空投任务下翼伞建模与飞行控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
翼伞系统可用于精确空投和“定点无损”着陆,在军事、航空航天等领域有着广泛的应用前景。目前翼伞系统已成为空投和回收领域研究的热点。本文围绕空投任务下的翼伞空投系统建模、姿态控制、归航控制、航迹规划以及三维动画视景仿真这几个方面展开研究工作:
     首先,将翼伞和空投物看作刚性连接的整体,忽略空投物与伞体之间的相对运动,对完全张满后的可控翼伞系统建立了六自由度运动模型,并在所建模型的基础上进行了运动特性的仿真分析。
     其次,利用非线性动态逆控制方法实现翼伞姿态控制系统的设计,考虑到系统建模误差和外界干扰等不确定因素对控制器性能的影响,引入模糊干扰观测器对翼伞飞行过程中所受复合干扰进行逼近和控制,提高整个闭环系统的控制性能。
     随后,研究了翼伞系统的归航控制,介绍和比较了目前翼伞归航控制的方法,选取分段归航作为本文中翼伞系统归航的方式。在Gockel对翼伞归航设计的基础上,采用内环姿态控制律和外环制导系统设计思路,运用基于模糊干扰观测器的非线性预测控制方法对翼伞归航轨迹进行跟踪控制。实验仿真表明,在存在外界干扰和建模误差的情况下,该控制策略具有良好的鲁棒性和抗干扰性。
     接着,研究了翼伞系统的航迹规划问题,对地形威胁和火力威胁进行了建模,结合翼伞飞行特性,引入最小威胁曲面生成三维航迹搜索空间,并利用粒子群算法搜索优化翼伞系统的航迹。仿真结果表明,利用粒子群算法规划出的航迹能够躲避威胁,满足航程和高度的要求。
     最后,进行了基于OpenGL空投系统的三维动画视景仿真,比较生动地演示了空投系统着陆的过程。
Parafoil system could be widely used in many areas, e.g. military or aviation and aerospace, to realize precise airdrop and precise-undamaged landing. Recently, it has been a hotspot in airdrop and recovery. This thesis focuses on the modeling, attitude control, homing control, route planning, and three-dimensional visual simulation of the airdrop system.
     Firstly, considering the umbrella body and drop load as a rigid connection, the relative motion between the umbrella body and drop load is ignored. The six-degree-of-freedom model of parafoil system with sails full is established. The movement characteristics of parafoil system are simulated and analyzed for the proposed model.
     Secondly, based on the nonlinear dynamic inversion technique, the attitude control system of parafoil is designed. Considering the modeling error and external disturbance uncertainties of the controller performance, fuzzy disturbance observer is used to approximate the interference suffered during the flight and to improve the closed-loop control system performance.
     Thirdly, the parafoil homing flight control system is studied. The current parafoil homing control methods are discussed and compared. The sub-homing method is utilized to design homing flight control sysyem in this thesis. Based on the homing design of parafoil by Gockel and attitude control law and guidance design, the nonlinear model predictive control method using fuzzy disturbance observer is studied for parafoil homing trajectory tracking control. The simulation results that the good robust performance and anti-interference performance of the flight control system are obtained under the condition of external disturbance and dynamic modeling errors.
     Then, the parafoil flight path planning system is studied, the models of the terrain threat and fire threat are considered. Combining with parafoil flight characteristics, the minimum-risk surface is employed to generate three-dimensional route-searching space. The particle swarm optimization algorithm is used to optimally search the route of parafoil system. The simulation result shows that the planned route can avoid the threats and meet the requirements of range and height.
     Finally, the three dimension visual simulation of airdrop system based on OpenGL is developed and it shows the process of landing vividly.
引文
[1]殷俊. GPS引导定点空投系统的自动归航,[硕士学位论文].北京:北京航空航天大学, 2001.
    [2]唐波,李良春,高军.高空精确空投保障系统分析.军事物流,2009,8(2):151~152.
    [3]熊菁.翼伞系统动力学与归航方案研究,[博士学位论文].长沙:国防科技大学,2005.
    [4]赵福英.从“天女散花”到“定点投送”——高空精确空投技术的最新发展.现代兵器,2005,5(5):18~21.
    [5] T F Goodrick. Simulation studies of the flight dynamics of gliding parachute system. AIAA-79-0417,34~36.
    [6]葛玉君,秦子增.可控翼伞系统的滑翔与稳定性分析.国防科技大学学报,1992,14(4):34~38.
    [7]马海亮,秦子增.九自由度可控翼伞系统滑翔及稳定性分析.国防科技大学学报,1994,16(2):50~53.
    [8] A Vishnyak. Simulation of the payload-parachute-wing system flight dynamic. AIAA-93-1250:332~345.
    [9] S Muller, O Wanger. Analysis of the relative motion in a parafoil-load-system. AIAA-2001-2013:645~651.
    [10]滕海山.无人机翼伞系统研究,[硕士学位论文].北京:北京航空航天大学,2004.
    [11]熊菁,秦子增.翼伞系统归航的最优控制.航天控制,2004,22(6):33~36.
    [12]熊菁,秦子增,程文科.翼伞系统分段归航轨迹的优化设计.航天返回与遥感,2004,25(3):11~15.
    [13]蒲志刚,李良春等.翼伞系统分段归航方向控制方法.四川兵工学报,2009,30(10):118~119.
    [14] U Soppa, H Strauch. GNC concept for automated landing of a large parafoil. AIAA-97-1464:456~465.
    [15] L Yili, L Huabao. Theoretical investigation of gliding parachute trajectory with deadband and non-proportional automatic homing control. AIAA-91-0834:134~141.
    [16] W Gockel. Concept studies of an autonomous GNC system for gliding parachute. AIAA-97-1465:1~7.
    [17] N Slegers, M Costello. Model predictive control of a parafoil and payload system.AIAA-2004-4822:816~821.
    [18]王利荣.降落伞理论与应用.宇航出版社,1997.
    [19] DUCOTE, R J U.S. Air Force concepts for accurate delievery of equipment and supplies. Journal of Aircraft 1967,4(4):383~392.
    [20] Miguel A Lopez, Michael R Wuest. C-17A cargo airdrop testing. AIAA-95-1578-C1:1~9.
    [21]赵春伟.动力伞的飞行原理和控制.飞机设计,1996,3(3): 49~53.
    [22]熊菁,秦小波,程文科.降落伞系统附加质量的研究.中国空间科学技术, 2002,8(4):32~36.
    [23] P B S Lissaman, G J Brown. Apparent mass effects on parafoil dynamics. AIAA-93-1236:898~905.
    [24] T M Barrows. Apparent mass of parafoils with spanwise camber. Journal of Aircraft,2002,39(3):445~451.
    [25]李良春,蒲志刚,唐波.翼伞空投操纵绳拉动过程中的位置解算.包装工程,2009,12(30):104~105.
    [26] Glen J Brown, Vertigo. Parafoil steady turn response to control input. AIAA-93-1241:234~241.
    [27]赵秋艳.翼伞雀降技术.航天返回与遥感,1999,20(2):5~9.
    [28]吴如璋.翼伞雀降性能分析.中国航空科技文献,GF56887.
    [29] Kim E. A fuzzy disturbance observer and its application to control. IEEE Transactions on Fuzzy Systems,2002,10(1):77~84.
    [30] Kim E and Park C W. Fuzzy disturbance observer approach to robust tracking control of nonlinear sampled systems with the guaranteed suboptimal H∞performances. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2004,34(3):1574~1581.
    [31]杜金刚.基于动态逆方法的飞行控制系统设计与仿真,[硕士学位论文].西安:西北工业大学,2006.
    [32]李林侃.无人机鲁棒动态逆控制研究,[硕士学位论文].西安:西北工业大学,2007.
    [33] Chen W H. Nonlinear Disturbance Observer-Enhanced Dynamic Inversion Control of Missiles. Journal of Guidance, Control and Dynamics 2003,26(1):161~166.
    [34] Chen X K, Komada S, Fukuda T. Design of a Nonlinear Disturbance Observer. IEEE Transactions of Industrial Electronics,2000,47(2):429~437.
    [35] Gorez R, Galardini D, Zhu K Y. Internal model control and disturbance observers. In Proceedings of the 30th IEEE Conference on Decision and Control,1991,13(1):229~234.
    [36] Chen X K, Su C Y, Fukuda T. A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems. IEEE Transactions on Control Systems Technology, 2004,12(4):569~577.
    [37] Chen W H. Harmonic Disturbance Observer for Nonlinear systems. Journal of Dynamic Systems,Measurement and Control,2003,12(5):114~117.
    [38] Chen W H. Disturbance Observer Based Control for Nonlinear Systems. IEEE/ASME Transactions on Mechatronics,2004,9(4):706~710.
    [39]张春雨,姜长生,朱亮.基于模糊干扰观测器的空天飞行器轨迹线性化控制.宇航学报,2007,28(1):34~38.
    [40] L X Wang. Fuzzy systems are universal approximators. Proceedings of IEEE Conference on Fuzzy Systems,1982,3(4):1163~1170.
    [41] X Zeng and M G. Singh. Approximation theory of fuzzy systems MIMIO case. IEEE Transaction on Fuzzy System,1995,5(3):219~235.
    [42]刘刚,洪冠新.复杂地形上空超低空风场的工程仿真方法.北京航空航天大学学报,2003,29(3):193~195.
    [43]肖业仑,金长江.大气扰动中的飞行原理.国防工业出版社,1993.
    [44]范培蕾,张晓今,杨涛.高超声速飞行试验风场建模与仿真分析.战术导弹技术,2009,3(2):76~82.
    [45]胡寿松,王执铨,胡维礼.最优控制理论与系统.科学出版社,2005.
    [46] J R Hirst, D S Jorgensen. Development of the advanced ram air parachute. AIAA-95-1537:67~70.
    [47]熊菁,程文科,秦子增.基于Serret-Frenet坐标系的翼伞系统轨迹跟踪控制.动力学与控制学报,2005,3(2):87~91.
    [48]席裕庚.预测控制.国防工业出版社,1991.
    [49]方炜.空间飞行器再入飞行的模糊自适应预测控制,[博士学位论文].南京:南京航空航天大学,2008.
    [50]李殿璞.非线性控制系统理论基础.哈尔滨工程大学出版社,2006.
    [51] Chen W H, Donald J Balance, peter J Gawthrop. Optimal control of nonlinear systems:a predictive control approach. Automatic,2003,39(1):633~641.
    [52] Esfandiari F, Khalil H K. Output feedback stabilization of fully linearizable systems. Int. J. Control,1992,56(5):1007~1037.
    [53] Branden J R and Ping Lu. In-Flight Trajectory Planning and Guidance for Autonomous Parafoils.Journal of Guidance,Control,and Dynamics,2009,32(6):1697~1712.
    [54] Dean S Jorgensen. The AG AS2000 Precision Airdrop System. AIAA-2005-7072:689~692.
    [55]余伟龙.反舰巡航导弹精确打击关键技术研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [56]唐波,李良春,高军.精确空投系统归航环境模型构建.四川兵工学报,2009,30(10):77~79.
    [57]巴海涛.无人机航迹规划研究,[硕士学位论文].西安:西北工业大学,2006.
    [58]姜长生,王从庆等.智能控制与应用.科学出版社,2007.
    [59]楚瑞.基于蚁群算法的无人机航路规划,[硕士学位论文].西安:西北工业大学,2006.
    [60]纪震,廖惠连,吴青华.粒子群算法及应用.科学出版社,2009.
    [61]唐波,高军等.精确空投系统投放点确定的辅助决策模型构建.装备指挥技术学院学报,2010,21(2):123~125.
    [62]陈冬.基于粒子群优化算法的无人机航迹规划,[硕士学位论文].西安:西北工业大学,2007.
    [63]于会,于鑫等.基于粒子群优化算法的航迹规划与重规划.计算机工程,2009,35(15):206~208.
    [64] Luo Delin, Yang Zhong, Duan Haibin. Particle Swarm Optimization Algorithm For Air Combat Decision-making cmta. Transactions of Nanjing University of Aeronautics &Astronautics,2006,23(1):20~27.
    [65]吴斌著. OPENGL编程实例与技巧.人民邮电出版社,1999.
    [66]辛长安,颜国著. Visual C++权威剖析:MFC的原理、机制与开发实例.清华大学出版社,2008.
    [67]李颖,薛海斌等. OPENGL技术应用实例精粹.国防工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700