基于图像序列的非刚性物体三维结构及运动恢复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在计算机视觉领域,从二维图像序列恢复物体的三维结构和运动是一项重要而困难的工作。本文主要对一般透视投影模型下和存在数据丢失情况下由图像序列重建非刚性物体的三维结构及摄像机运动信息问题进行了比较深入的研究。主要内容包括:
     1.提出了一种迭代算法,从图像序列恢复非刚性物体的结构和运动,将非刚体因式分解法从以往的弱透视投影假设扩展到一般透视投影的情况,从而提高了重建结果的精度。
     2.提出了一种准透视投影模型来恢复刚体和非刚体的结构和运动。首先,在摄像机距物体较远且旋转较小的情况下,提出并证明了成像过程可通过准透视投影模型来近似。由于投影深度隐含在形状矩阵中,此模型比仿射摄像机模型更加精确并和仿射情况一样容易计算。其次,对模型进行因式分解并通过准透视投影假设建立了刚体和非刚体因式分解的框架。此外,提出并证明了一种鲁棒方法来恢复变换矩阵,将因式分解方法拓展到欧式空间。
     3.提出了一种带正交约束的幂因式分解算法,将正交约束和运动矩阵的重复模块直接合并到迭代算法中,克服了以往基于奇异值分解方法的局限,不但便于实现,而且可以处理丢失数据的跟踪矩阵的问题。此外,提出一种连续的因式分解方法来实时恢复新图像的形状和运动。
     4.提出了两种算法来改进透视因式分解的性能。首先,提出通过做较大运动的摄像机的两个射影重建的结构来初始化射影深度,然后通过最小化反投影残差来迭代地优化该深度。其次,提出一种基于Kruppa约束的自标定方法来处理更一般的摄像机模型,然后通过标准化的跟踪矩阵因式分解法来恢复欧式结构。
One of the study object of computer vision is recovering both structure and motion from 2D image sequences. During the last two decades, many approaches have been proposed for different applications. Among them, factorization based methods are widely studied and attracted much attentions due to their good robustness and accuracy.The traditional methods of 3D reconstruction work mainly for static rigid object. While in real world, most objects and scenes are non-rigid and dynamic. Many previous methods on this problem are hardly applied to reconstruction of this object. How to recover both structure and motion of non-rigid object from image sequences is a study hotspot of computer vision and pattern recognition.
     There exists two bottlenecks in reconstruction of recovering structure and motion of 3D non-rigid object:one is the choice of model, the other is system robustness. Previous reconstruction methods are all based on affine camera model. This is a zero-order(weak perspective)or first-order(paraperspective)approximation to the general perspective projection model and is only valid when the depth variation of the object is small compared to the distance between the object and the camera. Usually, it does not satisfy the assumption for many image sequences in real life. Therefore, there exists large reconstruction errors for the result, especially the depth variation of the object is large or the distance between the object and the camera is small. Otherwise, the methods of 3D reconstruction for non-rigid object all assume that the match of tracked feature points is known and these features are visible in all images. However, match mistakes or missing of features in some frames are often appear due to occlusions or tracking methods failure.In this case, the existent methods can’t be used directly.
     Aimed at above problems, the paper addresses the problem of recovering structure and motion of 3D non-rigid object from uncalibrated image sequences under perspective projection model. In addition, the paper also studys robustness reconstruction methods to solve the problem of tracking error of features and missing data.
     1. The paper proposes a recursive algorithm to estimate 3D structure and motion of non-rigid object from a monocular video sequences and update previous non-rigid factorization methods from weak perspective assumption to the case of perspective projection. Accordingly, the precision of the reconstruction result is improved.
     2. The paper proposes a quasi-perspective projection model to recovery structure and motion of rigid and non-rigid objects. First, under the assumption that the camera is far away from the object with small rotations, we propose and prove that the imaging process can be modeled by quasi-perspective projection. The model is more accurate than affine camera model since the projective depths are implicitly embedded in the shape matrix. However, it is computationally as cheap as affine. Second, we apply the model to the factorization algorithm and establish the framework of rigid and non-rigid factorization under quasi-perspective assumption. Third, we propose a new and robust method to recover the transformation matrix that upgrades the factorization to the Euclidean space.
     3. The paper proposes a constrained power factorization algorithm that combines the orthonormal constraint and the replicated block structure of the motion matrix directly into the iterations. The proposed algorithm overcomes the limitations of previous SVD based methods. It is easy to implement and can even cope with the tracking matrix with missing data. Based on the solutions of the CPF, a novel sequential factorization technique is proposed to recover the shape and motion of new frames in realtime.
     4. The paper proposes two new algorithms to improve the performance of perspective factorization. First, we propose to initialize the projective depths via a projective structure reconstructed from two views with large camera movement, then optimize the depths iteratively by minimizing reprojection residues. The algorithm is more accurate and converges quickly. Second, we propose a self-calibration method based on Kruppa constraints to deal with more general camera model. The Euclidean structure is then recovered from factorization of the normalized tracking matrix.
     Extensive experiments on synthetic data and real sequences validate the effectiveness of the proposed algorithm and show noticeable improvements over the previous methods and provide reference to the further study and application.
引文
[1] D. Marr. Vision [M]. Freeman, Oxford, 1982
    [2] R. Hartley, A. Zisserman. Multiple view geometry in computer vision [M]. Cambridge University Press, 2000
    [3] O. D. Faugeras. Three-dimensional computer vision: a geometric viewpoint [M]. MIT press, Cambridge, 1993
    [4] M. Brand and Bhotika R. Flexible flow for 3d nonrigid tracking and shape recovery [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, Hawaii, pages:315-22, 2001
    [5] B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool. Coupled object detection and tracking from static cameras and moving vehicles [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 30(10):1683-1698, 2008
    [6] A. Angelopoulous, A. Psarrou, and G. Gupta. Robust modelling and tracking of nonrigid objects using active-gng [C]. In International Conference on Computer Vision (ICCV), 2007
    [7] Juho Kannala, Esa Rahtu, Sami S. Brandt and Janne Heikkil?. Object Recognition and Segmentation by Non-Rigid Quasi-Dense Matching [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008
    [8]李防震,胡匡枯.非刚性运动分析方法的现状与展望[J].中国图象图形学报, 10(1):11-17, 2005
    [9] A. Yilmaz, K. H. Shafique. Estimation of rigid and non-rigid facial motion using anatomical face model [C]. International. Conference on Pattren Recognition, Quebec, Canada, Vol.1, pages:377-380, 2002
    [10]成迟薏,石教英,徐迎庆,沈向洋.基于物理模型的窗帘运动实时动画[J].软件学报, 11(9):1228-1236, 2000
    [11]杨峻,倪嘉陵.现代测量方法在逆求工程中的应用[J].武汉汽车工业大学学报, 20(3):23-26, 1998
    [12] Barrow H G, Tenenbaum J M. Computational vision[J]. Proc of the IEEE, 69(5):572-595, 1981
    [13] R.Y. Tsai and T.S. Huang. Uniqueness and estimation of 3D motion parameters of rigid objects with curved surfaces [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 6(1), 1984
    [14] J. Weng, T.S. Huang, and N. Ahuja. Motion and Structure from Image Sequences. Springer-Verlag, Berlin Heidelberg, 1993
    [15] Q.T. Luong, R. Deriche, O.D. Faugeras, and T. Papadopoulo. On determining the fundamental matrix: Analysis of different methods and experimental results[R]. Technical report, INRIA, 1993
    [16] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A Robust Technique for Matching Two Uncalibrated Images through the Recovery of the Unknown Epipolar Geometry [J]. Artificial Intelligence, 75(1-2):87-120, 1995
    [17] J.J. Koenderink and A.J. vanDoorn. Affine structure from motion [J]. JOSA-A, 8(2), 1991
    [18] A. Shashua. Trilinear Tensor: The Fundamental Construct of Multiple-view Geometry and its Applications [C]. In International Workshop on Algebraic Frames For The Perception Action Cycle (AFPAC), Kiel, Germany, 1997
    [19] R. I. Hartley. Lines and Points in Three Views and the Trifocal Tensor [J]. International Journal of Computer Vision (IJCV), 22(2):125-140, 1997
    [20] C. Tomasi, T. Kanade. Shape and motion from image streams under orthography: A factorization method [J]. International Journal of Computer Vision (IJCV), 9(2):137-154, 1992
    [21] S. Ullman. The Interpretation of Visual Motion [M]. MIT Press, 1979
    [22] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections [J]. Nature, 293, 1981
    [23] A. Azarbayejani and A.P. Pentland. Recursive estimation of motion, structure, and focal length [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 17(6), 1995
    [24] A. Shashua and N. Navab. Relative affine structure: Canonical model for 3D from 2D geometry and applications [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 18(9), 1996
    [25] G.H. Wang, Z.Y. Hu, et.al. Implementation and experimental study on fast object Modeling based on multiple structured stripes [J]. Optics & Lasers in Engineering, 42(6), 2004
    [26] A. Blake, P. Lindsey, J. LoHR, D. McCowen. Trinocular active range sensing [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 15(5):477-483, 1993
    [27] E. Hall, C. A. Mcpherson, A. F. Sadjadi, and J. K. B. Tio. Measuring curved surfaces for robot vision [J], computer, pages:42-54, 1982
    [28] Pedro M. Q. Aguiar, Jose M. F. Moura. Weighted factorization [C]. ICIP , pages:549-552, 2000
    [29] C. Poelman, T. Kanade. A paraperspective factorization method for shape and motion recovery [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 19(3):206-218, 1997
    [30] S. Christy, R. Horaud. Euclidean shape and motion from multiple perspective views by affine iterations [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 18(11):1098-1104, 1996
    [31] J. Fujiki, T. Kurata. Recursive factorization method for the paraperspective model based on the perspective projection [C]. In: Proc. ICPR, 1:406-410, 2000
    [32] L. Quan. Self-calibration of an affine camera from multiple views [J]. International Journal of Computer Vision (IJCV), 19(1):93-105, 1996
    [33] B.Triggs. Factorization methods for projective structure and motion [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 845-851, 1996
    [34] P. F. Sturmand B. Triggs. A factorization based algorithm for multi-image projective structure and motion [C]. In Proc. Second European Conference on Computer Vision, pages:709-720, 1996
    [35] S. Mahamud, M. Hebert. Iterative projective reconstruction from multiple views [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2:430-437, 2000
    [36] A. Heyden, R. Berthilsson, et.al. An iterative factorization method for projective structure and motion from image sequences [J]. Image and Vision Computing, 17(13), 1999
    [37] M. Han and T. Kanade. Creating 3D models with uncalibrated cameras [C]. In WACV, pages:178-185, 2000
    [38] J. Oliensis and R. Hartley. Iterative extensions of the sturm/triggs algorithm: Convergence and nonconvergence [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 29(12):2217-2233, 2007
    [39] Z. Sun, V. Ramesh, et.al. Error characterization of the factorization method [J]. Computer Vision and Image Understanding, 82(2):110-137, 2001
    [40] M. Irani, P. Anandan. Factorization with uncertainty [J]. International Journal of Computer Vision (IJCV), 49(2-3):101-116, 2002
    [41] H. Aan?s, R. Fisker, et.al. Robust factorization [J]. IEEE Trans Pattern Analysis and Machine Intelligence (PAMI), 24(9):1215-1225, 2002
    [42] M. Han, T. Kanade. Reconstruction of a scene with multiple linearly moving objects [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2000
    [43] J. Xiao, J. Chai, T. Kanade. A closed-form solution to non-rigid shape and motion recovery [C]. In: Proc.ECCV, pages:573-587, 2004
    [44] J. Xiao, J. Chai, T. Kanade. A closed-form solution to non-rigid shape and motion recovery [J]. International Journal of Computer Vision (IJCV), 67:233-246, 2006
    [45] Ijaz Akhter, Yaser Ajmal Sheikh, Sohaib Khan, and Takeo Kanade. Nonrigid Structure from Motion in Trajectory Space [J]. Neural Information Processing Systems, 2008
    [46] L. Torresani, D. Yang, et.al. Tracking and modeling non-rigid objects with rank constraints [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages:493-500, 2001
    [47] A. Del Bue, F. Smeraldi, L. Agapito. Non-rigid structure from motion using non- parametric tracking and non-linear optimization [C]. In: Proc. CVPR Workshop on Articulated and Non-Rigid Motion, 1:8-15, 2004
    [48] A. Del Bue, L. Agapito. Non-rigid 3D shape recovery using stereo factorization [C]. In: Proc. ACCV, 2004
    [49] X. Llado, A. Del Bue, L. Agapito. Non-rigid 3D factorization for projective reconstruction [C]. In Proceedings of the British Machine Vision Conference (BMVC), 2005
    [50]刘侍刚.高精度三维重建技术的研究[D].西安电子科技大学博士论文, 2005
    [51]黄文清.基于单目视觉的非刚体三维运动分析[D].浙江大学博士论文, 2006
    [52]张艳青.数字图像三维重构建模系统的关键技术研究[D].华南理工大学博士论文, 2005
    [53]邓宝松.基于点线特征的大基线图像序列三维重建技术研究[D].国防科技大学博士论文, 2006
    [54]郑世友.动态场景图像序列中运动目标检测与跟踪[D].东南大学博士论文, 2005
    [55] Lou Jianguang,Liu Qifeng,Tan Tieniu,Hu Weiming. 3D Model Based Visual Traffic Surveillance [J]. Acta Automatica Sinica, 29(3):434-449, 2003
    [56]谭铁牛.动态图像序列理解[C].中国科学院技术科学论坛第十、十一次学术报告会论文集, pages:87-100, 2004
    [57]张小云,刘允才.连接刚体的三维结构和运动参数估计[J].上海交通大学学报, 38(12):2103-2107, 2004
    [58]潘海朗,何青,刘允才.采用图像轮廓的弹性连接刚体三维建模及其参数确定[C].第十三届全国图象图形学学术会议, pages:474-477, 2006
    [59] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. Salesin. Synthesizing Realistic Facial Expressions from Photographs [C]. In: Proc. SIGGRAPH, 1998
    [60] Volker Blanz and Thomas. VetterFace Recognition Based on Fitting a 3D Morphable Model [J]. IEEE Transactions on Pattern Analysis and Machine Interlligence (PAMI), 25(9):1063-1074, 2003
    [61] T. Vetter and V. Blanz. A morphable model for the synthesis of 3d faces [C]. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pages:187-194, 1999
    [62] Sen Wang, Xianfeng David Gu, Hong Qin.Automatic Non-rigid Registration of 3D Dynamic Data for Facial Expression Synthesis and Transfer [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008
    [63] B. Bascle and A. Blake. Separability of pose and expression in facial tracing and animation [C]. In International Conference on Computer Vision (ICCV), 1998
    [64] J. Costeira and T. Kanade. A multibody factorization method for independent moving objects [J]. International Journal of Computer Vision (IJCV), 29(3):159-179, 1998
    [65] Dirk Loeckx, Frederik Maes, Dirk Vandermeulen, and Paul Suetens. Nonrigid Image Registration Using Free-Form Deformations with a Local Rigidity Constraint [C]. MICCAI, LNCS 3216, pages:639-646, 2004
    [66] J.P. Costeira, T. Kanade. A multibody factorization method for independently moving-objects [J]. International Journal of Computer Vision (IJCV), 29(3):159-179, 1998
    [67] A. Del Bue, X. Llado, L. Agapito. Non-rigid Face Modelling Using Shape Priors [J]. AMFG , pages:97-108, 2005
    [68] A. Gruber, Y. Weiss. Multibody factorization with uncertainty and missing data using the EM algorithm [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1:707-714, 2004
    [69] B. Bascle and A. Blake. Separability of pose and expression in facial tracing and animation [C]. In International Conference on Computer Vision (ICCV), pages:323-328, 1998
    [70] C. Bregler, A. Hertzmann, H. Biermann. Recovering non-rigid 3D shape from image streams [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages:690-696, 2000
    [71] L. Torresani, A. Hertzmann, and C. Bregler. Learning nonrigid 3D shape from 2D motion [C]. NIPS, 2005
    [72] M. Brand. A direct method for 3D factorization of nonrigid motion observed in 2D [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages:122-128, 2005
    [73] J. Xiao and T. Kanade. Uncalibrated perspective reconstruction of deformable structures [C]. In International Conference on Computer Vision (ICCV), pages: 1075-1082, 2005
    [74] J. Xiao, T. Kanade. Non-rigid shape and motion recovery: Degenerate deformations [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages:668-675, 2004
    [75] A. Del Bue, L. Agapito. Non-Rigid Stereo Factorization [J]. International Journal of Computer Vision (IJCV), 66(2):193-207, 2006
    [76] A. Del Bue, X. Llad′o, and L. de Agapito. Non-rigid metric shape and motion recovery from uncalibrated images using priors [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages:1191-1198, 2006
    [77] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle adjustment– A modern synthesis. InW. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory and Practice, LNCS, pages: 298-375. Springer Verlag, 2000
    [78] P. Tresadern and I. Reid. Uncalibrated and Unsynchronized Human Motion Capture : A Stereo Factorization Approach[C]. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04), 2004
    [79] M. Pollefeys, R. Koch and L. Van Gool. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters [J]. International Journal of Computer Vision (IJCV), 32(1):7-25, 1999
    [80] Hartley R.,et.al. PowerFactorization: 3D reconstruction with missing or uncertain data [C]. In:Proc. Australia-Japan Advanced Workshop on Computer Vision, 2003
    [81] G. Wang, H.-T. Tsui, and J. Wu. Rotation constrained power factorization for structure from motion of nonrigid objects [J]. Pattern Recogn. Lett., 29(1):72-80, 2008
    [82] N. Cui, J. Weng, and P. Cohen. Extended structure and motion analysis from monocular image sequences [C]. In Proc. Third International Conference on Computer Vision, pages:222-229, Osaka, Japan, 1990
    [83] T. J. Broida and R. Chellappa. Estimating the kinematics and structure of a rigid object from a sequence of monocular images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 13(6):497-513, 1991
    [84] C. J. Taylor and D. J. Kriegman. Structure and motion from line segments in multiple images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 17(11):1021-1032, 1995
    [85] C. J. Taylor and D. J. Kriegman and P. Anandan. Structure and motion in two dimensions from multiple images: A least squares approach [C]. In IEEE Workshop on Visual Motion, pages:242-248, Princeton, New Jersey, USA, 1991
    [86] C. Debrunner and N. Ahuja. Motion and structure factorization and segmentation of long multiple motion image sequences [C]. In Proc. Second European Conference on Computer Vision (ECCV), pages:217-221, Santa Margherita Ligure, Italy, 1992
    [87] L. S. Shapiro, A. Zisserman, and J. M. Brady. Motion from point matches using ane epipolar geometry [C]. In Jan-Olof Eklundh, editor, Computer Vision-ECCV94, Proceedings Third European Conference on Computer Vision, Stockholm, Sweden, volume2, pages:73-84, Springer Verlag, 1994
    [88] D. Weinshall. Model based invariants for 3d vision [J]. International Journal of Computer Vision (IJCV), 10(1):27-42, 1993
    [89] B. Boufama, R. Mohr, and F, Veillon. Euclidean constraints for uncalibrated reconstruction [C]. In Proceedings Fourth International Conference on Computer Vision (ICCV), pages:466-470, Berlin, Germany, 1993
    [90] T. Vieville and Q-T. Luong. Computing motion and stucture in image sequences without calibration [C]. In Proc of the 12th International Conference on Pattern Recognition, pages:420-425, 1994
    [91] O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig [C]. In G. Sandini, editor, Computer Vision-ECCV92, Proceedings Second European Conference on Computer Vision, Santa Margherita Ligure, pages: 563-578, 1992
    [92] R. I. Hartle. Euclidean reconstruction from uncalibrated views. In Mundy Zisserman Forsyth, editor, Applications of Invariance in Computer Vision, pages:237-256, 1994
    [93] Richard Hartley and Ren′e Vidal. Perspective Nonrigid Shape and Motion Recovery [C]. In Proc. European Conference on Computer Vision (ECCV), pages:276-289, 2008
    [94] M. Brand. Morphable 3D models from video [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2:456-463, 2001
    [95] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision [M]. Second edition. 2004
    [96] T. Ueshiba and F. Tomita. A factorization method for projective and euclidean reconstruction from multiple perspective views via iterative depth estimation [C]. In Proc. European Conference on Computer Vision (ECCV), pages:296-310, 1998
    [97] G.Wang and J.Wu. Quasi-perspective projection model with applications to structure and motion factorization of rigid and nonrigid objects [R]. Tech. Rep. University of Windsor, 2007
    [98] G. Wang. A hybrid system for feature matching based on SIFT and epipolar constraints [R]. Tech. Rep. Department of ECE, University of Windsor, 2006
    [99] G. Wang, Y. Tian, and G. Sun. Modelling Nonrigid Object from Video Sequence Under Perspective Projection [C]. In ACII’05, LNCS, 3784:64-71, 2005
    [100] T. Morita, T. Kanade. A sequential factorization method for recovering shape and motion from image streams [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 19(8):858-867, 1997
    [101] R. Vidal, R. Hartley. Motion Segmentation with Missing Data using PowerFactorization and GPCA [J]. In: Proc. Computer Vision and Pattern Resognition (CVPR), (2):310-316, 2004
    [102] A. M. Buchanan and A. W. Fitzgibbon. Damped Newton algorithms for matrix factorization with missing data [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR05), volume 2, pages:316-322, 2005
    [103] Pei Chen. Optimization Algorithms on Subspaces: Revisiting Missing Data Problem in Low-Rank Matrix [J]. International Journal Computer Vision (IJCV), 80:125-142, 2008
    [104] A. Ruhe. Numerical computation of principal components when several observations are missing [R]. Technical report, Departure of Information Processing, Umea University, Sweden, 1974
    [105] A. M. Buchanan. Investigation into matrix factorization when edements are unknown [R]. Technical report, University of Oxford, http://www.robots.ox.ac. Uk/~amb, 2004
    [106] H. Saito, S. Kamijima. Factorization Method Using Interpolated Feature Tracking via Projective Geometry [C]. In R. Harvey and J. A. Bangham, editors, Porceedings, British Machine Vision Conference, volume 2, pages:449-458, 2003
    [107] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors [J]. IEEE Transactions on Pattern Analysis and Machine Interlligence (PAMI), 30(5):878-892, 2008
    [108] D. Martinec, T. Pajdla. 3D Reconstruction by Fitting Low-rank Matrices with Missing Data [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages:198-205, 2005
    [109] M. Brand. Incremental singular value decomposition of uncertain data with missing values [C]. In Proc. European Conference on Computer Vision (ECCV), 2002
    [110] N. Guilbert and A. Bartoli. Batch recovery of multiple views with missing data using direct sparse solvers [C]. In Proceedings of the British Machine Vision Conference (BMVC), 2003
    [111] D. Jacobs. Linear fitting with missing data: Applications to structure from motion and to characterizing intensity images [C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 206-212, 1997
    [112] D. Martinec and T. Pajdla. Structure from many perspective images with occlusions [C]. In Proc. European Conference on Computer Vision (ECCV), volume II, pages 355-369, Copenhagen, Denmark, May 2002.
    [113] H. Abdi. Least Squares. In M. Lewis-Beck, A. Bryman, T. Futing (EDS): Encyclopedia for research methods for the social sciences. Thousand Oaks (CA): Sage, pages:559-561, 2003
    [114] R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with missing data using powerfactorization and GPCA [J]. International Journal of Computer Vision (IJCV), 79(1):85-105, 2008
    [115] G. Wang and J. Wu. Stratification approach for 3D Euclidean reconstruction of nonrigid objects from uncalibrated image sequences [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 38(1):90-101, 2008
    [116] G. Wang, J. Wu and G. Sun. Quasi-perspective projection with applications to 3D factorization from uncalibrated image sequences [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008
    [117] Guanghui Wang, Q. M. JonathanWu, Wei Zhang. Camera Self-Calibration and Three Dimensional Reconstruction under Quasi-Perspective Projection [C]. Canadian Conference on Computer and Robot Vision, 2008
    [118] Y.I Abdel-Aziz and H.M Karara. Direct linear transformation into object space coordinates in close-range photogrammetry [C].In Proceedings of the Symposium on Close-Range Photogrammetry, Urbana, Illinois, USA, pages: 1-18, 1971
    [119] R. Y. Tsai. An efficient and accurate camera calibration technique for 3d machine vision [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami USA, pages:364-374, 1986
    [120] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lense [J]. IEEE Journal of Robotics and Automation, pages:323-344, 1987
    [121] O. D. Faugeras, Q.-T. Luong, and S. J. Maybank. Camera self-calibration: Theory and experiments [C]. In Proc. European Conference on Computer Vision (ECCV), 1992
    [122] S. Maybank and O. Faugeras. A theory of selfcalibration of a moving camera [J]. International Journal of Computer Vision (IJCV), 8(2), 1992
    [123] R. Hartley. Kruppa’s equations derived from the fundamental matrix [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 19(2):133-135, 1997
    [124] Q. Luong and O. Faugeras. Self-calibration of a moving camera from point correspondences and fundamental matrices [J]. International Journal of Computer Vision (IJCV), 22(3):261-289, 1997
    [125] A. Heyden and K. A strom. Minimal conditions on intrinsic parameters for euclidean reconstruction [C]. In Proc. ACCV, pages:169-176, 1998
    [126] Z. Hu, Y. Wu, F. Wu, and S. Ma. The number of independent kruppa constraints from N images [J]. Journal of Computer Science Technology, 21(2):209-217, 2006
    [127] Heung-yeung Shum, Katsushi Ikeuchi, and Raj Reddy. Principal component analysis with missing data and its application to polyhedral object modeling [J]. IEEE Transactions on Pattern Analysis and Machine Interlligence (PAMI), 17(9):854-867, 1995
    [128] G. Golub and C. VanLoan. Matrix Computations [M]. John Hopkins University Press, 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700