选择性细胞滞留技术快速构建组织工程骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:因现代战争及和平时期交通、建筑等行业的高能量损伤、骨肿瘤切除、骨结核与感染等所致的骨缺损日益常见。作为治疗骨缺损金标准的自体骨移植,由于存在取骨量有限和取骨区并发症,已不能满足骨缺损治疗的需要。利用骨髓干细胞与生物材料结合构建的组织工程骨修复骨缺损的动物实验已获得较为肯定的效果,但其缺点在于MSCs来源少、体外培养扩增周期长、细胞对支架材料的粘附率不足、技术条件高,从而影响了其在骨缺损治疗中的应用。自体红骨髓经皮注射在临床治疗骨不连和填充骨缺损等方面已取得一定的成功,但应用直接注入的方法,局部干细胞容易流失,影响了疗效。SCR是骨髓干细胞富集技术之一,是通过基质材料适当的网孔结构和良好的表面粘附性能,使骨髓流经时选择性滞留利于成骨的干细胞及促成骨因子等成分,所构建的TEB即刻回植修复骨缺损,可获得与自体骨移植相接近的效果。但由于受到知识产权保护和入关限制的影响,该技术及相关产品至今难以在我国临床应用。为此,本实验主要目的包括:⑴制备一种新型的骨髓干细胞富集材料,并观察其体外细胞相容性和体内组织相容性;⑵探讨SCR技术快速构建的TEB的异位成骨效果;⑶探讨新型富集材料应用SCR技术处理后对骨髓细胞和促成骨生长因子的富集效果;⑷观察SCR技术快速构建的TEB对成骨标志物和成骨特异性转录激活因子Cbfα1表达的影响,探讨富集材料促成骨的可能机制。
     方法:⑴采用多聚左旋赖氨酸修饰人脱钙骨基质制备一种新型的骨髓干细胞富集材料,用液体置换法、扫描电镜、三维视频显微镜、拉曼光谱、红外光谱和HE染色测定其密度、孔隙率、孔径等表面特征;⑵将富集材料和不同浓度的材料浸提液与hMSCs共培养,应用形态学观察、MTT法、流式细胞仪、免疫组织化学、溶血实验等评价材料的体外细胞相容性;⑶裸鼠分别予腹腔注射PLL-DBM的生理盐水浸提液、背部皮下注射PLL-DBM浸提液培养后的DOC细胞悬液、背部植入PLL-DBM材料后,采用全身急性毒性试验、致癌试验和皮下植入试验等评价材料的体内组织相容性。⑷采用SCR技术使PLL-DBM富集骨髓后快速构建TEB,分别将SCR技术构建的TEB(SCR组)、体外培养的MSCs复合DBM常规构建的TEB(TEB组)、注射骨髓复合DBM(骨髓组)、单纯DBM(DBM组)植入裸鼠皮下,4、8、12、16w时取材,应用X线摄片、CT扫描、扫描电镜和HE染色等方法,观察植骨处影像密度、植骨区组织学改变和成骨效果;⑸应用SCR技术处理富集材料,观察富集前后PLL-DBM对骨髓有核细胞、血小板及纤维母细胞集落形成单位的富集效果,ELISA法检测富集前后骨髓上清中TGF-β1和PDGF表达;⑹采用SCR技术富集骨髓后快速构建TEB,分别将SCR技术构建的TEB(SCR组)、MSCs复合DBM常规构建的TEB(TEB组)、注射骨髓复合DBM(骨髓组)、单纯DBM(DBM组)植入裸鼠皮下,应用免疫组化和RT-PCR方法,检测4、8、12、16w时组织块内成骨标志物I型胶原、整合素α2β1、骨钙素表达,及成骨特异性转录激活因子Cbfα1表达。
     结果:⑴PLL在材料内外表面形成均匀的乳白色涂层。PLL-DBM密度为(0.27±0.02)g/ml,孔隙率为(73±11)%,孔径为(412.73±160.29)μm。孔与孔之间有约100μm左右小孔贯通,孔隙内部有大量孔隙相互连通,并在天然孔隙内形成更小、孔径较均匀的网孔结构。⑵将富集材料及其不同浓度的材料浸提液分别与hMSCs共培养,形态学观察示细胞生长良好;细胞毒性实验显示hMSCs均良好增殖,毒性0-1级;流式细胞仪检测证实hMSCs、DOC均无DNA倍体异常的细胞,其CD29、CD105呈阳性,CD34、CD45呈阴性,材料浸提液不影响hMSCs表面分子的表达,且可通过促其向增殖期转化而促进hMSCs增殖;成骨诱导后DOC的生长与成骨活性无异常,可形成钙结节、表达I型胶原,ALP活性未受影响。溶血试验测得溶血率2.617%,符合生物材料要求小于5%的标准。⑶全身急性毒性试验显示裸鼠体重正常增长;致癌试验显示裸鼠正常存活,8月内未见肿块形成,心、肝、脑、肺、肾、脾组织学观察未见肿瘤细胞;皮下植入试验显示取材后皮下组织紧裹材料表面,色泽无改变,材料周围为一层薄纤维组织包绕,组织学观察发现皮下及皮肤组织细胞结构正常,无淋巴细胞/巨噬细胞浸润,未见细胞溶解和坏死迹象。⑷随着植入时间的延长,各复合材料植入组植入物的密度逐渐增高,在各时间点与单纯DBM组比较均有显著性差异;SCR组植入物密度与TEB组类似,显著高于骨髓组和DBM组。扫描电镜和组织学观察发现,随时间延长,组织块内PLL-DBM材料逐渐降解吸收,支架材料内逐渐形成小血管和新骨。8w时DBM开始降解,支架材料内有大量细胞和少数小血管形成,植入TEB内可见部分新生骨形成;12w时DBM支架部分降解,组织块内有较多的小血管长入,新骨亦明显增加;16w时植入区可见较为坚硬的骨性组织,并有血管长入。TEB组扫描电镜和组织学改变与SCR组类似,优于骨髓组和DBM组。⑸PLL-DBM的富集效果随PLL浓度增大而逐渐增加。0.1%PLL修饰的富集材料对人骨髓NCs浓度富集倍数为3.18±0.31倍、粘附率达53%±12%,对血小板富集倍数为3.88±0.68倍、粘附率达34%±10%,对骨髓干细胞即CFU-F的浓度富集倍数为5.25±1.40倍、粘附率达73%±13%、选择率达1.41±0.34。0.1%PLL修饰的富集材料与更高浓度PLL制备的PLL-DBM比较无明显差异,说明PLL-DBM对NCs的粘附具有一定的饱和性。富集后TEB中促成骨生长因子TGF-β1的浓度富集倍数为42.327±4.561,PDGF的浓度富集倍数为9.618±1.251,富集技术可以显著提高TEB中TGF-β1和PDGF含量。⑹随时间延长,植入区成骨标志物I型胶原、整合素α2β1和骨钙素的表达均逐渐增高,16w时达高峰,SCR组和TEB组表达相似,显著高于骨髓组和DBM组;免疫组化和RT-PCR法显示成骨早期SCR组Cbfα1 mRNA和蛋白表达显著增加,随着骨组织的逐渐成熟,Cbfα1的表达逐渐下降,16w时表达明显减弱。SCR组Cbfα1的表达与TEB组类似,优于骨髓组和DBM组。
     结论:⑴制备的PLL-DBM具有自体骨三维空间结构和促进细胞粘附的PLL,具有良好的细胞相容性、组织相容性和可降解性,能促进hMSCs的粘附与增殖,对DOC的成骨活性无影响,是一种较理想的骨髓干细胞富集材料。⑵SCR技术快速制备的TEB植入体内后能够成骨,并可以达到与体外培养的hMSCs复合制备的TEB同样的成骨效果。⑶PLL-DBM能明显增高骨髓有核细胞、血小板和CFU-F的浓度富集倍数和粘附率,显著提高TEB中TGF-β1和PDGF含量;推测SCR技术快速构建TEB后局部高浓度的骨髓干细胞和促成骨生长因子TGF-β1与PDGF,可能是SCR技术构建的TEB高成骨活性的可能机制之一。⑷SCR技术快速构建的TEB,通过在早期促进成骨特异性转录激活因子Cbfα1表达、中晚期上调成骨标志物I型胶原、整合素α2β1和骨钙素表达而促进成骨,可能是SCR技术构建的TEB高成骨活性的可能分子机制之一。
Background and objective: Bone defects induced by various kinds of causes are commonly seen in clinic. As a gold standard, autogenous bone transplantation can not satisfy the requirement for bone defects therapy because of limited bone mass and operation complications in donor site. Tissue engineered bone (TEB) constructed by bone marrow stem cells (BMSCs) and biomaterial in treating bone defects in animal studies had obtained certain effects, but the shortcomings were: BMSCs in little resource, long cycle of culture and amplification in vitro, low adhesion rate of cell to scaffold and high specification, thus limited the application in bone defect therapy. Autologous red bone marrow percutaneous injection had obtained some success in treating clinical bone nonunion and bone defect, but the method of direct injection, had the defect of partly stem cell running off. Selective cell retention (SCR) is a technique of bone marrow stem cell enrichment, the mechanism is seletive retenting stem cells and facilitating ossify factors when bone marrow pass through the adequate mesh and favourable surface adhesiveness of scaffolds. The TEB constructed by SCR were replanted immediately for treating bone defect, could obtained the same effect as autogenous bone transplantation. But due to intellectual property rights conservation and enter restriction, enrichment technique and correlated manufactures harded to applicate in our country. Thus, the objectives of our experiment are:⑴Preparation of a new kind of bone marrow stem cells enrichment scaffold, to observe its cellular compatibility in vitro and its histocompatibility in vivo;⑵To explore the enriching effect of new kind of bone marrow stem cells enrichment scaffold constructed by SCR;⑶To study the ectopia osteogenesis effects of tissue engineered bone fast constructed by SCR;⑷To observe the effect of tissue engineered bone fast constructed by SCR on ossify marker and ossify specific activating transcript factor Cbfα1, and explore the mechanism of enrichment scaffold on osteogenesis.
     Methods:⑴Demineralized bone matrix decorated with poly-L-lysine (PLL-DBM) as a new kind of bone marrow stem cells enrichment scaffold, its surface character such as density, porosity and pore size were determined by liquid displacement method, scanning electron microscope, three dimension video microscope, raman spectroscopy, infrared spectrum and HE staining.⑵New enrichment scaffold and different dense of scaffold leaching liquor were co-cultured with hMSCs, cellular compatibility in vitro were evaluated by morphologic observation, MTT assay, FCM, hemolysis experiment and immunohistochemistry.⑶Nude mouse were accepted intraperitoneal injection of saline leaching liquor extracted from PLL-DBM, back subcutaneous injection of DOC cell suspension after cultured with PLL-DBM leaching liquor, back implantation of PLL-DBM scaffold respectively, histocompatibility in vivo were evaluated by acute toxicity test, carcinogenesis test and subcutaneous implantation test.⑷TEB were constructed quickly after bone marrow enrichment by SCR. PLL-DBM combinated with bone marrow by SCR (SCR group), deminerilized bone matrix ( DBM ) combinated with MSCs (TEB group), DBM combinated with bone marrow (bone marrow group) and DBM (DBM group) were implantated into subcutaneous area of nude mouse, drow the materials at 4, 8, 12, 16 weeks. Image density, histological changes of bone graft area and ossify effects were determined by X ray, CT scanning, scanning electron microscope and HE staining.⑸New enrichment scaffold were handled by SCR, the enriching effects of PLL-DBM to bone marrow nucleated cells (NCs) ,platelets (PLTs) and fibroblast colony forming unit ( CFU-F) were observed before and after enrichment, contents of TGF-β1 and PDGF in bone marrow supernatant were detected by ELISA method before and after enrichment.⑹TEB were constructed fast after bone marrow enrichment by SCR, PLL-DBM combinated with SCR (SCR group), DBM combinated with MSCs (TEB group), DBM combinated with bone marrow (bone marrow group) and DBM (DBM group) were implantated into subcutaneous area of nude mouse, Collagen type I, integrinα2β1, osteocalcin and Cbfα1 mRNA and protein expression at 4、8、12、16 weeks were studied by immunohistochemistry and RT-PCR method.
     Results:⑴Steady ivory converage were formed at exterior and interior surface by PLL. The density of PLL-DBM is (0.27±0.02) g/ml, the porosity is (73±11)%, the pore size is (412.73±160.29)μm. there are many micropore about 100μm size among pores, a great quantity of pore cross-connected each other in the interior pore, and formed smaller, more steady mesh structure in the natural pore.⑵New enrichment scaffold and different density scaffold leaching liquor were co-cultured with hMSCs, morphologic observation showed that MSCs growth well, cytotoxicity showed that MSCs proliferate well and toxity range from 0 to 1 grade. FCM showed that hMSCs and DOC had no abnormal DNA ploid, the marker of CD29 and CD105 are positive, CD34 and CD45 are negative, scaffold leaching liquor had no affect on hMSCs surface molecule, and could promote its proliferation by transform it into multiplication period. After ossify induction, DOC could form calcium nodule and express Collagen type I, and the ALP activity had not been affected. Hemolysis experiment showed that hemolysis rate was 2.617% which in accordance with the standard of biomaterial that the rate must less than 5%.⑶In acute toxicity test, nude mouse growth well; in carcinogenesis test, nude mouse survival better, tumour had not been seen after 8 months, tumour cells had not been in the organization such as heart, liver, brain, lung, kidney and spleen. In subcutaneous implantation test, histological observation showed that subcutaneous tissue tighted the scaffold surface with a thin fiber tissue around it, lymphocyte/macrophage infiltration, cytolysis and necrosis had not been seen.⑷The density of each composite implantation increase gradually followed the time, and had significant difference at each time point when compared with single DBM; the density in SCR group was similar to that in TEB group, but was superior to in bone marrow group and DBM group. Scanning electron microscope and HE staining showed that, PLL-DBM scaffold degradated gradually as time passed, bone trabecula and small vessels formed gradually into the scaffold. DBM started to degradation at 8 weeks, a lot of cells and a few small vessels formed, and part of newly formed bone generated into the scaffold. DBM partly degraded at 12 weeks, smaller vessels entered scaffold and new bone formation was found; rigid bone tissue were seen at 16 weeks, and medullary tissue and vessels were seen in some region of implantation site. Scanning electron microscope and HE staining in TEB group were similar to SCR group, but superior to bone marrow group and DBM group.⑸The enriching effects of PLL-DBM increased gradually with the PLL dnsity. The concentration enrichment multiple rate of enrichment scaffold decorated with 0.1% PLL of bone marrow NCs was 3.18±0.31, the adhesion rate was 53%±12%; The concentration enrichment multiple rate of platelet was 3.88±0.68, the adhesion rate was 34%±10%, The concentration enrichment multiple rate of CFU-F was 5.25±1.40, the adhesion rate was 73%±13%, the selective rate was 1.41±0.34. Compared with high density PLL, 0.1% PLL-DBM had the same effect, showed that PLL-DBM had saturability to NCs adhesion. concentration enrichment multiple rate of TGF-β1 was 42.327±4.561 and concentration enrichment multiple rate of PDGF was 9.618±1.251 in the enrichment scaffold, and enrichment technique could increase the content of TGF-β1 and PDGF significantly.⑹Expression of Collagen type I, integrinα2β1, osteocalcin mRNA and protein were increased gradually followed the time, and reached the peak at 16 weeks, the expression in SCR group was similar to that in TEB group, superior to bone marrow group and DBM group. Immunohistochemistry and RT-PCR showed that, Cbfα1 mRNA and protein expression increased significantly at ossify earlier period, but decreased gradually followed the bone maturation. The expression of Cbfα1in SCR group was similar to in TEB group, superior to in bone marrow group and DBM group.
     Conclusion:⑴PLL-DBM possess three dimensional space as autogenous bone and PLL for cell adhesion, and have favourable cellular compatibility, histocompatibility and biodegradability, can promote the adhesion and proliferation of hMSCs, but not affect the ossify activity of DOC, is an ideal enrichment scaffold for bone marrow stem cells.⑵TEB constructed fast by SCR have favourable bone formation, and the effect of ossify is similar to MSCs combined with DBM.⑶Enrichment scaffold can increase the concentration enrichment multiple rate and the adhesion rate of bone marrow NCs, platelet and CFU-F significantly, and increase the contents of TGF-β1 and PDGF in TEB, it is said that the local high concentration of bone marrow stem cells and facilitate ossify growth factor TGF-β1 and PDGF, maybe the one of the mechanism of high ossify activity of TEB constructed fast by SCR.⑷Increased Cbfα1 expression in earlier period of osteogenesis and increased expression of Collagen type I, integrinα2β1 and osteocalcin in middle-advanced stage maybe the one of the molecule mechanism of high ossify activity of TEB constructed fast by SCR.
引文
1. Liu G, Zhao L, Zhang W, et al. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med. 2008 , 19(6): 2367-2376
    2. Viateau V, Guillemin G, Bousson V,et al. Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. J Orthop Res. 2007, 25(6): 741-749
    3.杨志明,黄富国,秦廷武,等.生物衍生组织工程骨植骨的初步临床应用.中国修复重建外科杂志, 2002, 16(5): 311- 314
    4. Chai G, Zhang Y, Liu W, et al. Clinical application of tissue engineered bone repair of human craniomaxillofacial bone defects[J]. ZhonghuaYixue Zazhi, 2003, 83(19): 1676- 1681
    5.柴岗,张艳,胡晓洁,等.自体骨髓基质干细胞在齿槽裂骨缺损修复中的应用.中华整形外科杂志, 2006, 22(6): 409-411
    6.刘杰,王序全,吴雪晖,等.个体化组织工程骨修复小儿长骨骨缺损的影像学观察.华南国防医学杂志, 2008, 22(2): 1-4
    7.干耀恺,戴克戎,汤亭亭.临床细胞加工与细胞治疗.国际骨科学杂志, 2007, 28(1): 1-5
    8. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005, ( 432): 242-251
    9. Block JE. The role and effectiveness of bone marrow in osseous regeneration. Med Hypotheses, 2005, 65(4): 740-747
    10. Kitchel SH, Wang MY, Lauryssen CL. Techniques for aspirating bone marrow for use in spinal surgery. Neurosurgery, 2005, 57(suppl 3):286-289
    11. Gupta MC, Theerajunyaporn T, Maitra S, et al. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model.Spine, 2007, 32(7): 720- 727
    12. Brodke D, Pedrozo HA, Kaput TA, et al. Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res, 2006, 24(5): 857-866
    13. Youssef J, Brodke D, Haynesworth S, et al. Selective cell retention technology in spinal fusion. The Spine Journal, 2003, 3: 114-115
    14. Daisuke T, Isador H, Lieberman, et al. Clinical and radiographic outcomes of lumbar interbody fusion using allograft enriched with bone marrow derived cells prepared by selective stem cell retention. The Spine Journal, 2004, 4:118-119
    15. Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop Relat Res. 1995 , (313) :8-18.
    16. Perinpanayagam H, Schneider G, Holtman K, et al. Altered cbfα1 expression and biomineralization in an osteosarcoma cell line, J Orthop Res, 2004, 22(2): 404-410
    1. Xie H, Yang F, Deng L, et al. The performance of a bone-derived scaffold material in the repair of critical bone defects in a rhesus monkey model. Biomaterials. 2007, 28(22): 3314-3324
    2. Block JE. The role and effectiveness of bone marrow in osseous regeneration. Med Hypotheses, 2005, 65(4): 740-747
    3.刘杰,许建中,王序全,等.脱钙骨基质支架构建组织工程骨的实验研究.第三军医大学学报, 2005, 27(9): 889-891
    4. Brodke D, Pedrozo HA, Kaput TA, et al. Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res, 2006, 24(5): 857-866
    5. Gupta MC, Theerajunyaporn T, Maitra S, et al. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model.Spine, 2007, 32(7): 720- 727
    6. Maddox E, Zhan M, Mundy G R , et al. Optimizing human demineralized bone matrix for clinical application[J ]. Tissue Eng , 2000 , 6 (4) : 441- 448
    7. Zhang RY, Ma PX. Porous poly (L-lacticacid) /apatite composites created by biomiminetic process. J Biomed Mater Res, 1999, 45(2): 285-293
    8.石桂欣,王身国,贝建中.聚乳酸与聚乳酸-羟基乙酸多孔细胞支架的制备及孔隙的表征.功能高分子学报, 2001, 14(1): 7-11
    9.李兴华.按1990年国际温标计算酒精密度的国际通用公式.计量技术, 1994, (02): 16-19
    10. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005, ( 432): 242-251
    11. Kitchel SH, Wang MY, Lauryssen CL. Techniques for aspirating bone marrow for use in spinal surgery. Neurosurgery, 2005, 57(suppl 3): 286-289
    12. Youssef J, Brodke D, Haynesworth S, et al. Selective cell retention technology in spinal fusion. The Spine Journal, 2003, 3: 114-115
    13. Daisuke T, Isador H, Lieberman, et al. Clinical and radiographic outcomes of lumbar interbody fusion using allograft enriched with bone marrow derived cells prepared by selective stem cell retention. The Spine Journal, 2004, 4: 118-119
    14. Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop Relat Res. 1995 , (313): 8-18.
    15.高春阳,李起鸿,简月奎,等.异种脱蛋白松质骨为载体构建组织工程骨用于脊柱横突间融合的实验观察.中国修复重建外科杂志, 2007, 21(2): 115-119
    16. Walsh WR, Christiansen DL. Demineralized bone matrix as a template for mineral--organic composites. Biomaterials, 1995 , 16(18): 1363-1371.
    17. Pacaccio DJ, Stern SF. Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg. 2005 , 22(4): 599-606
    18. Li D, Liu XD, Chai G, et al. Experimental study of construction of tissue engineered bone ectopically by human bone marrow mesenchymal stem cells. Zhonghua Zheng Xing Wai Ke Za Zhi. 2007, 23(5): 409-411
    19. Cheung S, Westerheide K, Ziran B. Efficacy of contained metaphyseal and periarticular defects treated with two different demineralized bone matrix allografts. Int Orthop, 2003, 27(1): 56-59
    20. Massia SP, Hubbell JA. Immobilized amines and basic amino acids as mimetic heparin-binding domains for cell surface proteoglycan-mediated adhesion. J Biol Chem, 1992 , 267(14): 10133-10141.
    21. Wittmer CR, Phelps JA, Saltzman WM, et al. Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials, 2007, 28(5): 851-860
    22. Liu S, Hoke D, Julian J, et al. Heparin/heparan sulfate (HP/HS) interacting protein (HIP) supports cell attachment and selective, high affinity binding of HP/HS.J Biol Chem, 1997, 272(41): 25856-25862
    23. Ye Q, Zund G, Jockenhoevel S, et al. Scaffold precoating with human autologous extracellular matrix for improved cell attachment in cardiovascular tissue engineering. ASAIO J, 2000, 46(6): 730-733
    24. San Antonio JD, Jacenko O, Yagami M, et al. Polyionic regulation of cartilage development: promotion of chondrogenesis in vitro by polylysine is associated withaltered glycosaminoglycan biosynthesis and distribution. Dev Biol, 1992, 152(2): 323-335
    25.刘彦春,王伟,曹谊林,等.包埋后的聚羟基乙酸与软骨细胞体外培养实验研究.中华显微外科杂志, 1998, 21(1): 36-39
    26. Mahmood TA, Shastri VP, Van Blitterswijk CA, et al. Tissue engineering of bovine articular cartilage within porous polyether-ester copolymer serffolds with different structures.Tissue Eng, 2005, 11(7-8):1244-1253
    27.陈瀛,李子荣,林朋,等.骨组织工程支架材料表面修饰的实验研究.生物医学工程研究, 2003, 22(3): 44-47
    28.徐蕴,肖琼,田铧,等.细胞外基质对大鼠MSCs生物学活性的影响.中国现代普通外科进展, 2007, 10(2): 26-28
    29. Gareia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation.J Dent Res, 2005, 84( 5): 407-413
    1. Gronthos S, Zannettino AC, Hay SJ, et al. Molecular cellular characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci, 2003, 116(9): 1827-1835
    2. Anker PS, Scherjon SA, Kleijburg KC, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4): 1548-1549
    3. Krzymanski G, Kadezak M, Wiktor-Jedrzejezak W. The use of bone- marrow- derived fibroblastoid cells and fresh bone marrow in the treatment of bone defects an experimental study. Int J Oral Maxillofac Surg, 1997, 26(1): 55-60
    4. Zvaifler NJ, Marinova ML, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res, 2000, 2(6): 477-488
    5. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subculativation and following cryopreservation. J Cell Biochem. 1997, 64(2): 278-294
    6. Fukuchi Y, Nakajima LL, Sugiyama D, et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem cells, 2004, 22(5): 649-658
    7. Yang M, Ma QJ, Dang GT, et al. In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy, 2005, 7(3): 273-281
    8. Majumdar MK, Keane-Mootc M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci, 2003, 10(2): 228-241
    9. Goseki T, Shimizu N, Iwasawa T, et al. Effects of in vitro cellular aging on alkaline phosphatase, cathepsin activities and collagen secretion of human periodontal ligament derived cells. Mech Ageing Dev, 1996, 91: 171-183
    10. Paschalis EP, Recker R, Dicarlo E, et al. Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res, 2003, 18: 1942-1946
    11.张真,卢晓风.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志, 2002, 19: 117-121
    12.医疗器械生物学标准汇编(第1部分-第12部分),中国标准出版社第一编辑室,第1版,北京:中国标准出版社, 2003: 14-163
    13. Rice J, Hunt JA, Gallagher JA, et al. Qnantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanolopography surfaces in a single culture model in vitro. Biomaterials, 2003, 24: 4799-4818
    14.梁卫东,石应康.细胞培养法评价生物材料生物相容性的研究进展.生物医学工程学杂志, 1999, 16: 86-90
    15.胡稷杰,裴国献,全大萍,等.新型聚乳酸-羟基乙酸(PLGA)支架的细胞相容性研究.中华创伤骨科杂志, 2005, 7(4): 358-262
    16.由少华.解读GB/T 16886《医疗器械生物学评价》系列标准.中国医疗器械信息, 2005, 11(1): 15-19
    17. Nablo BJ, Schoenfisch MH. In vitro cytotoxicity of nitric oxide-releasing sol-gel derived materials. Biomaterials, 2005 , 26(21): 4405-4415
    18.陆骅,汤亭亭,戴尅戎.不同材料对人骨髓间充质干细胞增殖的影响.临床骨科杂志, 2001, 4 (2): 81-83
    19. Boiret N, Rapatel C, Veyrat Masson R, et al. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol, 2005, 33 (2): 219-225
    20.徐蕴,肖琼,田铧,等.细胞外基质对大鼠MSCs生物学活性的影响.中国现代普通外科进展, 2007, 10(1): 26-28
    21.奚廷斐.医疗器械生物学评价(三).中国医疗器械信息, 1999, 5(5): 9-16
    22. Gareia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res, 2005, 84( 5): 407-413
    23.奚廷斐.医疗器械生物学评价(二).中国医疗器械信息, 1999, 5(4): 9-14
    1. Gronthos S, Zannettino AC, Hay SJ, et al. Molecular cellular characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci, 2003, 116(9): 1827-1835
    2. Bi Y, Stuelten CH, Kilts T, et al. Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J Biol Chem, 2005,280(34): 30481-30489
    3. Gupta MC,Theerajunyaporn T, Maitra S, et al. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model. Spine, 2007 , 32(7): 720- 727
    4. Kon E, Murglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatie ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res, 2000, 49: 328-337
    5. Isogai N, Kusuhara H, Ikada Y, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng, 2006 , 12(4): 691-703
    6. Block JE. The role and effectiveness of bone marrow in osseous regeneration. Med Hypotheses, 2005, 65(4): 740-747
    7. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005, ( 432): 242-251.
    8. Brodke D, Pedrozo HA, Kaput TA, et al. Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res, 2006, 24(5): 857-866.
    9. Youssef J, Brodke D, Haynesworth S, et al. Selective cell retention technology in spinal fusion. The Spine Journal, 2003, 3: 167-171
    10. Daisuke T, Isador H, Lieberman, et al. Clinical and radiographic outcomes of lumbar interbody fusion using allograft enriched with bone marrow derived cells prepared by selective stem cell retention. 118S Proceedings of the NASS 19th Annual Meeting/The Spine Journal 4(2004) 3S-119S
    1.许建中.骨组织工程临床研究现状与展望.组织工程与重建外科杂志, 2007, 3(2): 61-64
    2. Kitchel SH,Wang MY,Lauryssen CL. Techniques for aspirating bone marrow for use in spinal surgery. Neurosurgery, 2005, 57(suppl 3): 286-289
    3. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005, ( 432): 242-251.
    4. Hernigou P, Poignard A, Beaujean F, et al. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005 ,87(7): 1430-1437
    5.干耀恺,戴克戎,汤亭亭.临床细胞加工与细胞治疗.国际骨科学杂志, 2007, 28(1): 1-5
    6. Block JE. The role and effectiveness of bone marrow in osseous regeneration. Med Hypotheses, 2005, 65(4): 740-747
    7. Gupta MC, Theerajunyaporn T, Maitra S, et al. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model. Spine, 2007, 32(7): 720- 727
    8. Daisuke T, Isador H, Lieberman, et al. Clinical and radiographic outcomes of lumbar interbody fusion using allograft enriched with bone marrow derived cells prepared by selective stem cell retention. The Spine Journal,2004, 4: 118-119
    9. Brodke D, Pedrozo HA, Kaput TA, et al. Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res, 2006,24(5): 857-866
    10. Youssef J, Brodke D, Haynesworth S, et al. Selective cell retention technology in spinal fusion. The Spine Journal, 2003, 3: 114-115
    11. Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop Relat Res. 1995 , (313): 8-18
    12. Massia SP, Hubbell JA. Immobilized amines and basic amino acids as mimetic heparin-binding domains for cell surface proteoglycan-mediated adhesion. J Biol Chem, 1992, 267(14): 10133-10141.
    13. Wittmer CR, Phelps JA, Saltzman WM, et al. Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials, 2007, 28(5): 851-860
    14. Qian L, Saltzman WM. Improving the expansion and neuronal differentiation of esenchymal stem cells through culture surface modification. Biomaterials, 2004, 25(7-8): 1331-1337
    15. Liu S, Hoke D, Julian J, et al. Heparin/heparan sulfate (HP/HS) interacting protein (HIP) supports cell attachment and selective, high affinity binding of HP/HS. J Biol Chem, 1997, 272(41): 25856-25862
    16. Ye Q, Zund G, Jockenhoevel S, et al. Scaffold precoating with human autologous extracellular matrix for improved cell attachment in cardiovascular tissue engineering. ASAIO J , 2000 , 46(6): 730-733
    17. Wang YT, Zheng QX, Guo XD, et al. The influence of extraneous TGF-β1 on the expression of Smad2 and Smad3 in rat bone marrow-derived mesenchymal stem cells. J Huazhong Univ Sci Technol, 2005, 25(1): 68-71
    18. Uemura M, Swenson ES, Gaca MD, et al. Smad2 and Smads play different roles in rat hepatic stellate cell function and alpha smooth muscle actin organization. Mol Biol Cell, 2005, 16(9): 4214-4224
    19.王运涛,郑启新,郭晓东,等.外源性TGF-β1对大鼠骨髓间充质干细胞TβRI、TβRII表达的影响.中华实验外科杂志, 2005, 22(3): 361-363
    20. Kim MK, Niyibizi C. Interaction of TGF-β1 and rhBMP2 on human bone marrow stromal cells cultured in collagen gel matrix. Yonsei Med J, 2001, 42(3): 338-344
    21. Breen EC, Ignotz RA, Mccabe L, et al. TGF beta alters growth and differentiation related gene expression in proliferating osteoblasts in vitro,preventing development of the mature bone phenotype. J Cell Physiol, 1994, 160(2): 323-335
    22. Joyce ME, Roberts AB, Sporn MB, et al. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol, 1990, 110(6): 2195-2207
    23.贾军,边富杰,赵宝东.转化生长因子β在骨缺损修复过程中对骨痂内ALP和钙的影响.实用诊断与治疗杂志, 2007, 21(3): 176-177
    24.易诚青,杜靖远,郑启新,等.转化生长因子-β1转基因生物衍生型移植体修复骨缺损.中华实验外科杂志, 2006, 23(2): 157-159
    25. Fiedler J, Roderer G, Gunther KP, et al. BMP-2, BMP-4 and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem, 2002, 87(3): 305-312
    26. Rasubala L,Yoshikawa H, Nataga K, et al. Platelet-derived growth factor and bone morphogenetic protein in the healing of mandibular fractures in rats.Br J Oral Maxillofac Surg, 2003, 41(3): 173-178
    27. Fujii H, Kitazawa R, Maeda S, et al. Expression of platelet-derived growth factor proteins and their receptor alpha and beta mRNAs during fracture bealing in the normal mouse. Histochem Cell Biol, 1999, 112(2): 131-138
    28. Park YJ, Lee YM, Park SN, et al.Platelet-derived growth factor releasing chitosan sponge for periodontal bone generation. Biomaterials, 2000, 21(2): 153-159
    29. Lee YM, Park YJ, Lee SJ, et al. The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol, 2000, 71(3): 418-424
    30.宋扬,巢永烈,宫苹,等.改良法制备富血小板血浆促进体外原代培养成骨细胞增殖的实验研究.中国修复重建外科杂志, 2005, 19(3): 178-182
    31.程文俊,金丹,赵艳,等.富血小板血浆对青山羊骨髓间充质干细胞增殖分化的影响.中国修复重建外科杂志, 2007, 21(4): 386-389
    32. Shi S, Kirk M, Kahn AJ. The role of type I collagen in the regulation of the osteoblast phenotype. J Bone Miner Res, 1996, 11: 1139-1145
    33. Marie PJ, Connes D, Hott M, et al. Comparative effects of a novel vitamin D analogue MC-903 and 1, 25-dihydroxy vitamin D3 on alkaline phosphatase activity, osteocalcin and DNA synthesis by human osteoblasttic cells in culture. Bone, 1990, 11: 171-179
    34. Ducy P, Zhang R, Geoffroy V, et al. Osf2/cbfα1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5): 747-754
    35. Knott L, Bailey AJ. Collagen cross-links in mineralizing tissue: a review of their chemistry, function and clinical relevance. Bone, 1998,22: 181-187
    36. Edwin AC, Joan SB. Integrins and signal transduction pathways: The road taken. Science, 1995, 268: 233
    37. Clover J, Dodds RA, Gowen M. Integrin expression by human osteoblasts and osteoclasts in situ and in culture. J Cell Sci, 1992, 103: 267
    38. Willian D, For F, Zutter M, et al. Identification of a tetrapeptide recognition sequence for theα2β1 integrin in collagen. J Biol Chem, 1991, 266(12): 7363
    39. Lian JB, Stein GS, Stein JL, et al. Osteocalcin gene promoter: unlocking the secrets for regulation of osteoblast growth and differentiation. J Cell Biochem Suppl, 1998, 30: 62-72
    40. Fen JQ, Zhang J, Dallas SL, et al. Dentin matrix protein 1,a target molecule for cbfα1 in bone, is a unique bone marker gene. J Bone Miner Res, 2002, 17(10): 1822-1831
    41. Xiao ZS, Hinson TK, Quarles LD. cbfα1 isoform overexpression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J Cell Biochem, 1999, 74(4): 596-605
    42. Ziros PG, Gil AP, Georgakopoulos T, et al. The bone-specific transcriptional regulator cbfα1 is a target of mechanical signals in osteoblastic cell. Biol Chem, 2002, 277: 23939-23941
    43. Otto F, Thomell AP, Crompton T, et al. cbfα1, a candidate gene for cleidocranial dysplasia sydrome, is essential for osteoblast differentiation and bone development. Cell, 1997, 89(5): 765-768
    44. Komori T, Yagi H, Nomura S, et al. Targeted disruption of cbfα1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89(5): 755-764
    45. Baltzer AW, Lieberman JR. Regional gene therapy to enhance bone repair. Gene Ther, 2004, 11(4): 344-350
    46. Ducy P, Starbuck M, Priemel M, et al. A cbfα1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev, 1999,13(8): 1025-1036
    47.李华壮,周跃,郭国宁.核心结合因子α1促进骨髓间充质干细胞向成骨细胞分化的实验研究.中国修复重建外科杂志, 2006, 20(2): 121-124
    48.董世武,应大君,朱楚洪,等.核心结合因子α1基因修饰骨髓间充质干细胞对骨缺损的修复研究.中国修复重建外科杂志, 2006, 20(5): 555-559
    1. Kronenwett R, Haas R. Differentiation potential of stem cells from bone marrow. Med Klin (Munich). 2006 , 101( Suppl 1): 182-185
    2. Tseng PY, Chen CJ, Sheu CC, et al. Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture.J Vet Med Sci. 2007 , 69(2): 95-102
    3. Zhang FB,Yang HT.Plasticity of bone marrow mesenchymal stem cells differentiating into cardiomyocytes and the potiential of cardiac therapeutics.Sheng Li KeXue Jin Zhan, 2006, 37(3): 199-203
    4. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subculativation and following cryopreservation. J Cell Biochem. 1997, 64(2): 278-294
    5. Djouad F, Bony C, H?upl T,et al.Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther, 2005, 7(6): 1304-1315
    6. Majumdar MK, Keane-Mootc M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci, 2003, 10(2): 228-241
    7.梁文杰,吴雪晖,谢肇,等.猪骨髓间充质干细胞成骨分化后SLA的表达及免疫原性研究.免疫学杂志, 2007, 23(3): 298-305
    8.杨东明,吴雪晖,梁文杰,等. hMSCs成骨诱导前后免疫调节的实验研究.现代生物医学进展, 2007, 7(11): 1619-1622
    9. Gupta MC, Theerajunyaporn T, Maitra S, et al. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model. Spine, 2007, 32(7): 720- 727
    10. Hernigou P, Poignard A, Manicom O, et al. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone.J Bone Joint Surg(Br), 2005, 87(7): 896-902
    11. Brodke D, Pedrozo HA, Kaput TA, et al. Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res, 2006, 24(5): 857-866
    12. Block JE. The role and effectiveness of bone marrow in osseous regeneration. Med Hypotheses, 2005, 65(4): 740-747
    13. Kitchel SH, Wang MY, Lauryssen CL. Techniques for aspirating bone marrow for use in spinal surgery. Neurosurgery, 2005, 57(suppl 3): 286-289
    14. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005, ( 432): 242-251
    15. Hou M, Yang KM, Zhang H, et al. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. Int J Cardiol, 2007, 115(2): 220-228
    16. El-Sabban ME, El-Khoury H, Hamdan-Khalil R, et al. Xenogenic bone matrix extracts induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. Regen Med, 2007, 2(4): 383-390.
    17.朱灏,许建中.不同年龄供体间充质干细胞在骨组织工程中的应用.中国临床康复, 2004, 8(2): 328-329
    18. Anker PS, Scherjon SA, Kleijburg KC, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4): 1548-1549
    19. Fukuchi Y, Nakajima LL, Sugiyama D, et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem cells, 2004, 22(5): 649-658
    20. Jeong JA, Gang EJ, Hong SH, et al. Rapid neural differentiation of human cord blood–derived mesenchymal stem cells. Neuroreport, 2004, 15: 1731-1734
    21. Yang M, Ma QJ, Dang GT, et al. In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy, 2005, 7(3): 273-281
    22. Dragoo JL, Choi JY, Lieberman JR, et al. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res, 2003, 21(4): 622-629
    23. Zvaifler NJ, Marinova ML, Adams G, et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res, 2000, 2(6): 477-488
    24.吴成如,董英海,高学纯,等.自体外周血干细胞与脱钙骨复合移植治疗兔桡骨缺损的实验研究.中华外科杂志, 2001, 39(2): 144-146
    25. Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the heading of canine segmental bone defects. J Bone Joint Surg, 1998, 80(7): 985-988
    26. Dong J, Uemura T, Shirasaki Y, et al. Promotion of bone formation using highly pure porousβ-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials, 2002, 23: 4493-4502
    27. Gronthos S, Zannettino AC, Hay SJ, et al. Molecular cellular characterization of highly purified stromal stem cells derived from human bone marrow. J Cell Sci, 2003, 116(9): 1827-1835
    28. Krzymanski G, Kadezak M, Wiktor-Jedrzejezak W. The use of bone- marrow- derived fibroblastoid cells and fresh bone marrow in the treatment of bone defects an experimental study. Int J Oral Maxillofac Surg, 1997, 26(1): 55-60
    29. Sikavitsas VI, Vanden DJ, Bancroft CN, et al. Influence of the in vitro culture period on the in vivo performance of cell/litanium bone tissue-engineered constructs using a ralcranial crilical size defect model. J Biamed Mater Res A, 2003, 67: 944-951
    30.许建中.骨组织工程的研究与开发进展.第三军医大学学报, 2005, 27(16): 1625-1627
    31.干耀恺,戴尅戎,张蒲,等.应用富集骨髓干细胞技术治疗骨缺损.中华骨科杂志2006, 26 (11): 721-727
    32. Youssef J, Brodke D, Haynesworth S, et al. Selective cell retention technology in spinal fusion. The Spine Journal, 2003, 3: 167-171
    33. Daisuke T, Isador H, Lieberman, et al. Clinical and radiographic outcomes of lumbar interbody fusion using allograft enriched with bone marrow derived cells prepared by selective stem cell retention. 118S Proceedings of the NASS 19th Annual Meeting/The Spine Journal 4(2004) 3S-119S
    34. Perinpanayagam H, Schneider G, Holtman K, et al. Altered cbfα1 expression and biomineralization in an osteosarcoma cell line. J Orthop Res, 2004, 22(2): 404-410
    35. Breitbart AS, Grande DA, Mason JM,et al. Gene-enhanced tissue engineering applications for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene. Ann Plast Surg, 1999, 42(5): 488-495
    36.郑启新,郭晓东,刘勇,等. bFGF基因修饰的间充质干细胞/多孔β-TCP陶瓷复合移植修复兔节段性骨缺损.中国生物医学工程学报, 2003, 22(2): 171-177
    37. Blum JS, Barry MA, MikosAG, et al. In vivo evaluation of gene therapy veetors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model. Hum Gene Ther, 2003, 14(18): 1689-1701
    38. Liebeman JR, Daluiski A, Stevenson S, et al. The effect of gene therapy with bone morphogenetic protein-2 producing bone marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am, 1999, 81(7): 905-917
    39. Lou J, Xu F, Merkel K, et al. Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induce mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vitro. J Orthop Res, 1999, 17: 43-50
    40. Turgeman G, Aslan H, Gazit Z, et al. Cell mediated gene therapy for bone formation and regeneration. Curr Opin Mol Ther, 2002, 4(1): 390-394
    41. Zhang X, Zhang C, Tang T, et al. Immunomodulatory and osteogenic differentiation effects of mesenchymal stem cells by adenovirus-mediated coexpression of CTLA4Ig and BMP2. J Orthop Res, 2008 , 26(3): 314-321
    1. Hernigou P, Poignard A, Manicom O, et al. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg(Br), 2005, 87(7): 896-902
    2. Brodke D, Pedrozo HA, Kaput TA, et al. Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J Orthop Res, 2006, 24(5): 857-866
    3. Block JE. The role and effectiveness of bone marrow in osseous regeneration. Med Hypotheses, 2005, 65(4): 740-747
    4. Kitchel SH,Wang MY,Lauryssen CL.Techniques for aspirating bone marrow for use in spinal surgery. Neurosurgery, 2005, 57(suppl 3):286-289
    5. Muschler GF, Matsukura Y, Nitto H, et al. Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005, ( 432): 242-251
    6. Mahmood TA, Shastri VP, Van Blitterswijk CA, et al. Tissue engineering of bovine articular cartilage within porous polyether-ester copolymer serffolds with different structures.Tissue Eng, 2005, 11(7-8): 1244-1253
    7. Maddox E, Zhan M, Mundy G R , et al . Optimizing human demineralized bone matrix for clinical application[J ]. Tissue Eng , 2000 , 6 (4) : 441 -448
    8. Zhang RY,Ma PX. Porous poly(L-lacticacid)/apatite composites created by biomiminetic process.J Biomed Mater Res, 1999, 45(2): 285-293
    9. SHI Guixin, WANG Shenguo, BEI Jianzhong, et al. Preparationof porous cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) and the measurement of their porosities. Journal of Functional Polymer, 2001, 14(1): 7-11
    10. LIU Jie, XU Jianzhong, WANG Xuquan, et al .Tissue engineered bone constructed with demineralized bone matrix scaffold: an experimental study. Acta Academiae Medicinae Militaris Tertiae, 2005, 27(9): 889-891
    11. Gareia AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res, 2005, 84( 5): 407-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700