (Ⅺ). H_5K_2Na[Mn_2(H_2O)_6(H_2W_(9.52)Mo_(2.48)O_(42))]Cl_2·20(H_2O) (Ⅻ), and Na_2[Mn_4(H_2O)_(14)(H_2W_(12)O_(40))]·16H_20 (ⅩⅢ). Single crystal X-ray diffraction analysis results reveal their three-dimensional structural networks connected via divalent manganese cations with the help of potassium cations. Their magnetic characteristics were also systematically investigated.
     4. In the final part, five novel polyoxomolybdate compounds linked by divalent transitional metal cations coordinated with 3-(2-Pyridyl)pyrazole ligand, [H_2(ML_2)Mo_3O_(10)]_n (M = Mn (ⅩⅣ), Fe (ⅩⅤ), Ni (ⅩⅦ)), (HL){H_4[Co(L)_2]_2Mo_2O_8]}(H_2O)_3 (ⅩⅥ), H_4[Zn_2(L)_4]_2Mo_8O+(26)] (ⅩⅧ) (HL = 3-(2-Pyridyl)pyrazole) were designed and synthesized by the hydrothermal syntheses in the mixed ethanol/water solution. X-ray diffraction analyses reveal that compoundsⅩⅣ,ⅩⅤandⅩⅦconsists of one-dimensional wave-like chains built up from the asymmetric mixed-metalate building blocks of [H_2(ML_2)Mo_3O_(10)]. CompoundⅩⅥis bimetallic tetranuclear cluster constructed from corner-sharing {MoO_4} in which two Cu(Ⅱ) ions are further coordinated with four N atoms from two L" ligands and two bridging oxygen atoms exhibting distorted octahedron. Whereas, compoundⅩⅧis composed of two seperately parts with the dinuclear Cu_2(L)_4 andε-[H_4Mo_8O_(26)] unit.
引文
[1] J. N. Barrows, G B. Jameson, M. T. Pope, Structure of a heteropoly blue. Thefour-electron reduced .beta.-12-molybdophosphate anion, J. Am. Chem. Soc. 1985, 107,1771-1773.
    
    [2] H. D'amour, R. Allmann, Ein Keggin Komplex mit erniedrigter Pesudosymmetric in derStruker des H_3[PMo_(12)O_(40)], Z. Kristallogr 1976,143,1-13.
    
    [3] R. Strandberg, The Crystal Structure of a Hydrate Dodecamolybdophosphoric Acid,H_3Mo_(12)PO_(40)(H_2O)_(29), Acta Chem. Scand. Ser. A 1975,29, 359-364.
    
    [4]王升富,孙莲,曾百肇,杂多化合物在分析化学中的应用,化学通报,1996,7,34-38.
    
    [131 J. F. Keggin, Structure of the Molecular 12-Phosphotungstic Acid, Nature, 1933,131.908-909.
    
    [5] C. L. Hill, Ed. Chem. Rev. Polyoxometalates: 1998, 98.
    
    [6] M. T. Pope, A. Miiller, Polyoxometalates: From Platonic Solids to Anti-RetroviralActivity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.
    
    [7] M. T. Pope, A. Miiller, Polyoxometalate Chemistry: An Old Field with NewDimensions in Several Disciplines, Angew. Chem., Int Ed. Engl. 1991, 30, 34-48.
    
    [8] M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer, New York, 1983
    
    [9] A. Mullet, P. Kogerler, From simple building blocks to structures with increasing size andcomplexity, Coord. Chem. Rev. 1999,182,34T
    
    [10] A. Mullet, H. Reuter, S. Dillinger, Supramolecular Inorganic-Chemistry-Small Guests inSmall and Large Hosts, Angew. Chem, Int. Ed. Engl. 1995, 34,2328-2361.
    
    [11] P. Souchay, Ions Mineraux Condenses. Masson: Paris, 1969.
    
    [12] A. K. Cheetham, Advanced Inorganic Materials - an Open Horizon, Science1994,264,794-795.
    
    [13] C. L. Hill, C. M. Prosser-McCartha, Homogeneous catalysis by transition metal oxygenanion clusters, Coord. Chem. Rev. 1995,143,407-455.
    
    [14] Y. Izumi, K. Urabe, M. Onaka, Zeolite, Clay, and Heteropoly Acid in Organic Reaction;Kodansha: Tokyo, 1992
    
    [15] Y. Xu, D.-R. Zhu, Z. J. Guo, Y: J. Shi, K: L. Zhang and X. Z. You, Cation-inducedassembly of the first mixed molybdenum-vanadium hexadecametal host shell clusteranions. J Chem. Soc, Dalton Trans., 2001, 772-773.
    
    [16] T. Okumura, N. Mizuno, M. Misono, Catalytic chemistry of heteropoly compounds.Adv. Catal. 1996,41,113-252.
    
    [17] R. Neumann, Po 卜 oxometalate complexes in organic oxidation chemistry, Prog. Inorg.Chem. 1998,47,317-370.
    
    [18] O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Synthetic Strategies, StructurePatterns, and Emerging Properties in the Chemistry of Modular Porous Solids, Acc.Chem. Res. 1998, 31,474-484.
    
    [19] J. F. You, G C. papaefthymiou, [β-Na_2Fe_(18)S_(30)] and [Na_9Fe_(20)Se_(38)]~(9-): high-nuclearityclusters by mono- or bicyclization of unidimensional polymeric fragments and theexistence of isomeric monocyclic clusters, J. Am. Chem. Soc. 1992,114,2697-2710.
    
    [20] T. L. Jorris, M. Kozok, N. Casan-Pastor, P. J. Domaille, R. G Finke, L. C. W.Baker, Effects of paramagnetic and diamagnetic transition-metal monosubstitutions ontungsten-183 and phosphorus-31 NMR spectra for Keggin and Wells-Dawsonheteropolytungstate derivatives. Correlations and corrections. Tungsten-183 NMRtwo-dimensional Inadequate studies of α-[(D20)ZnO4X~(n+)W11O34]~((10-n)-) whereinX~(n+)=Si~(4+) and P~(5+), J. Am. Chem. Soc. 1987,109, 7402-7408.
    
    [21] D. K. Lyon, W. K. Warren, T. Novet, P. J. Domaille, E. Evitt, D. C. Johnson, R GFinke, Highly oxidation resistant inorganic-porphyrin analog polyoxometalate??oxidation catalysts. 1. The synthesis and characterization of aqueous-soluble potassiumsalts of a_2-P2W17061(M~(n+)OH_2)~((n-10)), and organic solvent solubletetra-n-butylammonium salts of a_2-P2W17061(M~(n+)Br)~((n-11)) (M=Mn~(3+),Fe~(3+),Co~(2+),Ni~(2+),Cu~(2+), J. Am. Chem. Soc. 1991, 113, 7206-7221.
    
    [21] H. R. Allcock, E. C. Bissell, E. T. Shawl, Crystal and molecular structure of a newhxamolybdate-cyclophosphazene complex, Inorg. Chem. 1973,12, 2963-2968.
    
    [22] C. D. Garner, N. C. Howlader, F. E. Mabbs, A. T. McPhail, R. W. Miller, K. D. Onan.Studies in Eight-co-ordination. Part 5. Crystal and Molecular Structure andElectron Spin Resonance Spectra ofTetrakis(diethyldithiocarbamato)molybdenum(V) Hexamolybdate and Chloride. J.Chem. Soc, Dalton Trans. 1978,1582-1589.
    
    [23] Nagano, Y. Sasaki, Structure of the hydrated potassium hexamolybdate complex ofhexaoxacyclooctadecane (18-crown-6), Acta Cryst. 1979, B35,2387-2389.
    
    [24] C. B. Shoemaker, L. V. McAfee, D. P. Shoemaker, C. W. Dekock, Structure ofhydronium-1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown 6)- hexamolybdate(VI)(2/2/1), Acta Cryst. 1986, C42,1310-1313.
    
    [25] P. J. Hagrman, D. Hagrman, J. Zubicta, Organic-Inorganic Hybrid Materials: From"Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides.Angew. Chem., Int. Ed. 1999, 38,2638-2684, and reference therein.
    
    [26] D. J. Chesnut, D. Hagrman, P. J. Zapf, R. P. Hammond, R. LaDuca Jr.. R. C.Haushalter, J. Zubieta, Organic:inorganic composite materials: the roles oforganoamine ligands in the design of inorganic solids, Coord. Chem. Rev. 1999.190-192, 737-769, and reference therein.
    
    [27] M. Inoue, T. Yamase, Synthesis and Crystal Structures of Y -TypeOctamolybdates Coordinated by Chiral Lysines, Ball. Chem. Soc. Jpn. 1995. 68,3055-3063.
    
    [28] R. Xi, B. Wang, K. Isobe, T. Nishioka, K. Toriumi, Y. Ozawa, Isolation and X-rayCrystal Structure of a New Octamolybdate: [(RhCp~*)_2(u_2-SCH_3)_4[Mo_8O_(26)]-2CH_3CN,Inorg. Chem. 1994, 33, 833-836.
    
    [29] J. Fuchs, H. Hard, Anion Structure of TetrabutyiammoniumOctamolybdate [N(C_4H_9)_4]Mo_8O_6, Angew. Chem., Int. Ed. Engl. 1976, 15, 375-376.
    
    [30] V. W. Day, M. F. Fredrich, W. G Klemperer, W. Shum, Structural and dynamic??stereochemistry of .alpha, polyosomolybdate (a-Mos0264-), J. Am. Chem. Sac. 1977,99,952-953.
    
    [31] T. C. Hsieh, S. N. Shaikh, J. Zubieta, Derivatized polyoxomolybdates. Synthesis and Characterization of oxomolybdate clusters containing coordinatively bound diazenido units. Crystal and molecular structure of the octanuclear oxomolybdate (NHEt_3)_2(n-Bu_4N)_2[Mo_8O_(20)(NNPh)_6 and comparison to the structures of the parent oxomolybdate a-(n-Bu_4N)_4[Mo_8O_(26)] and the tetranuclear (diazenido)oxomolybdates (n-Bu_4N)_2[Mo_4O_(10)(OMe)_2(NNPh)_(21) and(n-Bu_4N)_2[Mo_4O_8(OMe)_2-(NNC_6H_4NO_2)_(41), Inorg. Chem 1987,26,4079-4089.
    
    [32] R. Xi, B. Wang, K. Isobe, T. Nishioka, K. Toriumi, Y. Ozawa, Isolation and X-ray Crystal Structure of a New Octamolybdate: [(RhCp~*)_2(u_2-SCH_3)_3]_4-[Mo_8O_(26)]2CH_3CN, Inorg Chem. 1994, 33, 833-836.
    
    [33] J.-Q. Xu, R.-Z. Wang, G-Y. Yang, Y.-H. Xing, D. M. Li, W.-M. Bu, L. Ye, Y.-G. Fan, G-D. Yang, Y. Xing, Y.-H. Lin, H.-Q. Jia, Metal-oxo cluster-supported transition metal complexes: hydrothermal synthesis and characterization of [[M(phen)_2]_2(Mo_8O_(26))] (M=Ni or Co), Chem. Commun. 1999,983-984.
    [34] B. Krebs, 1. Paulat-B6schen, The structure of the potassium isopolymolybdate K_8[Mo_(36)O_(12)(H_2O)_(16)].nH_2O (n = 36...40), Acta Cryst 1982, B38,1710-1718
    [35] S. Zhang, D. Liao, M. Shao, Y. Tang, X-ray Crystal Structure of the Unusual Clathrate Compound, [Mo(36)O_(110)(NO)_4(H_2O).2H_2O, J. Chem Soc, Chem Commun. 1986,835-836.
    
    [36] H. U. Kreusler, A. Forster, J. Fuchs, Die Strukture des Rubidiumtrimolybdatethydrates Rb_2Mo_3O_(10)H_2O, Z Naterforsch., Ted B. 1980. 35b. 242-244.
    [37] M. Seleborg, The Crystal Structure of Dipotassium Trimolybdate. Acta Chem. Scand 1966,20,2195-2201.
    [38] B. M. Gatetehouse, P. Leverett, The Crystal Structure of Dipotassium Trimolybdate. K_2Mo_3O_(10); A Compound with Five-co-ordinate Molybdenum(IV), J. Chem. Soc. A 1968,1398-1405.
    [39] K. J. Range, A. Fassler, Diammonium trimolybdate(VI),(NH_4)_2Mo_3O_(10), Acta Cryst. 1990, C46,488-489.
    [40] S. A. Hodorowicz, W. Lasocha, Structure Chracterization of the Ammonium Trimolybdate Hydrate (NH_4)_2Mo_3O_(10).H_2O, Cryst. Res. Technol. 1988, 23, K43-K46.
    [41] M. I. Khan, Q. Chen, J. Zubieta, Hydrothermal synthesis and crystal structure of the trimolybdate, (H_3NCH_2CH_2NH_3) Mo_3O_(10), Inorg. Chim. Acta 1993,213, 325-327.
    [42] Y. Xu, L.-H. An, L. L. Koh, Investigations into the Engineering of Inorganic/Organic Solids: Hydrothermal Synthesis and Structure Characterization of One-Dimensional Molybdenum Oxide Polymers, Chem. Mater. 1996, 8, 814-818.
    [43] C. D. Wu, X. Lin, D. M. Wu, C.-Z. Lu, H. H. Zhuang, Hydrothermal Synthesis and Crystal Structure of Trioxomolybdate: NaH_3OMo_3O_(10), Chinese J. Struct Chem. 2001, 20(4), 266-269.
    [44] V. I. Boschen, B. Buss, B. Krebs, Die Kristallstruktur des polymeren Oktamolybdats. (NH_4)_6Mo_8O_(27).4H_2O, Acta Cryst 1974, B30, 48-56.
    [45] W. T. A. Harrison, L. L. Dussack, A. J. Jacobson, Tris(piperazinium) Octamolybdate, (C_4H_(12)N_2)_3[Mo_8O_(27)], Acta Cryst 1996, C52,1075-1077.
    [46] V. N. Molchanov, 1. V. Tatjanina, E. A. Torchenkova, A Novel Type of
    ??Heteropolynuclcar Complex Anion: X-ray Crysta Structure of the Polymeric ComplexAnion [Th(H_2O)_3UMo_(12)O_(42)]~(4n-), J. Chem. Soc, Chem. Commun. 1981,93-4.
    
    [47] H. Naruke, T. Ozeki, T. Yamase, Structure of photoluminescent polyoxomolybdoeuropate (NH_4)_(12)H_2[Eu_4(MoO_4)(H_2O)_(16)(Mo_7O_(24))_(41).13H_2O. Acta Cryst 1991, C47,489-492.
    
    [48] M. T. Pope, In From Simplicity to Complexity in Chemistry -and Beyond. Part I; A.Miller, A. Dress, F. VSgtle, Eds.; Vieweg: Braunschweig, 1996; p 137.
    
    [49] A. Kitamura, T. Ozeki, A. Yagasaki, P-Octamolybdate as a Building Block.Synthesis and Structural Characterization of Rare Earth-Molybdate Adducts, Inorg.Chem. 1997, 36,4275-4279.
    
    [50] M. Hashimoto, M. Takata, A. Yagasaki, Reactivity of Organometallic Molybdate towardLanthanide Cations. Synthesis and Structure of Polynuclear Lanthanide-MolybdateComplexes, Inorg. Chem. 2000,39,3712-3714.
    
    [51] Y. G Kessler, N. Ya. Turova, A. N. Panov, A. 1. Yanovsky, A. P. Pisarevsky, Y. T.Struchkov, Synthesis, X-ray structure and thermal decomposition of lanthanum[dioxoisopropoxomolybdatel [La_2Mo_4O_4(u_4-O)_4(u-OPr)_8(Opr})_6], Polyhedron1996, 15,335-338
    
    [52] R. Villanneau, A. Proust, F. Robert, P. Gouzerh. Co-ordination chemistry of 1acunary Lindgvist-type polyoxometalates: cubic vs. square-antiprismatic co-ordination.J Chem. Soc, Dalton Trans. 1999,421-426
    
    [53] P. Mialane, A. Dolbecq, G Costaz, L. Lisnard, J. Marrot, F. Secheresse, Synthesis andstructure of the first dinuclear lanthanide oxalato complexes[(Mo_2O_4(C_2O_4)_2(H_2O)_2)_2{(Ln_2(H_2O)_4)_2(C_2O_4))1.7H_2O (Ln=La3',Ce3'), Inorg. Chem.Commun. 2002,5,702-705.
    
    [54] Y. Xu, L.-H. An, LA. Koh, Investigations into the Engineering of Inorganic/OrganicSolids: Hydrothermal Synthesis and Structure Characterization of One-DimensionalMolybdenum Oxide Polymers, Chem. Mater. 1996, 8, 814-818.
    
    [55] P. J. Zapf, R. C. Haushalter, J. Zubieta, Crystal engineering of inorganic/organiccomposite solids: the structure-directing role of aromatic ammonium cations in thesynthesis of the 'step'-layered molybdenum oxide phase [4,4'-H2bpy][Mo7022]"H20,Chem. Commun. 1997,321-322.
    
    [56] E. M. McCarron, 111, J. F. Whitney, D. B. Chase, Pyridinium molybdates.??Synthesis and structure of an octamolybdate containing coordinately bound pyridine:[(CSHSN)_2Mo_8O_(26), Inorg. Chem. 1984, 23, 3275.
    
    [57] P. Gili, P. Martin-Zarza, G. Martin-Reyes, Molybdates of aromatic heterocycliccompounds. Synthesis and structure of an octamolybdate containing coordinately boundpyrazole: [(C3H4N2)2(Mos026)]", Polyhedron 1992,11,115-121.
    
    [58] B. Kamenar, M. benavic and B. Markovic, Structure of potassiumbis(isothiocyanato)octamolybdate(VI) hexahydrate, Acta Cryst, 1988, C44, 1521-1523.
    
    [59] P. Martin-Zarra, J. M. Arrieta, M. C. Munoz-Roca, P. Gili, Synthesis andCharaterization of New Octamolybdates Conraining Imidazole, 1-Methyl-Imidazole or2-Methyl-Imidazole Coordinatively Bound to Molybdenum, J. Chem. Soc, DaltonTrans. 1993, 1551-1557.
    
    [60] P. J. Zapf, R. C. Haushalter, J. Zubieta, Hydrothermal Synthesis and StructuralCharacterization of a Series of One-Dimensional OrganidlnorganicHybrid Materials of the [(MoO3)-(2,2'-bipy)m] Family: [Mo03(2.2'-bipy)].[M0206(212'-bipy)], and [Mo3O9(2,2'-biPY)2], Chem. Mater. 1997, 9, 2019-2024.
    
    [61] P. J. Zapf, R. L. LaDuca, Jr, R. S. Rarig, Jr., K. M. Johnson 111, J. Zubieta. ATwo-Dimensional Network Constructed via Hydrogen-Bonded Cross-linkages ofMolybdenum Oxide Chains, Inorg. Chem. 1998,37,3411-3414.
    
    [62] P. J. Hagrman, R. L. LaDuca, Jr, HA. Koo, R. Rarig, Jr., R. C. Haushalter. M.- H.Whangbo, J. Zubieta, Ligand Influences on the Structures of Molybdenum OxideNetworks, Inorg. Chem. 2000, 39,4311-4317.
    
    [63] P. J. Zapf, C. J. Warren, R. C. Haushalter, J. Zubieta, One- and two-dim- ionalorganic-inorganic composite solids constructed from molybdenum oxide clusters andchains linked through (M(2,2'-bpy))~(2+) fragments (M = Co, Ni, Cu), Chem. Commun.1997,1543-1544.
    
    [64] J. R. D. DeBord, R. C. Haushalter, L. M. Meyer, D. J. Rose, P. J. Zapf, J. Zubieta.New solids from old clusters: syntheses and structures of [Cu(en)_2]_2[Mo_8O_(26)].[Cu(enMe)_2]_3[V_(18)O_(36)C1].2.5H_2O and Cs_(0.5)[Ni(en)_2]_3[V_(18)O_(42)C1] 2en.6H20. Inorg. Chim.Acta 1997,256,165-168.
    
    [65] D. Hagrnlan, C. Zubieta, D. J. Rose, J. Zubieta, R. C. Haushalter, Composite solids constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits: Polyoxomolybdate clusters within??[(Cu(4,4'-bpy))_4Mo_8O_(26)] and [(Ni(H_2O)_2(4,4'-bpy)_2)_2Mo_8O_(26)] and one-dimensional oxide chains in [{Cu(4,4'-bpy))_4Mo_8O_(47)]center dot 8H20, Angew. Chem., Int. Ed Engl. 1997,36,873-876.
    
    [66] D. Hagrman, C. Sangregorio, C. J. O'Connor, J. Zubieta, A two-dimensional network constructed from hexamolybdate, octamolybdate and [Cu_3(4,7-phen)_3]~(3+) clusters: [{Cu_3(4,7-phen)_3)_2(Mo_(14)O_(45))}, Chem. Commun. 1998,1283-1284.
    
    [67] D. Hagrman, C. J. Warren, R. C. Haushalter, R. S. Rarig, Jr., K. M. Johnson III, R L. LaDuca, Jr., J. Zubieta, Structure-Directing Role of Organoamine Ligands in the Self-Assembly of Novel Bimetallic Oxides, Chem. Mater. 1998,10,3294-3297.
    
    [68] D. Hagrman, J. Zubieta, Organic-inorganic composite oxide phases: one-dimensional molybdenum oxide chains entrained within a three-dimensional coordination complex cationic framework in {Cu_2(triazolate)_2(H_2O)_2)Mo_4O_(13), Chem. Commun. 1998,2005-2006
    [69] W. G.Jenkins, C. Keemer, H. T. Lamborn, M. Curcio, U.S. Patent 5356469, 1994: Chem. Absir. 1994,122, 268214.
    [70] W. G.Jenkins, C. Keemer, H. T. Lamborn, M. Curcio, U.S. Patent 5296032 A 1994; Chem. Abstr. 1994,121, 59782.
    [71] J. Fang, J. Wang, T. Liu, Q. Liu, W. Song, Action of Si-Mo Heteropolyacid on the surface of steel, yingyong Huaxue 1993,10(5), 53-56.
    [72] L. Fan, The Control of Corrosion and Seale by Peroxyl-Tungstosilicate-Based Agent in Cooling Water with High Cr/salt Content, Shuichuli Ashu 1994,27, 150-155.
    [73] Y. Konishi, Japanese Patent JP 06306631 A2,1994; Chem. Absir. 1994,122, 111714.
    [74] C. Yokochi, K. Isayama, A. Shibata, K. Tomoshige, Japanese Patent JP 06248473 A2, 1994; Chem. Abstr. 1994,122,139336.
    [75] G.V. Khanna, V. P. Kochergin, Corrosion of aluminum alloys with zinc and rare earth metals in solution of polyvanadic acid salts, Zh. Prikl. Khim. (S.-Peterburp) 1996.69 1755-1757.
    
    [76] C. Simpson, Improved corrosion-inhibiting pigments, Chemtech 1997, 27,40-42.
    [78] N. Minami, M. Hiraoka, K. Izumi, Y. Uchida, Japanese Patent JP 08113732 A2,1996; Chem. Absir. 1996,125,117543
    [79] D. E. Katsoulis, J. R. Keryk, Abstract ACS National Meeting, Inorganic Chemistry Section, Aug 20-24, 1995, Chicago.
    
    [80] M. Tasumisago, H. Honjo, Y. Sakai, T. Minami, Preparation and Proton-Conduction of Silica-Gels Containing Heteropoly Acids, Solid State Tonics 1993,59, 171-174.
    [81] M. Tasumisago, H. Honjo, Y. Sakai, T. Minami, Proton-Conducting Silica-Gel Films Doped with a Variety of Electrolytes, Solid State Ionics 1994, 74,105-108.
    [82] G.Killian, R. Jacobi, German Patent DE 1289652,1969; Chem. Abstr. 1969, 70, 97729.
    [83] B. Orel, U. Lavrencic-Stangar, M. G. Hutchins, K. Kalcher, Mixed Phosphotungstic Acid/Titanium Oxide Gels and Thin Solid Xerogel Films with Electrochromic-Ionic Conductive Properties Properties, J. Non-Cryst. Solids 1994.175, 251-262-
    [84] U. L. Stangar, B. Orel, M. G. Hutchins, Electrochromism of phosphotungstic acid incorporated in titanium xerogd alokoide films, Proc SPIEs Int. Soc. Opt. Eng. 1994,2255,261-272.
    [85] U. L. Stangar, B. Orel, Electrochromism titanium alkoxide xerogel thin solid films,Kovine, Zlitine, Technol 1994,28,445-449.
    [86] B. Tell, S. Wagner, Electrochemichromic cells based on phosphotungstic acid, Appl. Phys. Lett. 1978, 33, 837-838.
    [87] S. K. Mohapatra, G. D. Boyd, F. G.Storz, S. Wagner, F. WW1, Application of Solid Proton on Conductors to W03 Electrochromic Displays, J. Electrochem. Soc. 1979,126, 805-808.
    [88] M. Tatsumisago, T. Minami, Preparation of Proton-Conducting Amorphous Films Containing Dodecamolybdophosphoric Acid by the Sol-Gel Method, J. Am. Ceram. Soc. 1989,72,484-486.
    [89] B. Orel, U. L. Stangar, U. Opara, M. Gaberscek, K. Kalcher, Preparation and Charateriztion of Mo-Doped and Sb-Mo-Doped SD02 Sol-Gel-Derived Films for Counterelectrode Applications in Electrochromic Devices, J. Mater. Chem. 1995,5,617-624.
    [90] W. H. Knoth, Derivatives of heteropolyanions. 1. Organic derivatives of W_(12)SiO_(40), W_(12)PO_(40), and Mo_(12)SiO_(40), J. Am. Chem. Soc. 1979,101, 759-760.
    [91] T. Kudo, A. Kishimoto, K. Hinokuma, Preparation of molybdenum trioxide based thin films from peroxopolymolybdate and their electrachromic properties, Kenkyu Hokokus Asahi Garasu Zaidan 1992, 60,119-124.
    [92] I. Takahashi, M. Hibino, T. Kudo, Thermochromic VI-xWxO2 thin films prepared by wet coating using polyvanadate solutions, Jpn. J. Appy. Phys., Part II 1996, 35, L438-L440.
    [93] Savadogo, K. C. Mandal, Improved Smproved Schottky-Barrier on N-Sb_2S_3 Flihns Chemically Deposted with Silicotungstic Acid, Electron. Lett. 1992, 28. 1682-1683
    [94] O. Savadogo, K. C. Mandal, Low-Cost Schottky-Barrier Solar-Cells Fabricated on Use and Sb2S3 Films Chemically Deposited with Silicotungstic Acid, J Electrochem. Sac. 1994,141,2871-2877.
    [95] O. Savadogo, K. C. Mandal, Fabrication of Low-Cost N-Sb_2S_3 P-Ge Heterajunction Solar-cells Savadogo, J Appl Phys. 1994, 27, 1070-1075.
    
    [96] B. H. Pan, J. Y. Lee, Electrochromism of electrochemically codeposited composites of phosphomodic acid and tungsten trioxide, J. Electrochem. Sac 1996,143, 2784-2789.
    [97] N- A. Yao, A. K. Ahavi, K. N'Guessan, K. Kouadja, Electrical Behaviour of Polysilicon Solar-Cells Modified in the Electrochemical Coating of Heteropolyanions. Renewable Energy 1995, 6, 829-833.
    
    
    [98] V. W. Jones, M. Kalaji, G Walker, Influence of Immobilising Anions on the Redoes Switching of Polyaniline, J Chem. Soc., Faraday Trans. 1994, 90,2061-2064.
    
    [99] J. Zheng, Y. Liu, H. Zheng, Study OR PMo]Z04o3- polyaniline modifiedelectrode, Chin. Chem. Lett. 1992, 3,215-216
    
    [100] S. Wang, Y. Chen, Chinese Patent CN 1091828 A, 1994; Chem. Abstr. 1994,124,44331
    
    [101] S. Wang, Y. Chen, Chinese Patent CN 1090045 A, 1994; Chem. Abstr. 1994,123,245660.
    
    [102] A. F. Nikiforov, V. V. Poteryaeva, 1.1. Nichkova, T. V. Lobukhina, Soviet Patent SU1564116 Al, 1990; Chem, Abstr. 1990,113, 117950.
    
    [103] T. Hang, G Cheng, Z. Zhang, D. Han, W. Ji, Determination of inorganic phosphatein P-nitrophenyl phosphate disodium salt, Zhongguo Yaoke Daxue Xuebao 1993,24, 380-382.
    
    [104] X. He, X. Liu, S. Liu, S. Xu, Study on the super sensitive color reaction of the ethylrhodamine P-molybdophosphoric heteropoly acid-PVA system, Fenxi Shiyanshi 1996,15,63-66.
    
    [105] V. Mikulaj, V. Svec, Precipitation Sparation of Strontium and Calcium from Acidic Solutions Using Crown-Ether and Tungstosilici Acid, J. Radioanal. Nucl. Chem. 1994,183,127-133
    
    [106] A. M. Fedoseev, I. G Tananaeuv, Sorption separation of neptunium and plutonium using anion exchanger catalysis based on heteropoly compounds, Radiokhimiya 1994, 36, 422-425.
    
    [107] R. D. Peacock, T. J. R. Weakley, Heteropolytungstate Complexes of the LanthanideElements. Part 1. Preparation and Reactions, J. Chem. Soc. A 1971,1836-1839.
    
    [108] N. Haraguchi, Y. Okaue, T. Isobe, Y. Matsude, Stabilization of Tetravalent Cerium upon Coordination of Unsaturated Heteropolytungstate Anions, Inorg. Chem. 1994, 33, 1015-1020.
    
    [109] C. M. Liu, D.-Q. Zhang, M. X., and D. B. Zhu, A novel two-dimensional mixed molybdenum-vanadium polyoxometalate with two types of cobalt(Ⅱ) complex fragments as bridges, Chem. Commun., 2002,1416-1417.
    
    (1) (a) Pope, M. T.; Muller, A. Angew. Chem., Int. Ed Engl. 1991, 30, 34-48; (b) Pope. M. T.; Miiller, A. Polyoxometalates: From Platonic Solids to Anit-Retro\iral Activity; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; (c) Pope, M. T. Heteropoly andlsopoly Oxometalates; Springer: New York, 1983.
    
    (2) (a) Khan, M. I.; Muller, A.; Dillinger, S.; Bogge, H.; Chen, Q.; Zubieta, J. Angewandte Chemie. 1993,105, 1811-1814; (b) Gaunt, A. J.; May, I.; Helliwell, M.; Richardson, S. J. Am. Chem. Soc. 2002,124, 13350-13351; (c) Cronin, L.; Beugholt, C; Krickemeyer. E.; Schmidtmann, M.; Bogge, H.; Kogerler, P.; Luong, T. K. K.; Miiller, A. Angew. Chem. Int. Ed 2002, 41, 2805-2808; (d) Wu. C. D.; Lu, C. Z.; Zhuan, H. H.; Huang, J. S. J. Am. Chem. Soc. 2002,124, 3836-3837.
    
    (3) (a) Howell, R. C; Perez, F. G; Jain, S.; Horrocks, W. D.; Rheingold, Jr.. A. L; Francesconi, L. C. Angew. Chem., Int. Ed. Engl. 2001, 40, 4031-4034; (b) Mialane, P.; Dolbecq, A.; Lisnard, L.; Mallard, A.; Marrot, J.; Secheresse, F. Angew. Chem. Int. Ed. 2002, 41, 2398-2401; (c) Uchida, S.; Mizuno, N. Chem. Eur. J. 2003, 9, 5850-5857; (d) Fukaya, K.; Yamase, T. Angew. Chem. Int. Ed 2003; 42, 654-658; (e) Felices, L. S.; Vitoria, P.; Gutiurrez-Zorrilla, J. M.; Reinoso, S.; Etxebarria, J.; Lezama, L. Chem. Eur. J. 2004,70,5138-5146.
    
    (4) (a) Long, D. L.; Abbas, H.; Kogerler, P.; Cronin, L. Angew. Chem. Int. Ed. 2005, 44, 3415-3419; (b) Errington, R. J.; Petkar, S. S.; Horrocks, B. R.; Houlton, A.; Lie, L. H.; Patole, S. N. Angew. Chem. Int. Ed 2005, 44, 1254-1257; (c) Bassil, B. S.; Dickman, M. H.; Kortz, U. Inorg. Chem. 2006, 45, 2394-2396; (d) Boglio, C; Lemiere, G; Hasenknopf, B.; Thorimbert, S.; Lacote, E.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45.??3324-3327.
    
    (5) (a) Zhang, C; Howell, R. C; Luo, Q.-H.; Fieselmann, H. L.; Todaro, L. J.; Francesconi. L. C. Inorg. Chem. 2005, 44, 3569-3578; (b) Zhang, C; Howell, R. C; Scotland. K. B.: Perez, F. G; Todaro, L.; Francesconi, L. C. Inorg. Chem. 2004, 43, 7691-7701: (c) Yamase, T. Chem. Rev. 1998, 98, 307-326; (d) Bosing, M; Loose, I.; Pohlmann. H.: Krebs, B. Chem. Eur. J. 1997, 3, 1232-1237; (e) Coronado, E.; Gomez-Garcia. C. J. Chem. Rex. 1998, 98, 273-296.
    
    (6) (a) Katsoulis, D. E. Chem. Rev. 1998, 98, 359-388; (b) Richardt, P. J. S.; Gable. R. W.: Bond, A. M.; Wedd, A. G Inorg. Cnem. 2001, 40, 703-709; (c) Lopez. X.; Bo. C: Poblet. J. M. J. Am. Chem. Soc. 2002,124, 12574.
    
    (7) (a) Kortz, U.; Mbomekalle, I. M.; Keita, B.; Nadjo, L.; Berthet, P. Inorg. Chem. 2002, 41. 6412-6416; (b) Ruther, T.; Hultgren, V. M.; Timko, B. P.; Bond, A. M.; Jackson. W. R.: Wedd, A. G J. Am. Chem. Soc. 2003,125, 10133-10143; (c) Ben-Daniel, R.; Neumann. R. Angew. Chem., Int. Ed 2003,42, 92-95.
    
    (8) (a) Kim, W. B.; Voitl, T.; Rodriguez-Rivera, G J.; Evans, S. T.; Dumesic, J. A. Angew. Chem. 2005, 44, 778-782; (b) Maayan, G; Popovitz-Biro, R.; Neumann, R. J. Am. Chem. Soc. 2006, 128, 4968-4969; (c) Kumar, D.; Derat, E.; Khenkin, A. M; Neumann. R.: Shaik, S. J. Am. Chem. Soc. 2005, 127, 17712-17718; (d) Kasai, J.; Nakagawa. Y.: Uchida, S.; Yamaguchi, K.; Mizuno, N. Chem. Eur. J. 2006, 4176-4184.
    
    (9) (a) Judd, D. A.; Nettles, J. H.; Nevins, N.; Snyder, J. P.; Liotta, D. C; Tang, J.; Ermolieff. J.; Schinazi, R. F.; Hill, C. L. J. Am. Chem. Soc. 2001,123,886-897; (b) Nomiya, K.; Torii. H.: Hasegawa, T.; Nemoto, Y; Nomura, K.; Hashino, K.; Uchida, M.; Kato, Y; Shimizu, K. J. Inorg. Biochem. 2001, 86, 657; (c) Aguey-Zinsou, K.-F.; Bernhardt, P. V; Kappler. U.; McEwan, A. G.J. Am. Chem. Soc. 2003,125, 530-535.
    
    (10) (a) Khan, I. M; Meyer, L. M.; Haushalter, R. C; Schweitzer, A. L.; Zubieta, J.: Dye, J. L. Chem. Mater. 1996, 8, 43-53; (b) Khan, M. I.; Chen, Q.; Zubieta, J. J. Chem. Soc, Chem. Commun. 1993,4, 356-357; (c) Gopalakrishnan, J. Chem. Mater. 1995, 7, 1265-1275; (d) Yamase, T.; Prokop, P. V. Angew. Chem. Int. Ed. 2002, 41, 466-469; (e) Miiller, A.; Das, S. K.; Talismanov, S.; Roy, S.; Beckmann, E.; B6gge, H.; Schmidtmann, M.; Merca, A.; Berkle, A.; Allouche, L.; Zhou, Y. S.; Zhang, L. J. Angew. Chem. Int. Ed. 2003, 42, 5039-5044; (f) Muller, A.; Rehder, D.; Haupt, E. T. K.; Merca, A.; Bogge, H.; Schmidtmann, M.; Heinze-Brilckner, G Angew. Chem. Int. Ed. 2004,43,4466-4470.
    
    (11) (a) Khan, M. I.; Chen, Q.; Salta, J.; O'Connor, C. J.; Zubieta, J. Inorg. Chem. 1996, 35. 1880-1901; (b) Reinoso, S.; Vitoria, P.; Lezama, L.; Luque, A.; Gutierrez-Zorrilla, J. M. Inorg. Chem. 2003,42, 3709-3711; (c) Burkholder, E.; Golub, V.; O'Connor, C. J.; Zubieta. J. Inorg. Chem. 2004, 43, 7014-7029; (d) Leclerc-Laronze, N.; Marrot, J.; Herve. G Inorg. Chem. 2005, 44,1275-1281; (e) Xu, L.; Qin, C; Wang, X. L.; Wei, Y. G; Wang.E. B. Inorg. Chem. 2003, 44, 7342-7344.
    
    (12) (a) Bartis, J.; Sukal, S.; Dankova, M.; Kraft, E.; Kronzon, R.; Blumenstein, M.; Francesconi, L. C. J. Chem. Soc, Dalton Trans. 1997, 1937-1944; (b) Sadakane, M.; Dickman, M. H.: Pope, M. T. Angew. Chem., Int. Ed. 2000, 39, 2914-2916; (c) Mialane, P.; Lisnard, L.; Mallard, A.; Marrot, J.; Antic-Fidancev, E.; Aschehoug, P.; Vivien, D.; Secheresse, F. Inorg. Chem. 2003, 42, 2102-2108.
    
    (13) (a) Niu, J. Y; Guo, D. J.; Wang, J. P.; Zhao, J. W. Cryst. Growth Des. 2004, 4, 241-247; (b) Lu, J; Shen, E. H.; Li, Y, G; Xiao, D. R.; Wang, E. B.; Xu, L. Cryst. Growth Des. 2005, 5, 65-67; (c) Ai, H. Y; Wang, E. B.; Xiao, D. R.; Li, Y. G; Xu, L. Inorg. Chem. Comm. 2005, 8, 267-270.
    
    (14) (a) Wang, J. P.; Zhao J. W; Duan, X. Y; Niu, J. Y Cryst. Growth Des. 2006. 6, 507-513;??(b) An, H. Y.; Li, Y. G; Xiao, D. R.; Wang, E. B.; Sun, C. Y. Cryst. Growth Des. 2006. 6. 1107-1112.
    
    (15) (a) Wang, X. L.; Guo, Y. Q.; Li, Y. G; Wang, E. B.; Hu, C. W; Hu, N. H. Inorg. Chem. 2003, 42, 4135-4140; (b) An, H. Y; Lan, Y; Li, Y. G; Wang, E. B.; Hao, N.: Xiao, D. R.: Duan, L. Y; Xu. L. Inorg. Chem. Commun. 2004, 7, 356-358; (c) An, H. Y; Guo, Y Q.: Li, Y. G; Wang, E. B.; Lu, J.; Xu, L.; Hu, C. W. Inorg. Chem. Commun. 2004, 7. 521-523: (d) An, H. Y; Xiao, D. R.; Wang, E. B.; Li, Y G; Wang, X. L.; Xu, L. Eur. J. lnorg. Chem. 2005, 854-859.
    
    (16)(a) Manikumari, S.; Shivaiah, V.; Das, S. K. Inorg. Chem 2002, 41, 6953-6955: (b) Crystallographic data of H_3[Al(OH)_6Mo_6O_(18)]10H_2O: a = 11.3112, b = 10.9279. c = 11.7440, β = 99.409.
    
    (17) (a) Fedosseev, A. M; Grigore, M. S.; Yanovskii, A. L; Struchkovyn, T.; Spitsin. V. I. Doklady Academii Nauk SSSR 1987, 111; (b) Naruke, H.; Ozeki, T.; Yamase. T. Acta Crystallogr., Sed. C1991,47, 489-492; (c) Cai, X. Z.; Wang, S. M.; Huang, J. R; Guan. H. M; Lin, X. Chin. J. Struct. Chem. 1997,16, 328-334.
    
    (18) (a) Shannon, R. D. Acta Crystallogr. 1976, A32, 751-767; (b) Goubin, R; Guenee. L.: Deniard, P.; Koo, H. -J.; Whangbo, M. H.; Montardi, Y; Jobic, S. J. Solid State Chem. 2004. 777, 4528-4534.
    
    (19) (a) Ina, L.; Michael, B.; Rita, K.; Bernt, K.; Rolf P. S.; Bernd, S. lnorg. Chim. Acta. 1997, 263, 99; (b) Allmann, R. Acta Crystallogr. 1971, B27, 1393-1404; (c) Evans Jnr. H. T.; Rollins, O. W. Acta Crystallogr. 1976, B32, 1565-1567.
    
    (20) Gimenez-Saiz, C; Galan-Mascaros, J. R.; Triki, S.; Coronado, E.; Ouahab, L. lnorg. Chem. 1995, 34, 524-526; (e) Yan, B. B.; Goh, N. K.; Chia, L. S. lnorg. Chim. Acta 2004, 357, 490-494.
    
    (21) Luo, Q. H.; Howell, R. C; Bartis, J.; Dankova, M.; Horrocks, W. D.; Jr.; Rheingold. A. L.; Francesconi, L. C. Inorg. Chem. 2002,41,6112-6117.
    
    (22) Gautier, R.; Andersen, O. H.; Gougeon, P.; Halet, J. -F.; Canadell, E.; Martin, D. D. Inorg. Chem. 2002,41, 4689-4699.
    
    (23) "PLATON program", van der Sluis, P.; Spek, A. L. Acta Crystallogr., Sect A. 1990,46,194-201.
    
    (24) Brese, N. E.; O'Keeffe, M. Acta Crystallogr. Sect. B 1991, 47,192-197.
    
    (25) O'Handley, R. C. Modern Magnetic Materials principles and Applications, 2000. P76.
    
    (26) Sheldrick, G M. SHELXTL-97: Program for Refinement of Crystal Structures; University of Gottingen: Gottingen, Germany, 1997.
    
    [1] a) M. T. Pope, A. Muller, Angew. Chem., Int. Ed Engl. 1991, 30, 34-38; b) M. T. Pope.Heteropoly and lsopoly Oxometalates; Springer: New York, 1983; c) M. T. Pope. A.Mttller, Polyoxometalates: From Platonic Solids to Anit-Retroviral Activity: KluwerAcademic Publishers: Dordrecht, The Netherlands, 1994.
    
    [2] a) C. D. Wu, C. Z. Lu, H. H. Zhuang, J. S. Huang, J. Am. Chem. Soc. 2002, 124.3836-3837; b) A. J. Gaunt, I. May, M. Helliwell, S. Richardson, J. Am. Chem.Soc. 2002, 124, 13350-13351; c) L. Cronin, C. Beugholt, E. Krickemeyer. M.Schmidtmann, H. B6gge, P. K6gerler, T. K. K. Luong, A. Muller, Angew. Chem. Int. Ed.2002, 41,2805-2807.
    
    [3] a) P. Mialane, A. Dolbecq, L. Lisnard, A. Mallard, J. Marrot, F. Secheresse, Angew. Chem.Int. Ed. 2002, 41,2398-2401; b) S. Uchida, N. Mizuno, Chem. Eur. J. 2003, 9, 5850-5857:c) K. Fukaya, T. Yamase, Angew. Chem. Int. Ed 2003, 42, 654-658.
    
    [4] a) L. S. Felices, P. Vitoria, J. M. Gutiurrez-Zorrilla, S. Reinoso, J. Etxebarria, L. Lezama,Chem. Eur. J. 2004, 10, 5138-5146; b) D. L. Long. H. Abbas, P. Kogerler, L. Cronin,??Angew. Chem. Int. Ed. 2005,44,3415-3419; c) R. J. Errington, S. S. Petkar, B. R. Horrocks.A. Houlton, L. H. Lie, S. N. Patole, Angew Chem. Int. Ed 2005, 44. 1254-1257.
    
    [5] a) B. S. Bassil, M. H. Dickman, U. Kortz, Inorg. Chem. 2006. 45,2394-2396; b) C. Boglio, G. Lemiere, B. Hasenknopf, S. Thorimbert, E. Lacote. M.Malacria, Angew. Chem. Int. Ed 2006, 45, 3324-3328.
    
    [6] a) M. Bosing, I. Loose, H. Pohlmann, B. Krebs, Chem. Eur. J. 1997, 3. 1232-1237: b) J.Kasai, Y. Nakagawa, S. Uchida, K. Yamaguchi, N. Mizuno, Chem. Eur. J. 2006.4176-4184; c) R. Ben-Daniel, R. Neumann, Angew. Chem., Int. Ed. 2003, 42. 92-95: d) W.B. Kim, T. Voitl, G J. Rodriguez-Rivera, S. T. Evans, J. A. Dumesic. Angew. Chem., Int. Ed. 2005, 44, 778-782.
    
    [7] a) T. Yamase, Chem. Rev. 1998, 98, 307-326; b) E. Coronado, C. J. Gomez-Garcia.Chem. Rev. 1998, 98, 273-296; c) D. E. Katsoulis, Chem. Rev. 1998, 98. 359-388; d) K.Nomiya, Y. Nemoto, T. Hasegawa, S. Matsuoka, J. Mol. Catal. A 2000, 152, 55-68; e) K.Nomiya, K. Hashino, Y. Nemoto, M. Watanabe, J. Mol. Catal. A 2001.176, 79-86.
    
    [8] a) P. J. S. Richardt, R. W. Gable, A. M. Bond, A. G Wedd, Inorg. Chem. 2001. 40.703-709; b) U. Kortz, I. M. Mbomekalle, B. Keita, L. Nadjo, P. Berthet, Inorg. Chem. 2002.47,6412-6416.
    
    [9] a) X. Lopez, C. Bo, J. M. Poblet, J. Am. Chem. Soc. 2002,124, 12574-12582; b) T. Ruther.V. M. Hultgren, B. P. Timko, A. M. Bond, W. R. Jackson, A. G Wedd, J. Am. Chem. Soc.2003,125,10133-10143; c) D. Kumar, E. Derat, A. M. Khenkin, R. Neumann,S. Shaik,J. Am. Chem. Soc. 2005,127, 17712-17718; d)G. Maayan, R.Popovitz-Biro, R. Neumann, J. Am. Chem. Soc. 2006,128, 4968-4969.
    
    [10]a) D. A. Judd, J. H. Nettles, N. Nevins, J. P. Snyder, D. C. Liotta, J. Tang, J. Ermolieff, R.F. Schinazi, C. L. Hill, J. Am. Chem. Soc. 2001, 123, 886-897; b) K. Nomiya, H. Torii. T.??Hasegawa, Y. Nemoto, K. Nomura, K. Hashino, M. Uchida, Y. Kato, K. Shimizu, J. Inorg.Biochem. 2001, 86, 657-668; c) K. F. Aguey-Zinsou, P. V. Bernhardt, U. Kappler, A. GMcewan,J. Am. Chem. Soc. 2003,125, 530-535.
    
    [11] a) U. Kortz, S. Isber, M. H. Dickman, D. Ravot, Inorg. Chem. 2000,39,2915-2922; b) I. M.Mbomekalle, B. Keita, M. Nierlich, U. Kortz, P. Berthet, L. Nadjo, Inorg. Chem., 2003.42, 5143-5152; c) U. Kortz, S. Nellutia, A. C. Stowe, N. S. Dalai, U. Rauwald, W. Danquah. D.Ravot, Inorg. Chem. 2004, 43, 2308-2317; d) P. Mialane, C. Duboc, J. Marrot, E. Riviere,A. Dolbecq, F. Secheresse, Chem. Eur. J. 2006,12, 1950-1959.
    
    [12] a) L. H. Bi, E. B. Wang, J. Peng, R.D. Huang, L. Xu, C. W. Hu, Inorg. Chem. 2000, 39,671-679; b) L. H. Bi, R. D. Huang, J. Peng, E. B. Wang, Y. H. Wang, C. W. Hu. J. Chem.Soc, Dalton Trans. 2001, 121-129; c) R. Ben-Daniel, L. Weiner, R. Neumann, J. Am.Chem. Soc. 2002,124, 8788-8789.
    
    [13] a) U. Kortz, S. Matta, Inorg. Chem. 2001, 40, 815-817; b) M. Yuan, E. B. Wang. Y. Lu.Y. G Li,C. W. Hua,N. H. Hu,H. Q. Jia, Inorg. Chem. Comm. 2002, 5, 505-508; c) N.Barrier.Gougeon,R.Retoux,H.Leligny,Inorg. Chem. 2003, 42, 1734-1738.
    
    [14] X. Zhang, J. Jiang, manuscript in preparation.
    
    [15] I. Loose, M. Bosing, R. Klein, B. Krebs, R. P. Schulz, B. Scharbert, Inorg. Chim. Acta,1997,263,99-108.
    
    [16] a) R. D. Shannon, Acta Crystallogr. 1976, A32, 751-767; b) F. Goubin, L. Guenee. P. Deniard. H. J. Koo, M. H. Whangbo, Y. Montardi, S. Jobic, J. Solid State Chem. 2004,177, 4528-4534.
    
    [17] H. T. Evans, J. Am. Chem. Soc. 1968, 90,3275-3276.
    
    [18] a) R. Allmann, Acta Crystallogr. 1971, B27, 1393-1404; b) H. T. Evans Jnr. 0. W. Rollins Acta Crystallogr. 1976, B32, 1565-1567; b) C. Gimenez-Saiz. J. R. Galan-Mascaros, S. Triki, E. Coronado, L. Ouahab, Inorg. Chem. 1995, 34, 524-526; c) B. B. Yan, N. K. Goh, L. S. Chia, Inorg. Chim. Acta 2004, 357,490-494.
    
    [19] N. E. Brese, M. O'Keeffe, Acta Crystallogr. Sect. B 1991, 47, 192-197.
    
    [20] G M. Sheldrick, SHELXTL-97: Program for Refinement of Crystal Structures: University of Gottingen: Gottingen, Germany, 1997.
    
    [1] (a) Pope, M. T.; Muller, A. Angew. Chem., Int. Ed. Engl. 1991, SO, 34-48; (b) Pope, M.T.; Mttller, A. Polyoxometalates: From Platonic Solids to Anit-Retroviral Activity;Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; (c) Pope, M. T.Heteropoly and Isopoly Oxometalates; Springer: New York, 1983.
    
    [2] (a) Khan, M. I.; Miiller, A.; Dillinger, S.; Bogge, H.; Chen, Q.; Zubieta, J. AngewandteChemie. 1993,105, 1811-1814; (b) Gaunt, A. J.; May, I.; Helliwell, M.; Richardson, S. J.Am. Chem. Soc. 2002,124, 13350-13351; (c) Cronin, L.; Beugholt, C; Krickemeyer. E.;Schmidtmann, M.; Bogge, H.; KOgerler, P.; Luong, T. K. K.; Mttller, A. Angew. Chem. Int.Ed 2002, 41, 2805-2808; (d) Wu, C. D.; Lu, C. Z.; Zhuan, H. H.; Huang, J. S. J. Am.Chem. Soc. 2002,124, 3836-3837.
    
    [3] (a) Howell, R. C; Perez, F. G; Jain, S.; Horrocks, W. D.; Rheingold, Jr., A. L.;Francesconi, L. C. Angew. Chem., Int. Ed. Engl. 2001, 40, 4031-4034; (b) Mialane. P.;Dolbecq, A.; Lisnard, L.; Mallard, A.; Marrot, J.; Secheresse, F. Angew. Chem. Int. Ed.2002, 41, 2398-2401; (c) Uchida, S.; Mizuno, N. Chem. Eur. J. 2003, 9, 5850-5857; (d)Fukaya, K.; Yamase, T. Angew. Chem. Int. Ed. 2003; 42, 654-658; (e) Felices. L. S.;Vitoria, P.; Gutiurrez-Zorrilla, J. M.; Reinoso, S.; Etxebarria, J.; Lezama, L. Chem. Eur. J.2004,70,5138-5146.
    
    [4] (a) Long, D. L.; Abbas, H.; Kogerler, P.; Cronin, L. Angew. Chem. Int. Ed 2005, 44,3415-3419; (b) Errington, R. J.; Petkar, S. S.; Horrocks, B. R.; Houlton, A.; Lie. L. H.;??Patole, S. N. Angew. Chem. Int. Ed 2005, 44, 1254-1257; (c) Bassil, B. S.; Dickman. M.H.; Kortz, U. Inorg. Chem. 2006, 45, 2394-2396; (d) Boglio, C; Lemiere. G:Hasenknopf, B.; Thorimbert, S.; Lacote, E.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45.3324-3327.
    
    [5] (a) Zhang, C; Howell, R. C; Luo, Q.-H.; Fieselmann, H. L.; Todaro, L. J.; Francesconi.L. C. Inorg. Chem. 2005, 44, 3569-3578; (b) Zhang, C; Howell, R. C; Scotland. K. B.:Perez, F. G; Todaro, L.; Francesconi, L. C. Inorg. Chem. 2004, 43, 7691-7701; (c)Yamase, T. Chem. Rev. 1998, 98, 307-326; (d) Bosing, M.; Loose, I.; Pohlmann. H.;Krebs, B. Chem. Eur. J. 1997, 5, 1232-1237; (e) Coronado, E.; Gomez-Garcia, C. J.Chem. Rev. 1998, 98, 273-296.
    
    [6] (a) Katsoulis, D. E. Chem. Rev. 1998, 98, 359-388; (b) Richardt, P. J. S.; Gable. R. W.;Bond, A. M.; Wedd, A. G Inorg. Chem. 2001, 40, 703-709; (c) Lopez, X.; Bo, C; Poblet.J. M. J. Am. Chem. Soc. 2002,124, 12574.
    
    [7] (a) Kortz, U.; Mbomekalle, I. M.; Keita, B.; Nadjo, L.; Berthet, P. Inorg. Chem. 2002, 41.6412-6416; (b) Ruther, T.; Hultgren, V. M; Timko, B. P.; Bond, A. M.; Jackson. W. R.:Wedd, A. G J. Am. Chem. Soc. 2003,125, 10133-10143; (c) Ben-Daniel. R.; Neumann. R.Angew. Chem., Int. Ed. 2003,42, 92-95.
    
    [8] (a) Kim, W. B.; Voitl, T.; Rodriguez-Rivera, G J.; Evans, S. T.; Dumesic, J. A. Angew.Chem. 2005, 44, 778-782; (b) Maayan, G; Popovitz-Biro. R.; Neumann, R. J. Am. Chem.Soc. 2006, 128, 4968-4969; (c) Kumar, D.; Derat, E.; Khenkin, A. M.; Neumann. R.:Shaik, S. J. Am. Chem. Soc. 2005, 127, 17712-17718; (d) Kasai, J.; Nakagawa. Y.:Uchida, S.; Yamaguchi, K.; Mizuno, N. Chem. Eur. J. 2006,4176-4184.
    
    [9] (a) Judd, D. A.; Nettles, J. H.; Nevins, N.; Snyder, J. P.; Liotta, D. C; Tang, J.; Ermolieff.J.; Schinazi, R. F.; Hill, C. L. J Am. Chem. Soc. 2001,123,886-897; (b) Nomiya, K.; Torii, H.;??Hasegawa, T.; Nemoto, Y.; Nomura, K.; Hashino, K.; Uchida, M.; Kato, Y.; Shimizu, k. J.Inorg. Biochem. 2001, 86, 657; (c) Aguey-Zinsou, K.-F.; Bernhardt P. V.; Kappler, U.;McEwan,A. GJ. Am. Chem. Soc. 2003,125, 530-535.
    
    [10] (a) Khan, I. M.; Meyer, L. M.; Haushalter, R. C; Schweitzer, A. L.; Zubieta, J.; Dye, J.L. Chem. Mater. 1996, 8, 43-53; (b) Khan, M. I.; Chen, Q.; Zubieta, J. J. Chem. Soc.Chem. Commun. 1993,4, 356-357; (c) Gopalakrishnan, J. Chem. Mater. 1995. 7.1265-1275; (d) Yamase, T.; Prokop, P. V. Angew. Chem. Int. Ed. 2002, 41, 466-469; (e)Muller, A.; Das, S. K.; Talismanov, S.; Roy, S.; Beckmann, E.; Bogge, H.; Schmidtmann,M.; Merca, A.; Berkle, A.; Allouche, L.; Zhou, Y. S.; Zhang, L. J. Angew. Chem. Int. Ed.2003, 42, 5039-5044; (f) Miiller, A.; Rehder, D.; Haupt, E. T. K.; Merca, A.; Bogge. H.:Schmidtmann, M.; Heinze-Bruckner, G Angew. Chem. Int. Ed. 2004,43,4466-4470.
    
    [11] (a) Khan, M. I.; Chen, Q.; Salta, J.; O'Connor, C. J.; Zubieta, J. Inorg. Chem. 1996. 35.1880-1901; (b) Reinoso, S.; Vitoria, P.; Lezama, L.; Luque, A.; Gutierrez-Zorrilla, J. M.Inorg. Chem 2003,42, 3709-3711; (c) Burkholder, E.; Golub, V.; O'Connor, C. J.: Zubieta,J. Inorg. Chem. 2004, 43, 7014-7029; (d) Leclerc-Laronze, N.; Marrot, J.; Herve, GInorg. Chem. 2005, 44,1275-1281; (e) Xu, L.; Qin, C; Wang, X. L.; Wei, Y. G: Wang.E.B. Inorg. Chem. 2003, 44, 7342-7344.
    
    [12] (a) Bartis, J.; Sukal, S.; Dankova, M.; Kraft, E.; Kronzon, R.; Blumenstein, M.; Francesconi.L. C. J. Chem. Soc, Dalton Trans. 1997, 1937-1944; (b) Sadakane, M.; Dickman, M. H.:Pope, M. T. Angew. Chem., Int. Ed. 2000, 39, 2914-2916; (c) Mialane, P.; Lisnard, L.;Mallard, A.; Marrot, J.; Antic-Fidancev, E.; Aschehoug, P.; Vivien, D.; Secheresse, F.Inorg. Chem. 2003, 42, 2102-2108.
    
    [13] (a) Niu, J. Y.; Guo, D. J.; Wang, J. P.; Zhao, J. W. Cryst. Growth Des. 2004, 4. 241-247;(b) Lu, J; Shen, E. H.; Li, Y, G; Xiao, D. R.; Wang, E. B.; Xu, L. Cryst. Growth Des.??2005, 5, 65-67; (c) Ai, H. Y.; Wang. E. B.; Xiao, D. R.; Li. Y. G; Xu, L. Jnorg. Chem. Comm. 2005, 8,267-270.
    
    [14] (a) Wang, J. P.; Zhao J. W.; Duan, X. Y.; Niu, J. Y Cryst. Growth Des. 2006, 6. 507-513; (b) An, H. Y; Li, Y. G; Xiao, D. R.; Wang, E. B.; Sun, C. Y. Cryst. Growth Des. 2006. 6. 1107-1112.
    
    [15 (a) Wang, X. L.; Guo, Y Q.; Li, Y. G; Wang, E. B.; Hu, C. W.; Hu, N. H. Inorg. Chem. 2003, 42, 4135-4140; (b) An, H. Y; Lan, Y; Li, Y. G; Wang, E. B.; Hao, N.; Xiao. D. R.: Duan, L. Y; Xu, L. Inorg. Chem. Commun. 2004, 7, 356-358; (c) An. H. Y; Guo. Y. Q.: Li. Y G; Wang, E. B.; Lu, J.; Xu, L.; Hu, C. W Inorg. Chem. Commun. 2004. 7. 521-523; (d) An, H. Y; Xiao, D. R.; Wang, E. B.; Li, Y G; Wang, X. L.; Xu, L. Eur. J. Inorg.Chem. 2005, 854-859.
    
    [16](a) Manikumari, S.; Shivaiah, V.; Das, S. K. Inorg. Chem 2002, 41, 6953-6955; (b) Crystallographic data of H_3[Al(OH)_6Mo_6O_(18)]10H_2O: a = 11.3112, b = 10.9279. c = 11.7440, p = 99.409.
    
    [17] (a) Fedosseev, A. M.; Grigore, M. S.; Yanovskii, A. I.; Struchkovyn, T.; Spitsin. V. I. Doklady Academii Nauk SSSR 1987, 111; (b) Naruke, H.; Ozeki, T.; Yamase. T. Acta Crystallogr., Sect. C1991,47, 489-492; (c) Cai, X. Z.; Wang, S. M; Huang, J. R: Guan. H. M.; Lin, X. Chin. J. Struct. Chem. 1997,16, 328-334.
    
    [18] (a) Shannon, R. D. Acta Crystallogr. 1976, A32, 751-767; (b) Goubin, R; Guenee. L.: Deniard, P.; Koo, H. -J.; Whangbo, M. H.; Montardi, Y; Jobic, S. J. Solid State Chem. 2004. 777,4528-4534.
    
    [19] (a) Ina, L.; Michael, B.; Rita, K.; Bernt, K.; Rolf P. S.; Bernd, S. Inorg. Chim. Acta. 1997, 263, 99; (b) Allmann, R. Acta Crystallogr. 1971, B27, 1393-1404; (c) Evans Jnr. H. T.; Rollins, O. W. Acta Crystallogr. 1976, B32,1565-1567.
    
    [20] Gimenez-Saiz, C; Galan-Mascaros, J. R.; Triki, S.; Coronado, E.; Ouahab, L. Inorg. Chem. 1995, 34, 524-526; (e) Yan, B. B.; Goh, N. K.; Chia, L. S. Inorg. Chim. Acta 2004, 357, 490-494.
    
    [21] Luo, Q. H.; Howell, R. C; Bartis, J.; Dankova, M.; Horrocks, W. D.; Jr.; Rheingold, A.L.; Francesconi, L. C. Inorg. Chem. 2002,41,6112-6117.
    
    [22] Gautier, R.; Andersen, O. H.; Gougeon, P.; Halet, J. -E; Canadell, E.; Martin. D. D.Inorg. Chem. 2002,41, 4689-4699.
    
    [23] "PLATON program", van der Sluis, P.; Spek, A. L. Acta Crystallogr., Sect A. 1990,46,194-201.
    
    [24] Brese, N. E.; O'Keeffe, M. Acta Crystallogr. Sect. B 1991, 47,192-197.
    
    [25] O'Handley, R. C. Modern Magnetic Materials principles and Applications, 2000, P76.
    
    [26] Sheldrick, G M. SHELXTL-97: Program for Refinement of Crystal Structures; University of Gottingen: Gottingen, Germany, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700