声发射检测中传感器布置及声源定位的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋蕴含着极为丰富的资源,海洋平台作为海洋资源开发的基础性设施,是海上生产作业和活动的基地,因此海洋平台健康状况检测是海洋平台安全与防护的重要一环,及时发现海洋平台结构中的裂纹对预防事故的发生具有重要意义。声发射技术作为一种新型动态的检测技术已被广泛应用于许多领域,研究海洋平台结构的声发射检测技术,有利于实现对海洋平台健康状况的实时掌握。本文针对海洋平台结构声发射检测中的传感器布置及声源定位进行了研究,目的在于利用相对较少的传感器实现海洋平台结构的全局检测,为海洋平台结构的安全评估和健康诊断提供依据。
     本文以导管架平台结构模型为研究对象,在理论分析导管架平台结构模型中裂纹形成和扩展所产生声发射波的传播特性的基础上,进行了能量衰减特性的试验研究,并基于能量衰减进行了声发射传感器布置的研究,通过声发射检测试验进行了声发射源定位的研究。
     在预制的导管架海洋平台结构模型上,进行断铅模拟声发射源实验,测量计算出平均实际波速约为3487m/s,信号幅值在距声源的距离增大到一定值时呈现明显的衰减规律,为确定最大传感器间距并进行传感器布置提供了依据。
     在导管架平台结构模型的一个管节点处,进行了能量衰减特性的试验研究,推导出能量衰减系数α的取值范围为0.30~1.70,在不同支撑上距声源位置相同距离处,衰减系数不尽相同。这是因为实际结构介质并非完全弹性介质,波在传播时不仅由于几何因素(即随着波阵面的扩大,弹性波的能量将分布在更大的体积内,从而使得单位体积内的能量减小)而按照一定的比例衰减,它还受到结构的形状和尺寸等多种因素的影响,所以在实际传播过程中的衰减要更复杂,通过试验研究也证明了这一点。
     根据管节点处能量衰减特性试验研究的结论,首次提出基于能量衰减的传感器布置方法,初步推导出试验模型的原型结构全局检测共需布置22个传感器,并得出了传感器的布置结构。声发射传感器布置的研究是海洋平台结构声发射研究中的关键一环。但是,声发射传感器的布置跟平台结构材料、尺寸等因素息息相关,有关的理论研究少之又少,现阶段均需要通过试验获取有用数据。
     最后根据声发射源定位的原理,采用时差线定位法对导管架平台结构模型的一条主腿进行了声发射源模拟试验。从试验结果来看,实际声源位置与试验所得位置间的误差在7mm以内,测定出的声源位置比较合理。从而验证了应用时差线定位法对导管架平台结构的某一支撑进行单一损伤位置确定(即声源定位)的可行性。
     综合试验结果及分析可知,声源定位精度的关键影响因素是声发射波的衰减及叠加,同时,定位方法也对准确判定声发射源的位置有很大影响。要想提高声发射检测过程中声发射源定位的精度和可靠性,必须合理布置声发射传感器,使得声发射传感器接收到真实有效的波形,并且在对定位方法原理透彻理解的基础上,不断积累声发射检测的实践经验,还有就是对影响声发射源定位的主要因素有多方面的详尽了解,以采取相应的有效措施。
Offshore platform as the basic facilities for exploiting marine resources is a base for production and activities. It is important to detect cracks in offshore platform timely to prevent the accidents. Acoustic emission technology as a new type of dynamic detecting technology has been widely used in many fields. The study of acoustic emission testing technology of offshore platform is helpful to master offshore platform health in real time. In this paper, the sensors’arrangement and auditory localization for acoustic emission testing of offshore platforms have been studied, and the purpose is to use few sensors to achieve the global testing and to provide the basis for safety evaluation and health diagnosis of offshore platform.
     In this paper, jacket platform model is taken as research object. On the basis of the propagation properties of acoustic emission wave produced by crack formation and extension in jacket platform model, experiments on energy attenuation and acoustic emission testing are carried out, and the research on sensors’arrangement and auditory localization are conducted, too.
     The experiment that simulation acoustic emission source using broken lead on jacket platform model is carried out, the average real wave velocity is calculated, and the relationship between distance and signal amplitude is obtained. They provide the basis for determining the maximum distance between two sensors.
     Based on acoustic emission experimental study of one joint of jacket platform model, energy attenuation coefficient range from 0.30 to 1.70 is deduced. The attenuation coefficient is varying at the same distance from the sound source on different supports. This is because the actual structure medium is not entirely the elastic medium, and in the process of acoustic emission wave propagation, energy attenuation is affected by not only geometric attenuation, but also many other factors such as the shape and size of the structure. Experimental research also proves this point.
     According to the experimental conclusion, the sensors’arrangement method based on energy attenuation is put forward, the global testing of prototype structure which needs 22 sensors and the sensor arranging scheme are preliminary deduced. The study of acoustic emission sensors’arrangement is the key to conduct research on acoustic emission testing of offshore platform. In fact, we need to obtain useful data through the test, because the theoretical study of acoustic emission sensor arrangement which is closely related to such factors as the material and the size of the offshore platform are rare.
     Finally, according to the principle of acoustic emission source localization, the time difference line positioning method is used in the acoustic emission source simulation test which is experimented on a main leg of the offshore platform. Judging from the experimental results, the test error is within 7mm and the source position obtained with this method is quite reasonable. Therefore, the use of time difference line positioning method to determine the position of the single damage in one support of the offshore platform is feasible.
     Overall, the test results and analysis shows that the key factors influencing the precision of the auditory localization are acoustic emission wave attenuation and superposition. The localization method also has an important effect on determining the accurate acoustic emission source position. To improve the accuracy and reliability of auditory localization in the acoustic emission testing, acoustic emission sensors must be arranged reasonably to receive the real and effective waveform, acoustic emission testing experience based on understanding of the principle of localization method thoroughly should be accumulated, and corresponding effective measures which reduce the influence of main factors must be adopted.
引文
[1]陆文发,李林普,高明道.近海导管架平台[M].北京:海洋出版社,1992:1.
    [2]欧进萍,段忠东,肖仪清.海洋平台结构安全评定:理论、方法与应用[M].北京:科学出版社,2003:1~3.
    [3]杨明纬,耿荣生.声发射检测.北京:机械工业出版社[M],2004.
    [4] Silk. M. G, Williams. N. R, Bainton. K. F. The potential role of NDT techniques in the monitoring of fixed offshore structures. British Journal of Non-Destructive Testing, 1975, 17(3): 83~87.
    [5] Peters. V. A. offshore platform NDT instrumentation requirements. Institute of Physics Conference Series, 1977:13~18.
    [6] Rogers.L.M, Hansen, John P., Webborn. Christopher. Application of acoustic emission analysis to the integrity monitoring of offshore steel Production Platforms. Materials Evaluation, 1980, 38(8):39~49.
    [7] Tonolini.F., Fontana.E. Acoustic emission researches for an application to the surveillance of offshore Platforms. 5th offshore Inspection Repair and Maintenance Conference, Aberdeen, Scotl, 1984:10~21.
    [8] Thaulow. Christian, Lovaas. Steinar, Applications of acoustic emission for underwater monitoring of cracks and leakages. Norwegian Maritime Research, 1984, 12(2):35~44.
    [9] Rogers.L.M. Detection and monitoring of cracks in structures, process vessels and pipe work by acoustic emission. Institution of Chemical Engineers Symposium Series, Manchester, Engl, 1986, 97:201~214.
    [10] Rogers.L.M., Detection and monitoring of cracks in offshore struetures by acoustic emission. American Society of Mechanical Engineers, Petroleum Division(Publication) PD, 1987, 10:55~60.
    [11]程志虎.第一专题水下无损检测技术(一)对象、目的与方法[J].无损检测,1997:266~269.
    [12] Attia, Farouk G. , Tawfik, Ade1 S. Monitoring structural integrity of offshore structures. Proceedings of the 14th Annual Energy-Sources Technology Conference and Exhibition, Houston, TX, USA, 1991:47~52.
    [13] Rogers.L.M. Use of acoustic emission methods for crack growth detection in offshore and other structures. Transactions-The Institute of Marine Engineers, 1998, 110(3):171~180.
    [14] Mark Lozev. et al. Final Report: Evaluation of Methods for Detecting and Monitoring of Corrosion and Fatigue Damage in Risers[R]. Washington, D.C.: Edison Welding Institute.2003.
    [15] Rogers.L.M. Crack detection using acoustic emission methods一Fundamentals and applications. Key Engineering Materials, 2005, 293-294:33~46.
    [16]张德文,[美]魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999:111~112.
    [17] OMOLOGO M, SVAIZER P.Acoustic source location in noisy and reverberant environment using CSP analysis[J]. Processing of ICASSP, 1996: 921~924.
    [18] YEGANANARAYANA B, MAHADEVA P S, RAMANID, et al. Processing of reverberant speech for time-delay estimation[J].IEEE Transaction on Speech and Audio Processing,2005, 13(6): 1110~1118.
    [19] JIA Jingjing, LIU Mingjie, LI Xiaofeng. Algorithm for acoustic passive localization with dual arrays[J]. Chinese Journal of Mechanical Engineering, 2008, 21(6): 14~17.
    [20] SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. On ASSP, 1986, 34(3): 276~280.
    [21]国防科技工业无损检测人员资格鉴定与认证培训教材编委会.声发射检测[M].北京:机械工业出版社,2005.
    [22]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [23] LI D, HU Y H. Energy-based collaborative source localization using acoustic microsensor array[J]. EURASIP J. Appl. Signal Process, 2003, 26(4): 321~337.
    [24]隋富生.基于声能密度模型的中高频复杂声场预报方法[J].声学学报,2010,35(2):134~139.
    [25]黄民水,朱宏平.桥梁结构模态测试中传感器优化布置的序列法及应用[J].桥梁建设,2007,(5):80~83.
    [26]刘娟,黄维平.传感器优化配置的修正逐步累积法[J].青岛海洋大学学报,2003,33(3):476~482.
    [27]崔飞,袁万城,史家钧.传感器优化布设在桥梁健康监测中的应用[J].同济大学学报,1999,27(2):165~169.
    [28]宗周红,孙建林,徐立群,李嘉维.大跨度连续刚构桥健康监测加速度传感器优化布置研究[J].地震工程与工程振动,2009,29(2):150~158.
    [29] Kammer D C. Sensor placement for on-orbit Modal identification and correlation of large space structures [J]. Journal of Guidance, Control and Dynamics, 1991, 14(9):251~259.
    [30]李东升,李宏男,王国新等.传感器布设中有效独立法的简捷快速算法[J].防灾减灾工程学报,2009,29(1):103~108.
    [31]袁爱民,戴航,孙大松.基于EI及MAC混合算法的斜拉桥传感器优化布置[J].振动、测试与诊断,2009,29(1):55~59.
    [32]刘娟.基于遗传算法的海洋平台传感器优化配置及损伤诊断研究[硕士学位论文].青岛:中国海洋大学工程学院,2003:43~51.
    [33]高维成,徐敏建,刘伟.基于遗传算法的传感器优化布置[J].哈尔滨工业大学学报,2008,40(1):9~10.
    [34]刘明辉.免疫算法原理应用研究及机翼结构布局优化[硕士学位论文].西安:西北工业大学,2006:35~41.
    [35]周雨斌.网架结构健康监测中传感器优化布置研究[硕士学位论文].杭州:浙江大学建筑工程学院,2008:41~55.
    [36] Guyan R J. Reduction of stiffness and mass matrices [J]. AIAA Journal, 1965, 3(2): 23.
    [37]谢强,薛松涛.结构健康监测传感器优化布置的混合算法[J].同济大学学报(自然科学版),2006,34(6):726~731.
    [38]魏民祥,闫桂荣,郭万林.基于信息熵原理的结构振动传感器的布局[J].仪器仪表学报,2004,25(6):802~804.
    [39]何浩祥,闫维明.基于小波和图论的空间结构传感器优化布置[J].武汉理工大学学报,2005,27(12):41~44.
    [40]沈功田,耿荣生,刘时风.声发射源定位技术[J].无损检测,2002,24(3):114~117.
    [41]金钟山,刘时风,耿荣生,沈功田.曲面和三维结构的声发射源定位方法[J].无损检测,2002,24(5):205~211.
    [43]龚仁荣,顾建祖,骆英等.基于Lamb波频散特性的声发射源平面定位新方法.无损检测,2006,28(10):521~525.
    [44]邓艾东,包永强,赵力.基于能量衰减模型的转子碰摩声发射源次梯度投影定位方法.机械工程学报,2010,46(9):66~72.
    [45]王强,刘贵杰,王宛山.基于小波包能量系数法的砂轮状态监测.中国机械工程,2009,20(3):285~287.
    [46]张守茁,席镇,贾园等.摩擦过程中相对运动速度对声发射能量信号的影响.润滑与密封,2008,33(5):10~14.
    [47]刘治东,庞宝君,唐颀.基于虚拟波阵面的层合板声发射源定位.压电与声光,2010,32(3):493~496.
    [48]付元杰,毛汉领,黄振峰.特征声发射信号的时频能量分析.装备制造技术,2006,(2):27~29.
    [49]聂鹏,王东磊,徐涛等.频带能量特征法在声发射刀具磨损监测系统中的应用.工具技术,2009,43(2):24~27.
    [50]李光海,刘时风,耿荣生等.声发射源特征识别的最新方法.无损检测,2002,24(12):534~538.
    [51]龚斌,李兆南,殷天舟等.压力管道泄漏声发射信号能量累计特性研究.压力容器,2007,24(2):27~29.
    [52]龙飞飞.新型声发射检测系统与定位技术研究[硕士学位论文].大庆:大庆石油学院,2002.
    [53]梁艺军.光纤声发射检测技术研究[博士学位论文].哈尔滨:哈尔滨工程大学,2005.
    [54]秦邦民,李筱艳.基桩安全监测及多传感器布置优化.西部探矿工程,2010,(7):20~24.
    [55]刘卫东,丁恩杰,童敏明.煤矿声发射监测中传感器阵列的布置.无损检测,2010,32(5):338~341.
    [56]刘贵杰,赵雷,梅宁.磨削粗糙度在线检测方法的实验研究.仪器仪表学报,2007,28(1):168~171.
    [57]朱永凯,潘仁前,陈盛票等.基于声发射传感器阵列的风机叶片结构健康监测方法.无损检测,2010,32(10):753~756.
    [58]陈卫东,徐善驾,王东进.距离定位中的多传感器布局分析.中国科学技术大学学报,2006,36(2):131~136.
    [59]马大猷.现代声学理论基础.北京:科学出版社,2004.
    [60]周洁,毛汉领,黄振峰等.金属疲劳断裂的声发射检测技术.中国测试技术,2007,33(3):7~9.
    [61]丁幼亮,邓扬,李爱群.声发射技术在桥梁结构健康监测中的应用研究进展.防灾减灾工程学报,2010,30(3):341~351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700