草莓冷诱导转录因子CBF的克隆与结构分析及其抗寒特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草莓是目前果树保护地生产中种植面积最大的一个树种,由于南方冬季温度较高,草莓的越冬保护措施不严格,再加上温室的低温逆转现象,草莓在栽培过程中往往会受到偶发性的短时低温伤害,从而给草莓生产带来巨大损失。利用基因组学和分子生物学如克隆、基因操作、遗传转化等技术可以克服传统育种手段的不足,可以为研究草莓耐寒机制和抗寒育种提供新的思路和方法。CBF(CRT/DRE bindingfactor,CBF)是一类与低温胁迫相关的转录因子,它能够特异地结合到含有CRT/DRE元件的COR基因启动子区,从而激活COR基因的表达进而提高植物的抗寒性。因此,CBF类转录因子能够综合地改良植物的抗寒性状,是目前比较理想的植物抗逆工程基因。
     本试验以草莓栽培品种‘丰香'(Fragaria×ananassa cv.Toyonaka)为试材,通过与GenBank上发表的几种植物CBF基因进行同源比较,根据氨基酸序列保守区设计简并引物,采用热启动降落PCR方法扩增得到草莓转录因子Facbf1基因的中间片段。在此基础上,通过SON-PCR和RT-PCR,从草莓中分离克隆了Facbf1基因编码区全长cDNA序列,GenBank登录号为FJ767754。该片段长794 bp,包含一个长为636bp的完整ORF,编码1个由211个氨基酸残基组成的蛋白质,预测分子量为23.4 kDa,等电点为6.53。氨基酸序列分析表明FaCBF1蛋白含有一个保守的AP2结合域,在AP2结合域的两端含有两段保守的短多肽序列PKK/RPAGRxKFxETRHP和DSAWRL。利用半定量RT-PCR对Facbf1基因进行差异表达研究,结果表明Facbf1属于冷诱导差异表达基因。未经冷诱导处理的草莓幼叶内Facbf1基因不表达;经冷处理后,Facbf1在短时间内转录水平迅速增加,在12 h时表达量达到高峰并可以维持到24 h,而在冷胁迫的后期其表达水平开始下降。
     分析FaCBF1蛋白的理化特性,结果表明FaCBF1属易溶、亲水性强的蛋白。系统进化树分析表明FaCBF1蛋白属于CBF基因家族,与同属植物具有比较近的进化关系。二级结构预测结果显示,FaCBF1蛋白主要以α-螺旋和无规则卷曲两种形式出现。采用EsyPred3D同源模构建的三维模型显示,FaCBF1蛋白三维结构在N端形成一个α-螺旋,C端形成3个β-折叠,并与GCC-box结合蛋白有着结构上的相似性。采用网络服务器对FaCBF1的功能进行了预测,结果表明FaCBF1属于CBF家族的一员,含有保守的AP2结合域,具有多个磷酸化位点和O-糖基化位点,不含信号肽和跨膜结构。另外,对CBF的电子表达谱分析表明,CBF在植物中几乎整株表达,而且在多种组织和不同发育阶段均能表达,这也充分说明了CBF在植物生长发育巾具有重要地位。
     冷驯化在轻至中等的低温胁迫时有效,如果温度过低或时间过长还会导致植物死亡。草莓幼苗经0℃低温锻炼后,各种生理指标的测试表明,草莓幼苗对低温环境具有一定的冷适应能力,即在一定程度上提高了植株的抗寒性。因此,适当的低温处理可以在一定程度上诱导草莓抗寒力的提高。这可能是外界温度下降时,植物感受低温信号,并传递低温信号到核内激活转录因子CBF,进而调节基因转录或引起一系列生理生化反应,如保护酶(SOD、CAT、APX和GR等)活性提高,渗透调节物质(游离脯氨酸、可溶性蛋白和可溶性糖)含量增加以及光合色素(叶绿素和类胡萝卜素)含量下降,并且草莓Facbf1基因的表达与这些物质的变化密切相关。由此可认为植物在低温锻炼过程中往往会发生生理和代谢上的改变从而适应低温,是一个活跃的生理生化过程,植物抗寒力的提高是低温诱导所引起的转录调控因子CBF表达水平以及一系列细胞结构和各种生理生化代谢适应性变化的综合结果。
     上述研究对于填补园艺植物抗寒性生理及分子生物学研究具有重要的理论意义,并可对今后其他农作物及园艺植物抗寒性的遗传改良奠定了重要的基础,具有一定的应用价值和现实意义。
Strawberry production is the biggest planting area at present.The temperature is warm in south,the overwintering safeguard of strawberry is not severe and the low temperature reversion phenomena occurred so that strawberry would suffer little low temperature injury contingently during planting and great loss was peoduced.CBF(CRT/DRE binding factor, CBF) is a type of transcription factors related to abiotic stresses.These proteins are able to discern and bind the CRT/DRE element in the promoter of COR gene concerned with cold, resulting in enhancing the cold-resistance of plants.Therefore,it would be a good strategy to improve tolerance of various kinds of agriculturally important plants to abiotic stresses by CBF genes transfer.
     In this present studies,a pair of degenerate primers which was designed by comparing CBF genes from GenBank,and the conserved region with a length of 464 bp of the transcription factor CBF gene by touch down PCR from Fragaria×ananassa.Then,a full length of open reading frame of CBF gene was obtained by SON-PCR and RT-PCR.The cDNA was 794 bp in length and a real CBF gene of strawberry designed as Facbfl with an accession number FJ767754 in GenBank.The cloned cDNA contains an ORF of 636 bp, which encodes for a polypeptide of 211 amino acid residues with a molecular mass of 23.4 kDa and a pI of 6.53.FaCBF1 sequence contains a functional domain:AP2 binding domain, on the both side of which there exit two short peptides:PKK/RPAGRxKFxETRHP and DSAWRL.Semi-quantitative RT-PCR is used to analysis the expression of Facbfl gene under different time of treatment.The results showed that without a cold treatment there was no expression of Facbfl genes.But after the cold treatment,the level of Facbfl transcription was rapid increased in a short period of time and reached a peak at 12h and may last up to 24h and then declined.
     Protein structure was predicted with different methods.The results of primary structure analysis showed that FaCBF1 was soluble and hydrophobic and belonged to CBF family.Secondary structure analysis indicated that FaCBF1 contains conserved Alpha helix and random coils domain.3D structure of protein coding by the gene was predicted using the ESyPred3D software.It contains oneα-helices and threeβ-sheets structural domain and looks like the GCC-box binding protein.Function prediction was carried out in net server. The results showed that FaCBF1 was a member of CBF family,containing AP2-binding domain with some phyosphorylation and O-glycosylation sites,and it had no signal and trasmembrane domain.Electronic expression profiles revealed that FaCBF1 expressed in whole plants and during different development,and involved in different abiotic stresses. All of the results suggest that FaCBF1 played an important role in the growth a development of plants.
     Cold acclimation can enhance the ability of cold-resistance,but if the temperature is too low or too long it will cause the death of plants.Under different times of lowtemperature treatment,the target of a variety of physiological tests showed that the lowtemperature environment of strawberry seedlings must have the ability to adapt to the cold, that is,to some extent,improve the plant's cold-resistance,deal with one of 0℃can significantly improve plant adaptation to low temperature.Therefore,an appropriate lowtemperature treatment can be induced to enhance the cold-resistance of strawberry.This may be when the outside temperatures drop,plants feel low-temperature signals,and transmission of low-temperature signals to the nucleus to activate transcription factors, thereby regulating gene transcription or give rise to a series of physiological and biochemical reactions,such as antioxidant enzymes(SOD,CAT,APX and GR) activities and increased the contents of proline,soluble protein and soluble sugar,as well as chlorophyll and carotenoid content decreased,the adaptive changes of these substances laid the foundation of enhancing the cold-resistance of plants.It can be seen that lowtemperature induced the physiological and metabolic changes of plants in order to adapt to low temperature.This is an active physiological and biochemical process,which improve the cold-resistance of plants.
     These obtained results and conclusions provided important information not only for the physiology and molecular biological research of cold-resistance in horticulture plants but also for the genetic improvement of cold-resistance in agriculture and horticulture plants.
引文
Abe H, Yamaguchi-Shinozaki K, Urao T. Role of Arabdopsis MYC and MYB homologs in drought-ans abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868.
    Anderson M D, Prasad T K, Stewart C R. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol,1995, 109: 1247-1257.
    Antal Z, Rascle C, Fvre M, Bruel C. Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags . Curr Genet, 2004,46:240-246.
    Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 2004,55: 373-379.
    Ariizumi T, Kishitani S, Inatsugi R, et al. An increase in unsaturation of ferry acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol, 2002,43 (7): 751-758.
    Artus N N, Uemura M, Steponkus P L. Constitutive expression of the cold regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad.Sci. USA, 1996, 93: 13404-13409.
    Asada K. Ascorbate peroxidase a hydrogen peroxide scavenging enzyme in plant. Physiol, 1992, 85:235-241.
    Asada K. The water-water cycle in chloroplast: scavenging of active oxygen and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol, 1999,50: 601-639.
    Baker S S, Wilhelm K S, Thomashow M F. Thes5'-region of Arabidopsis Thaliana corl5a has cis-acting elements that confer cold, drought and ABA-regulated gene expression. Plant Mol Biol, 1994, 24:703-713.
    Berry J A, Biorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 1980,31:491-543.
    Blom N, Gammeltoft S, Brunak S. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 1999,294(5): 1351-1362.
    Briggs D R, Siminovitch F W. The chemistry of the living bark of the black locust tree in relation to frost hardiness. II. Seasonal variation in the electrophesis pattern of the water soluble proteins of the bark. Arch Biochem, 1949, 23: 8-11.
    Chen X, Dai H Q, Lu C F, et al. The effect of cold acclimation and Ca~(2+) signal on the synthesis of antifreeze proteins and the freezing tolerance of cells in carrot (Daucus carotz). Sci Tech & Engineering, 2002,2(3): 23-26.
    Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transeriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003,17 (8): 1043-1054.
    Cyril J, Powell G L, Duncan R R, et al. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop Sci, 2002,42:2031-2037.
    Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression, Plant J. 2003, 33:751-763.
    Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from raretranscripts:amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988,85(23): 8998-9002.
    Gao M J, Allard G, Byass L F, et al. Regulation and characterization of four CBF transcription factors from Brossica napus. Plant Mol Biol, 2002,49: 459471.
    Gilmour S J, Hajera R K, Thomashow M F. Cold acclimation in Arabidopsis thaliana. Plant Physiol,1988,87:745-750.
    Gilmour S J, Sebolt A M, Salazar M P, et al. Over expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclima tion. Plant Physiol,2000,124:1854-1865.
    Gilmour S J, Thomashow M F. Cold accliamtion and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol, 1991,17:1233-1240.
    Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16(4): 433-442.
    Gong Z Z, Dong C H, Lee H J, et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell, 2005,7(1): 256-262.
    Gong Z, Lee H, Xiong L, et al. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA, 2002,99: 11507-11512.
    Guan L M, Zhao J, Scadalios J G.Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress: H_2-O_2 is the likely intermediary signaling molecule for the response. Plant J, 2000,22: 87-95.
    Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing, 2002,7:310-322.
    Guy C L, Niemi K J, Brambl R. Altered gene expression during cold acclimation of spinac. Proc Natl Acad Sci USA, 1985,82: 3673-3677.
    Guy C L. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1990,41: 187-223.
    Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regu lator of drought adaptation in Arabidopsis. Plant Physiol, 2002,130(10): 639-648.
    Heish T H, Lee J T, Yang P T, et al. Heterology expression of the arabidopsis C-Repeat/ Dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002,129: 1086-1094.
    Hidekazu S, Kazuo I, Masayuki O. Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. Annals of Botany, 1996, 78: 365-369.
    High L. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane liquids the expression of the des A gene in Synechocystie PCC6803. Proc Natl Acad Sci USA, 1993,90:9090-9094.
    Howarth C J, Ougham H J. Tansley reviews No. 51. Gene expression under temperature stress. New Phytol, 1993,125:1-26.
    Huang T, Nicodemus J, Zarka D G, et al. Expression of an insect (Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature. Plant Mol Biol,2002, 50: 333-344.
    Hughes M A, Dunn M A. The molecular biology of plant acclination to low temperature. J Exp Bot,1996,47:291-305.
    Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996,47: 377-403.
    Ishitani M, Xiong L, Lee H, et al. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell, 1998,10: 1151-1161.
    Iwane S, Dmitry A, Los D A, et al. The pathway for perception and transduction of low-temperature signals in Synechocystis. The EMBO J, 2000,19: 1327-1334.
    Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, et al. The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol, 1997,115: 1287.
    Jaglo K R, Klef S, Amundsen K L, et al. Components of the Arabidopsis C-repeat/dehydration-reponsive element binding factor cold-response pathway arc conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127: 910-917.
    
    John B, Zhan G X. Temperature sensing and cold acclimation. Curr Opin Plant Biol, 2001,4: 241-246.
    Joshee N, Kisaka H, Kitagawa Y. Isolation and characterization of a water-stress specific genomic gene,pwsi18 from rice. Plant Cell Physiol, 1998,39: 64-72.
    Kang H M, Saltveit M E. Reduced chilling tolerance in elongating cucumber seedings radicles is relater to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Plant physiol, 2002, 115:244-250.
    Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol, 1999,17: 287-291.
    Kavi Kishor P B.Overexpression of Δ'-pyrroline-5-carboxylate synthease in creases proline production and conefers osmotolerance in transgenic plants. Plant Physiol, 1995,108: 1387-1394.
    Knight H. Calcium signaling during abiotic stress in plants. Int Rev Cytol, 2000, 95: 269-325.
    Kocsy G, Brunner M, Ruegsegger A, Stamp P, Brunold C. Glutathione synthesis in maize genotypes with different sensitivities to chilling. Planta, 1996,198: 365-370.
    Kornyeyev D, Logan B A, Payton P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Planta, 2001, 113(3): 323-331.
    Kumar S, Dhingra A, Daniel H. Plastid-Expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol, 2004,136: 2843-2854.
    Kyte J, Doolittle RF. A simple method for displaying the hydropathic xharacter of protein. J Mol Biol,1982, 157:105-132.
    Lambert C, Leonard N, De Bolle X, et al. ESyPred3D: Prediction of proteins 3D structures.Bioinformatics, 2002,18(9): 1250-1256
    Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, zhu J K. The Arabidopsis HOS1 gene negatively Regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmicpartitioning. Gene Dev, 2001,15: 912-924.
    Leung J, Giraudat J. Abscisic acid signal transdution. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:199-222.
    Levitt J. Water, radiation, salt and other stresses. In: Levitt, J. ed. Response of plants to environmental stress. New York: Academic Press, 1980,40-46.
    Li M X, Karen S, Jian K Z. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 10:165-183.
    
    Lindquist S, Craig E A. The heat-shock proteins. Ann Rev Gene, 1988,22: 631-677.
    Liorente F, Lopezc R M, Catala R, et al. A novel cold inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J.,2002,32: 13-24.
    Liu H T, Li B, Shang Z L, et al. Calmodulin is nvolved in heat shock signal transduction in wheat. Plant Physiol, 2003,132:1186-1195.
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shlnozakl K, Shinozakl K. Two transcription factors: DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in droght- and low temperature- tesponsive gene expression,respectively, in Arabidopsis. Plant Cell, 1998,10:1391-1406.
    Liu Y G, Whitter R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25:674-681
    Los D A, Ray M K, Murata N. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC6803. Mol Microbiol, 1997,25: 1167-1175.
    Lyons J M. Chilling injury in plants. Annu Rev Plant Physiol, 1973,24: 445-466.
    Marchler BA, Anderson JB, Cherukuri PF et al. CDD: a conserve domain database for protein classification. Nucleic Acids Res, 2005,33:192-196.
    Marina L M, Liliana B. A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol, 2001,1258:1442-1449.
    Mckersie B D, Mumaghan J, Jones K S. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance.Plant Physiol, 2000,122: 1427-1438.
    Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 1999,119: 463-468.
    Michael F T. Plant cold accliamtion: freezing tolerance genes and regulatory mechanisms. Annu Rev.Plant Physiol. Plant Mol. Biol, 1999, 50: 571-599.
    Monroy A F, Dhindsa R S. Low temperature sifhal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25℃. Plant Cell, 1995,7: 321-331.
    Munne-Bosch S, Alegre L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significane of chlorophyll loss in Rosmarinus officinalis plants. Planta,2000,207:925-931.
    Murata N, Ishizaki-Nishizawa O, Higashi S, et al. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992,356:710-713.
    
    Murata N, Los D A. Membrane fluidity and temperature perception. Plant Physiol, 1997,115: 875-879.
    Nanjo T, Kobaysshi M, Yoshiba Y. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letter, 1999,461: 205-221.
    Noctor G, Arisi A M, Jouanin L, Kunert K J, Rennenberg H, Foyer C H. Glutathione: biosynthesis,metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot, 1998,49:623-647.
    Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expresion and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci,2004,101 (11): 3985-3990.
    Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997,94: 7076-7081.
    Orver B L, Sangwan V, Omann F, et al. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J, 2000,23:785-794.
    Ouellet F, Vazquez-Tello A, Sarhan F. The wheat wcsl20 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett, 1998,423: 324-328.
    Ovkova I V, Serebriiskaya T S, Popov V, et al. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling to lerance of plants. Plant Cell Physiol, 2003,44: 447-450.
    Payton P, Webb R, Kornyeyev D, et al. Protecting cotton photo synthesis during moderate chilling at high light intensity by increasing chlorop lastic antioxidant enzyme activity. J Expe Bot, 2001, 52:2345-2354.
    Qin F, Li J, Zhang G Y, et al. Isolation and structure analysis of DER-binding transcriptin factor from maize (Zea mays L.). Acta Botanica Sinica, 2003,43(3): 331.
    Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcriptional factor: genome-wide comparative analysis among eukaryotes. Science, 2000,290: 2105-2110.
    Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors. Biol Chem,1998, 379: 633-646.
    Rost B, Yachdav G, Liu J. The PredictProtein Server. Nucleic Acids Res 32 (Web Server issue). 2003,W321-W326
    Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commum, 2002, 290: 998-1009.
    Sambrook J E, Fritsch F and Maniatis T Z. Molecular cloning: a laboratory manual. The second edition,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York: 1989,45.
    Samis K, Bowley S, Mckersie B. Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Expe Bot, 2002,53: 1343-1350.
    Sangwan V, Foulds I, Singhj B. Cold-activation of Brassica napus BN115 promtre is mediated by structural changes in membrane and cytoskeleton, and requires Ca~(2+) influx. Plant J, 2001, 27(1): 1-12.
    Sato Y, Murakami T, Funatsuki H, et al. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J Expe Bot, 2001,52(354): 145-151.
    Schoner S, Krause G H. Protective systems against active oxygen species in spinach: Response to cold acclimation in excess light. Planta, 1990,180: 383-389.
    Scebba F, Sebustiani L, Vitagliano C. Protective enzymes against activated oxygen species in wheat (Triticum Aestivum L.) seedlings under cold acclimation. Plant Physiol, 1999,155: 762-768.
    Shimada T, Wakita Y, Otani M, et al. Modification of fatty acid composition in rice plants by transformation with a tobacco microsomal ω-3 fatty acid desaturase gene (NtFAD3). Plant Bio,2000,17(1): 43-48.
    Shinwari Z K, Nakashima K, Miura S, et al. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low temperature responsive gene expression. Biochem Biophys Res Commun,1998, 50(1): 161-170.
    Sivamani E, Bahieldin A, Wraith J M. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci,2002, 25:1-9.
    Soumen B. Reactive oxygen species and oxidative burst Roles in stress, senescence and signal transduction in plants. Curr Sci, 2005, 89: 1113-1121.
    Steponkus P L, Uemura M, Joseph R A, et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 1998,95: 14570-14575.
    Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Plant Biol,1997,9 4(3): 1035-1040.
    Su J, Hirji R, Zhang L, et al. Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Expe Bot, 2006,57(5): 1129-1135.
    Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Meyerowitz E, Somerville C (eds). Arabidopsis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994,807-834.
    Thomashow M F. Molecular genetics of cold acclimation in higher plants. In Scandalios J G, ed,Advances in Genetics, Genomic Responses to Environmental Stress, Vol 28, Academic Press, New York, 1990,99-131.
    Thomashow M F. Plant cold accliamtion: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571-599.
    Thomashow M F. So what's new in the field of plant cold acclimation? Lots! Plant Physiol, 2001, 125:89-93.
    Thompson J D, Gibson T J, Plewmak F, et al. The CLUSTAL_X windows interface flexible strategies for multiple sequence alignment aided by quality. Nucleic Acids Res, 1997,25(24): 4876-4882.
    Townley H E, Knight M R. Calmodulin as a Potential Negative Regulator of Arabidopsis COR Gene Expression. Plant Physiol, 2002,128: 1169-1172.
    Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1988,16(16):8186.
    Van-Breusegem F, Slooten L, Stassart J. Overproduction of Arabidopsis thaliana Fe-SOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol, 1999,40 (5): 515-523.
    Vega S E, Delrio A H, Bamber J B, et al. Evidence for the up-regulation of stearogl-ACP(A9) desaturase gene expression during cold acclimation. Amer. J. Potato Res, 2004, 81: 125-135.
    Wakita Y, Otanim M, Hamada T, et al. A tobacco microsomal ω -3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweet potato (Ipomoea batatas). Plant Cell Rep, 2001, 20:244-249.
    Wang C Y. Relationship between free radical scavengers enzymes and chilling to tolerance in Zucchini Squash. Acta Horticulturae, 1995,398: 205-211.
    Wang H, Dafla R, Georges F, et al. Promoters from Kin1 and Cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA,osmoticum and dehydration. Plant Mol Biol, 1995,28: 605-617.
    Wanner L A, Junttila O. Cold-induced freezing tolerance in Arabidopisis. Plant Physiol, 1999, 120(7):391-399.
    Warren G J, Thorlby G J, Knight M R. The molecular biological approach to understanding freezing -tolerance in the model plant, Arabidopsis thaliana. Env. Stressors and Gene Res., 2000, 1: 245-258.
    Weiser G J. Cold resistance and injury in woody plants. Science, 1979,169: 1269-1278.
    Wingsle G, Hallgren J E. Influence of SO_2 and NO_2 exposure on glutathione, superoxide dismutase and glutathione reductase activities in Scots pine needles. J. Exp. Bot, 1993,44:463-470.
    Worrall D, Elias L, Ashford D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization.Science, 1998,282 (2): 115-117.
    Xin Z, Browse J. Eskimol mutants of Arabidopsis are cinstitutively freezing-tolerant. Proc Natl Acad Sci USA, 1988,95(23): 7799-7804.
    Xiong L., Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell and Envir,2002, 25:131-139.
    Xu D, Duan X, Wang B. Expression of a late embryogenesis is abundant protein gene, HVA1, from barely confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110:249-257.
    Xue G P. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J, 2003, 33: 373-383.
    Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involeved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264.
    Yokio S, Higashi S L, Kishitani S. Introduction of the cDNA for Arabijdopsis giycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acid and chilling tolerance of photosynthesis on rice. Mol. Breeding, 1998, 4: 269-275.
    Zhou B Y, Guo Z F, Liu Z L. Effects of abscisic acid on antioxidant systems of stylosanthes guianensis(Aublet) sw. under chilling stress. Crop Sci, 2005,45(2): 599-605.
    曹琴,孔维府,温鹏飞.植物抗寒及其基因表达研究进展.生态学报,2004,24(4):806-811.
    陈得波,张爱平,姚泉洪.植物抗寒基因工程研究进展.生物技术通报,2001,4:14-20.
    陈青君,张福墁,王永健,等.黄瓜对低温弱光反应的生理特征研究.中国农业科学,2003,36(1):77-81.
    陈新建,陈占宽,刘国顺,等.植物对水分胁迫响应的分子机制与抗逆基因工程的研究进展.热带亚热带植物学报,2000,8(1):81-90.
    陈星,李俊全,王君玲,陈玉岭.低温下棕榈某些生理变化及低温锻炼对棕榈耐寒性的影响.北京师范大学学报(自然科学版),1999,35(2):257-260.
    代玉华,刘训言.低温胁迫对类囊体膜脂代谢的影响.植物学通报,2004,21(4):506-511.
    邓洪渊,王闵霞,孙雪文,等.一种改进的SON-PCR基因扩增方法.应用与环境生物学报,2006,12(6):857-860.
    丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展.中国农学通报,2003,19(6):33-39.
    杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制.生物工程学报,2001,17(2):121-125.
    樊怀福,蒋卫杰,郭世荣.低温对番茄幼苗植株生长和叶片光合作用的影响.江苏农业科学,2005,3:89-91.
    范云,刘兵,王宏斌,等.胡萝卜抗冻蛋白基因的克隆及其在E.coli中的表达.中山大学学报(自然科学版),2002,41(3):52-55.
    甘玲.梨离体保存材料遗传差异的分子检测:[硕士学位论文].雅安,四川农业大学,2006
    郭确,潘瑞芝.ABA对水稻幼苗抗冷性的影响.植物生理学报,1984,10(4):295-302.
    郭绍川,刘玲玉.脯氨酸含量在作物低温锻炼中的变化及同抗寒性的关系.西北植物研究,1984,4(1):45.
    黄华,梁宗锁.冬季4个常绿树种渗透调节物质的动态变化.河南科技大学学报,自然科学版,2006,27(1):57-60.
    黄永芬,汪清胤,付桂溶,等.美洲拟鲽抗冻蛋白基因(afp)导入番茄的研究.生物化学杂志,1997,13(4):418-422.
    简令成.植物抗寒机理的研究进展.植物学通报,1992,9:17-22.
    金建凤,高强,陈勇,王君晖.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高.细胞生物学杂志,2005,27(1):73-76.
    李建设,耿广东,程智慧.低温胁迫对茄子幼苗抗寒性生理生化指标的影响.西北农林科技大学学报(自然科学版),2003,31(1):90-93.
    李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化.植物学报,2000,42(2):148-152.
    李璐,王晓军,赵民安.植物抗冻基因.植物生理与分子生物学,2004,40(5):643-650.
    李美茹,刘鸿先,王以柔.植物抗冷分子生物学研究进展.热带植物学报,2000,8(1):70-80.
    林善枝,李雪平,张志毅.低温锻炼对毛白杨幼苗抗冻性和总可溶性蛋白质的影响.林业科学,2002,38(6):137-141.
    林善枝,张志毅,林元震.植物抗冻蛋白及抗冻性分子改良.植物生理与分子生物学学报,2004,30(3):251-260.
    林善枝,张志毅.毛白杨抗冻性低温诱导过程中糖的效应.中国林学(英文版),2001,1:1-6.
    林善枝,张志毅.杨树抗冻性机理及分子生物学研究.北京:中国环境科学出版社,2004.
    刘大林.低温胁迫下番石榴叶片生理生化变化的探讨.林业科学,2003,39(1):38-41.
    刘鸿先,曾韶西,王以柔.低温对不同耐寒力黄瓜幼苗职业各细胞器官中SOD的影响.植物生理学报,1985,11(1):48-57.
    刘继梅,鄢波.不同抗冷性水稻中编码甘油-3-磷酸酰基转移酶的部cDNA序列比较研究.云南植物研究,2000,22(3):317-321.
    刘毅,翟旭光,吴芳,等.SON-PCR扩增抗禾谷孢囊线虫基因LRR区及序列.分析农业生物技术学报,2006,14(4):565-568.
    刘振林,戴思兰.植物甜菜碱醛脱氢酶基因研究进展.西北农林科技大学学报(自然科学版),2004,32(3):104-112.
    吕成群,黄宝灵.低温胁迫对巨尾桉幼苗膜脂过氧化及保护酶的影响.广西植物,2004,24(1):64-68.
    罗新义,冯昌军,李红,等.低温胁迫下肇东苜蓿SOD、脯氨酸活性变化初报.中国草地,2004,26(4):79-81.
    罗银铃,宋松泉.植物线粒体、活性氧与信号转导.西北植物学报,2004,24(4):737-747.
    马文月.植物冷害和抗冷性研究进展.安徽农业科学,2004,32(5):1003-1006.
    潘瑞炽,董愚得.植物生理学.第3版.北京:高等教育出版社,1995.374.
    彭志红,彭克勤,胡家金,等.渗透胁迫下植物脯氨酸积累的的研究进展.中国农学通报,2002,18(4):80-83.
    任旭琴,陈伯清,低温下辣椒幼苗光合特性的初步研究.江苏农业科学,2006,6:243-244.
    四川农业厅经作处.龙泉山脉批把、草莓受冻损失严重.四川农业科技,2005,2:41.
    孙清鹏,许煌灿,张方秋,等.低温胁迫对大叶相思和马占相思某些生理特性的影响.林业科学研究,2002,15(1):34-40.
    王春明,袁金铎,尹苗,等.甜菜碱的生物合成及其基因工程研究进展.山东师范大学学报(自然科学版),2004,19(2):88-91.
    王国莉,郭振飞.植物耐冷性分子机理的研究进展.植物学通报,2003,20(6):671-679.
    王磊,赵军,范云六.玉米Catl基因顺式元件ABRE2结合蛋白ABP9的基因克隆及功能分析.科学通报,2002,47(15):167-1171.
    王毅,方秀娟,徐欣.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响.园艺学报,1995,22(3):29-30.
    王静,张成军,陈国祥,等.低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响.中国水稻科学,2006,20(2):177-182.
    王凭青,吴明生,王远亮,等.植物抗寒基因工程研究最新进展.重庆大学学报,2003,26(7):81-85.
    韦善君,孙振元,巨关升,等.冷诱导基因转录因子CBF1的组成型表达对植物的抗寒性及生长发育的影响.核农学报,2005,6:23-27.
    吴建慧,杨玲,孙国荣.低温胁迫下玉米幼苗叶片活性氧的产生及保护酶活性的变化.植物研究,2004,24(4):456-459.
    吴建民,幸华,赵志光,等.植物抗冻蛋白的研究进展及其应用.冰川冻土,2004,26(4):482-487.
    吴峻岩.甘蓝叶片对低温的生理生化响应及分子生理学初探.[硕士学位论文].重庆,西南农业大学,2004
    肖燕,杨足君,李光蓉,等.用SON-PCR快速获得长鞭红景天CHS基因全长及其序列分析.植物生理学通讯,2008,44(1):15-19
    郁继华,舒英杰,吕军芬,等.低温弱光对茄子幼苗光合特性的影响.西北植物学报,2004,24(5):831-836.
    杨玲,唐建军.水稻干胚磷脂酰甘油的饱和度与抗冷性的关系.浙江大学学报,2000,34(6):624-627.
    杨盛昌,谢潮添,张平,等.低温胁迫下弓葵幼苗膜脂过氧化及保护酶活性的变化.园艺学报,2003,30(1):104-106.
    曾乃燕,何军贤,赵文,等.低温胁迫期间水稻光合膜色素与蛋白水平变化.西北植物学报,2000,20:8-14.
    张建霞,李新国,孙中海.钙对柠檬试管苗生长和一些与抗寒性相关指标的影响.果树学报,2005,22(6):667-672.
    张金龙,周有佳,胡敏,等.低温胁迫对玉米幼苗抗冷性的影响初探.东北农业大学学报,2004,35(2):191-194.
    赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):9-16.
    周琳,侯秀丽,杨光字,等.低温胁迫下冬小麦叶片中某些物质的变化.周口师范高等专科学校学报,2001,18(2):36-38.
    周筱娟.低温诱导的植物抗冻基因研究进展.绍兴文理学院学报,2004,24(9):65-69.
    朱维琴,吴良欢,陶勤南.氮营养对干旱逆境下水稻体内可溶性渗透调节物质的影响.浙江大学学报(农业与生命科学版),2003,29(5):479-484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700