可重复使用运载器上升段及应急返回段轨迹设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以末端区域能量管理段(TAEM)关键技术验证为目的的可重复使用运载器(RLV)上升段的最大高度和最大马赫数分别约为30km和3。如果在上升段正常飞行,RLV到达最高点后经TAEM到达自动着陆窗口(ALI);如果在上升段出现发动机故障停车,RLV将经应急上升段、应急返回段到达ALI。本文研究以TAEM飞行试验为背景的RLV上升段及应急返回段轨迹设计技术。
     RLV正常上升段称为标称上升段,其轨迹设计是受到多性能指标(因RLV而异)、多物理约束(主要指动压、过载约束)共同约束的两点边界值问题。样例RLV的性能指标主要是最大马赫数和最大高度。因发动机工作时间有限制,所以分别表征动能和势能的两指标会此消彼长。因此,标称上升段轨迹设计须在不违反物理约束的前提下平衡各指标量。本文提出的方案是从质点动力学角度先定性规划出航迹倾斜角剖面方案,然后通过轨迹推演来确定剖面参数,并获得参考轨迹各剖面。
     应急上升段起于故障停车而止于航迹改平,飞行中须排空剩余燃料。为使随后的应急返回段初始能量最大,应急上升段轨迹设计须在不违反物理约束的前提下使终点能量最大即能量衰减最慢。影响能量衰减快慢的因素主要是克服阻力做功量(主要取决于航迹倾斜角剖面)和燃料排空时机,二者耦合在一起。本文提出一种航迹倾斜角剖面方案可解除此耦合,并在此基础上从质点动力学分析入手研究了排空时机影响能量衰减快慢的规律,给出排空时机方案,并用于应急上升段在线参考轨迹设计。
     应急返回段起于应急上升段终点而止于ALI,TAEM可视为其特例。TAEM轨迹设计以能量走廊为核心概念,忽略纵向/横侧向机动之间的耦合,属于二维轨迹设计。对于非TAEM的应急返回段,可采用二维设计方法。因初始高度无法预知,轨迹设计须基于待飞距离,本文提出一种基于待飞距离的轨迹设计方法,可使轨迹迭代推演快速收敛,并用于应急返回段二维参考轨迹在线设计。
     在应急返回段,轨迹设计中若要实现按需使用横侧向机动,则须使用三维轨迹设计方法,必须规划考虑纵向/横侧向机动间耦合影响的横侧向参考轨迹,并基于动压参考剖面和横侧向参考轨迹迭代推演三维参考轨迹。本文基于蛇形机动式轨迹,提出一种组合使用三种轨迹模态来消除位置、航向误差的横侧向参考轨迹规划算法,可根据位置误差的大小选择不同轨迹形式规划轨迹。对于应急返回段三维轨迹迭代推演,本文提出一种在同一优化问题中跟踪动压参考剖面和横侧向参考轨迹的算法,使三维轨迹迭代推演可以快速收敛。
     最后,在MATLAB的Simulink模块下搭建了轨迹仿真验证环境,对上升段及应急返回段全程轨迹进行了数字仿真,验证了各飞行段参考轨迹的准确性、物理可飞性、稳定性。
For a Reusable Launch Vehicle (RLV), the maximum altitude is about30kilometers and the maximum Mach number is about3for the ascent flight which aims to certify the key technologies of Terminal Area Energy Management (TAEM). If the RLV can ascend as planned, it will flight powerlessly return to Auto-landing Interface (ALI) after attending to the maximum altitude and then undergoing TAEM. If the RLV powers off because of malfunction of its engine during its ascent, it have to renturn urgently to ALI after urgent ascent and urgent return flight phase. The designing technologies of trajectories for ascent and urgent return flight have been researched in this dissertation with a background of the TAEM flight test.
     The normal ascent trajectory of a RLV is called the trajectory of nominal ascent flight phase. Designing of the trajectory of this phase is a Two Point Boundary Problem with multi-index and multi-restriction. The main indexes in this paper include the maximum altitude and the maximum Mach number. Its physical restrictions comprise dynamic pressure restriction and over loading restriction. During ascent flight of a RLV, the time length of its engine is limited. Meanwhile, the index variables altitude and Mach number are the symbol of potential energy and kinetic energy respectively. Therefore, the maximum altitude and the maximum Mach number limit each other. Hence, when designing the trajectory of nominal ascent flight, balance must be made between the different indexes and the restrictions must be obeyed. In this dissertation, the designing strategy is to plan the flight path profile first and to propagate the trajectory to get its profile parameters and all the other profiles of the reference trajectory.
     The urgent ascent flight phase originates from the power-off point and ends when the flight path angle becomes zero. In this phase, the remnant poisonous fuel must be discharged totally. The object of designing of the trajectory for this phase is to maximize the end energy of the RLV without disobeying the physical restrictions. The main factors that can affect the energy loss are overcoming dynamic resistance and discharge of the fuel. The two factors couple each other. Flight path angle profile determines how much work overcoming dynamic resistance does. A flight path angle profile has been provided in the dissertation to uncouple the coupled effect. By analysis of mass point dynamics, the law that discharge timing affects velocity of the energy loss has been researched and a plan of discharge timing was selected. An onboard trajectory designing method was provided using the above-mentioned flight path angle profile plan and the plan of discharge timing.
     The urgent return flight phase originates from the end of the urgent ascent flight phase and ends at ALI, and TAEM is its special case. Energy Corridor is the core concept of TAEM trajectory designing.The coupling between longitudinal and lateral maneuvers is ignored. Thus, it is a two-dimensional (2D) trajectory designing method. For the other cases of urgent return flight, the2D trajectory designing method can also been used.The difference is that the propagation step is not altitude but range-to-go. A trajectory designing method with range-to-go steps is provided in the dissertation, and it was used in onboard trajectory designing for urgent return of the RLV.
     In urgent return flight phase, if the lateral maneuver can been used when needed, the three-dimensional (3D) trajectory designing method must be used. That is, the coupling between longitudinal and lateral maneuvers must be considered and the lateral reference trajectory is necessary. Based on the planned reference dynamic pressure profile and lateral reference trajectory, the3D reference trajectory can be propagated. Based on the snake-styled lateral trajectory, a multi-mode lateral trajectory planning method has been put forward. For different initial position errors, different mode of trajectories can be selected to erase the heading error and the position error relative to the ALI. In addition, a three-dimensional propagation algorithm has been brought forward to follow the reference dynamic pressure profile and the lateral reference trajectory in an optimization problem.The algorithm makes it available to propagate the3D trajectory fast.
     Last, by the Simulink module in MATLAB, a trajectory emulation environment has been built up. The designed reference trajectories have been emulated to test the veracity, physical flyability and stability of nominal ascent, urgent ascent and urgent return.
引文
[1]赵颖,2002年世界运载器发展综述[J],导弹与航天运载技术,2003(1):19-30
    [2]王振国,罗世彬,吴建军编著,RLV的研究进展[M],长沙:国防科技大学出版社,2004
    [3]江绍东,国外主要新型可重复使用运载器发展概况[Jl,中国航天,2003(12):27-31
    [4]江绍东,韩鸿硕,美国可重复使用运载器现状[J],中国航天,2004(5):21-25
    [5]Charles J. Lauer, The XP Spaceplane:A Near Term Multi-purpose Suborbital RLV[J], Acta Astronautica,2007,61:432-437
    [6]Dumbacher Dan, NASA's Second Generation Reusable Launch Vehicle Program Introduction, Status, and Future Plans[R], AIAA,2002-23613
    [7]Marti Sarigul-Klijn and Nesrin Sarigul-Klijn, a Study of Air Launch Methods for RLVs[R], AIAA2001-4619
    [8]Carlo Tomatis, LaurentBouaziz, ThomasFranck, JensKauffmann, RLVcandidates for European Future Launchers Preparatory Programme [J], Acta Astronautica,2009,65:40-46
    [9]张庆振,任章,天地往返可重复使用运载器再入飞行GNC系统关键技术[J],航天控制,2006,24(5):27-30
    [10]陈宏,何国强,RBCC和TBCC组合发动机在RLV上的应用[J],火箭推进,2008,34(3):39-43
    [11]陈战辉,万小朋,赵美英,高磊,RLV燃料贮箱低温泡沫隔热材料导热分析[J],宇航材料工艺,2008(3):31-33
    [12]胡建学,陈克俊,赵汉元,余梦伦,RLV再入标准轨道制导与轨道预测制导方法比较分析[J],国防科技大学学报,2007,29(1):26-34
    [13]贾杰,秦永元,徐精,RLV再入姿态双环滑模控制及舵喷混合配置[J],上海航天,2009(2):27-34
    [14]张阳,黎科峰,张庆振,任章,反作用控制系统在RLV再入复合控制中的研究[J],航天控制,2008,26(3):19-24
    [15]王小翠,郑更新,贾旭杰,邢瑞,航天飞机轨道机动系统可靠性研究[Jl,科学技术与工程,2009,9(13):3689-3692
    [16]Jose F. Padilla, Kunchang Tseng, Iain D. Boyd, Analysis of Entry Vehicle Aerothermodynamics Using the Direct Simulation Monte Carlo Method[R], AIAA2005-4681
    [17]Yoshinori Minami, Shinji Ishimoto, Takashige Mori, Kenji Fujii, Design Study on a Small-Sized Partially Reusable Launch System[R], AIAA2005-3249
    [18]Brinda V, Arora R K, Janardhana E, Mission Analysis of a Reusable Launch Vehicle Technology Demonstrator (RLV-TD)[R], AIAA2005-3291
    [19]Gottfried Sachs, Michael Mayrhofer, Optimal Abort Trajectory Control for a Winged Orbital Stage [R], AIAA98-4150
    [20]M. Mayrhofer, O. da Costa, G. Sachs, Mission Abort Trajectories of Orbital Stage with Maximum Longitudinal and Lateral Ranges [R], AIAA2003-7078
    [21]Hung-i Bruce Tsai, Optimal trajectory designs and systems engineering analyses of reusable launch vehicles[D], PhD. Dissertation, Iowa State University,2003
    [22]赵汉元,飞行器再入动力学和制导[M],长沙:国防科技大学出版社,1997
    [23]Alexandre Falcoz, David Henry, Ali Zolghadri, Robust Fault Diagnosis for Atmospheric Reentry Vehicles:A Case Study[J], IEEE Transactions on Systems, Man, and Cybernetics—Part A:Systems and Humans,2010,40(5):886-899
    [24]Zhi Xu, Shuo Tang, Aerodynamic Surfaces Control Allocation for RLV Reentry[A],2010Second International Conference on Intelligent Human-Machine Systems and Cybernetics [C],2010:73-76
    [25]K. Manokaran, G. Vidya, A. E. Sivaramakrishnan and V. K. Goyal, Wing Planform Design Optimization for Reusable Launch Vehicle[J], Journal of Aircraft,2009,46(2):726-730
    [26]Zhesheng Jiang and Raul Ordonez, Robust Approach and Landing Trajectory Generation for Reusable Launch Vehicles in Winds [A],17th IEEE International Conference on Control Applications Part of2008IEEE Multi-conference on Systems and Control[C], San Antonio, Texas, USA,2008:930-935
    [27]Jianxue Hu, Kejun Chen, Hanyuan Zhao, Menglun Yu, Hybrid Entry Guidance for Reusable Launch Vehicles[J], Journal of Astronautics,2007(1):214-217
    [28]Masaaki Yanagihara, Yoshikazu Miyazawa, HOPE-X High Speed Flight Demonstration Program Phase Ⅱ[R], AIAA2001-1805
    [29]SATO Naoki, AKIMOTO Toshio, HOPE-X High Speed Flight Demonstration Program Phase I[R], AIAA2001-1806
    [30]曹志杰,国外可重复使用运载器的近期发展[Jl,国际太空,2005(11):20-27
    [31]H. P. Lee, M. Chang, M. K. Kaiser, Flight Dynamics and Stability and Control Characteristics of the X-33Technology Demonstrator Vehicle [R], AIAA-98-4410
    [32]Kelly J. Murphy, Robert J. Nowak, Richard A. Thompson, Brian R. Hollis, X-33Hypersonic Aerodynamic Characteristics [R], AIAA-99-4162
    [33]C. Hall, H. Panossian, X-33Attitude Control Using the XRS-2200Linear Aerospike Engine[R], AIAA-99-2936
    [34]Peggy S. Williams, A Monte Carlo Dispersion Analysis of the X-33Simulation Software[R], AIAA2001-4067
    [35]John M. Hanson, Dan J. Coughlin, Gregory A. Dukeman, John A Mulqueen, W. McCarter, Ascent, transition, entry, and abort guidance algorithm design for the X-33vehicle[R], AIAA-98-4409
    [36]Charles E. Hall, Michael W. Gallaher, Neal D. Hendrix, X-33Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes[R], AIAA-98-4411
    [37]Ashley D. Hill, David M. Anderson, Dan J. Coughlin, Rajiv S. Chowdhry, X-33Trajectory Optimization and Design[R], AIAA-98-4408
    [38]Sullivan, R. B, Winters Brian, X-34Program Overview [R], AIAA,-98-3516
    [39]Steven G. Tragesser, Gregg H. Barton, Autonomous Intact about System for the X-34[R], AIAA-99-4253
    [40]Gregg H. Barton, Steven G. Tragess. Autolanding trajectory design for the X-34[R]. AIAA-99-4161
    [41]Gregg H. Barton. New methodologies for assessing the robustness of the X-34autolanding trajectories [C],24th annual AAs guidance and control conference [A],2001:30-41
    [42]A.Chaudhary, V.Nguyen, H.Tran. Dynamics and stability and control characteristics of the X-37. AIAA-2001-4383
    [43]余梦伦,两级入轨重复使用运载器的方案探讨[J],装备指挥技术学院学报,2006,17(1):1-5
    [44]F. Deneu, M. Malassigne,O. Le-couls, P. Baiocco, Promising Solutions for fully Reusable Two-stage-to-orbit Configurations [J], Acta Astronautica,2005,56:729-736
    [45]杨勇,我国重复使用运载器发展思路探讨[J],导弹与航天运载技术,2006(4):1-4
    [46]果琳丽,中国航天运输系统未来反战战略的思考[J],导航与航天运载技术,2006(1):1-5
    [47]崔而杰,重大研究计划“空天飞行器的若干重大基础问题”研究进展[J],中国科学基金,2006(5):278-280
    [48]Ping Lu, A General Nonlinear Guidance Law:Application to a Launch Vehicle[R], AIAA-94-3632-CP
    [49]Harpold J.C., Graves C.A., Shuttle Entry Guidance, The Journal of the Astronautical Sciences[J],1979(3):239-268
    [50]Martin S. K. Leung, Anthony J. Calise, A Hybrid Approach to Near-optimal Launch Vehicle Guidance[R], AIAA-92-4304-CP
    [51]Matthew V. Jessick, Donald L. Knobbs, Integrated Guidance and Control Algorithms for the National Launch System[R], AIAA-92-4305
    [52]孙春贞,重复使用运载器末端区域能量管理与无动力自动着陆技术研究[D],南京,南京航空航天大学博士论文,2008
    [53]David K. Geller, Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard Mission Planning[R], AIAA2005-5856
    [54]Mark C. Jackson, Howard Hu, Autonomous Ascent Abort Planning Applied to Military and Civilian Space Launch Vehicles[R], AIAA2004-6586
    [55]John D. Schierman, David G. Ward, Jason R. Hull, Neha Gandhi, Intelligent Guidance and Trajectory Command Systems for Autonomous Space Vehicles, AIAA2004-6253
    [56]Andrew C. Grubler, New Methodologies for Onboard Generation of Terminal Area Energy Management Trajectories for Autonomous Reusable Launch Vehicles[M], Master Dissertation of MIT, June2001
    [57]Andre R. Gired, Onboard Trajectory Generation for the Unpowered Landing of Autonomous Reusable Launch Vehicles [M], Master Dissertation of MIT, June2001
    [58]Floyd A Wyczalek, ASPS-American Suborbital Passenger System by year2005[R], AIAA,94-4232-CP
    [59]Zoujun Shen, Lu P., On-board entry trajectory planning expanded to sub-orbital flight[R], AIAA2003-5736
    [60]Liaoni Wu, Yimin Huang, Jun Zhang, The Design of Guidance on Suborbital Reentry[A], International Asia Conference on Informatics in Control, Automation and Robotics [C],2009
    [61]吴了泥,可重复使用运载器亚轨道再入段制导与控制技术研究[D],南京,南京航空航天大学博士论文,2009
    [62]Liaoni Wu, Yimin Huang, ChengLong He, Reusable Launch Vehicle Lateral Control Design on Suborbital Reentry [A], The2nd International Symposium on Systems and Control in Aeronautics and Astronautics(ISSCAA2008)[C], Shenzhen, China, December10-12,2008
    [63]Roenneke,A.J., Markl,A., Reentry control to a drag vs. energy profile[J], Journal of Guidance Control and Dynamics,1994(5):916-920
    [64]Mease K.D., Teufel P., Re-entry trajectory planning for a reusable launch vehicle[R], AIAA-1999-4160
    [65]Chen G, Hu Y, Wan ZM, et al, RLV Reentry Trajectory Multi-objective Optimization Design on NSGA-Ⅱ Algorithm[A], AIAA, Atmospheric Flight Mechanis Conference and Exhibit[C], San Francisco, California, USA,2005
    [66]Chisholm C. Tracy. Integrated Entry Guidance and control for autonomous reusable launch vehicles [M], Master Dissertation of MIT,1997
    [67]Koji Ishizuka, A Reentry Guidance Law Employing Simple Real-time Integration[R], AIAA-98-4329
    [68]Bollino, Kevin P, Oppenheimer, Michael W, Doman, David D., Optimal Guidance Command Generation and Tracking for Reusable Launch Vehicle Reentry[R], AIAA2006-6691
    [69]Daigoro Ito, Jennifer Georgie, John Valasek, Donald T. Ward, Reentry Vehicle Flight Controls Design Guidelines:Dynamic Inversion[R],NASA/TP-2002-210771
    [70]Kaushik Das, Chethana Purlupady, Radhakant Padhi, V. Brinda, Optimal Nonlinear Control and Estimation for a Reusable Launch Vehicle During Reentry Phase[A],16th Mediterranean Conference on Control and Automation Congress Centre[C], Ajaccio, France,2008
    [71]Zhi Xu, Shuo Tang, Aerodynamic Surfaces Control Allocation for RLV Reentry[A], The Second International Conference on Intelligent Human-Machine Systems and Cybernetics [C],2010:73-76
    [72]Zhi Xu, Shuo Tang, RLV(Reusable Launch Vehicle) Reentry Nonlinear Controller Design [A],2010International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE)[C],2010
    [73]Thomas E. Moore, Space Shuttle Terminal Area Energy Management[R], NAS Technical Memorandum104744
    [74]舒娟,航天飞机末端区域能量管理段制导规律设计技术研究[M],南京,南京航空航天大学硕士论文,2004
    [75]Kenneth R. Horneman, Craig A. Kluever, Terminal Area Energy Management Trajectory Planning for an Unpowered Reusable Launch Vehicle [R], AIAA2004-5183
    [76]孙春贞,黄一敏,重复使用运载器末端能量管理段制导系统仿真[J],系统仿真学报,2007,19(6):1260-1264
    [77]孙春贞,黄一敏,重复使用运载器末端能量管理轨迹鲁棒性分析[J],兵工学报,2008,29(3):369-373
    [78]Edward C. Ma, Numerical Simulation of the Heavy Weight Orbiter GRTLS Abort[R], AIAA-92-4347
    [79]Thomas L. Miller Jr., RTLS Abort Mode Elimination Using the Space Shuttle-liquid fly-back Booster Launch System, AIAA2000-5183
    [80]吴了泥,黄一敏,贺成龙,重复使用运载器返回段横侧向控制系统研究[J],南京航空航天大学学报(自然科学版),2009,41(3):329-333
    [81]Liaoni Wu, Yimin Huang, ChengLong He, Lateral-Direction Control via Reaction Control System [A], The2009International Asia Conference on Informatics in Control, Automation and Robotics (CAR2009)[C], Bangkok, Thailand, February1-2,2009:52-56
    [82]张阳,黎科峰,张庆振,任章,反作用控制系统在RLV再入复合控制中的研究[J],航天控制,2008,26(3):19-24
    [83]呼卫军,周军,可重复使用运载器RCS修正脉冲调宽算法研究[J],弹箭与制导学报,2006,26(4):313-316
    [84]贺成龙,陈欣,吴了泥,可重复使用运载器的RCS姿态控制技术研究[J],弹箭与制导,2010,30(1):51-57
    [85]Tohru Ieko, Yoshimasa Ochi, Kimio Kanai, A New Digital Redesign Method for Pulse-width Modulation Control Systems [R], AIAA-1997-3770
    [86]Franco Bernelli-Zazzera, Paolo Mantegazza. Pulse-Width Equivalent to Pulse-Amplitude Discrete Control of Linear System[J], Journal of Guidance, Control and Dynamics,1992,15(2):461-467
    [87]Carolina Restrepo, John Valasek, Preliminary Study Using forward Reaction Control System Jets during Space Shuttle Entry[R], AIAA2006-6
    [88]John C. Virnig, David S. Bodden, Mulitvariable Control Allocation and Control Law Conditioning When Control Effectors Limit[R], AIAA-94-3609-CP
    [89]Gregg H. Barton, Andrew C. Grubler, Theodore R. Dyckman, New Methodologies for Onboard Generation of TAEM Trajectories for Autonomous RLVs[A],2002Core Technologies for Space Systems Conference [C],2002
    [90]沈宏良,龚正,航天飞机末端能量管理段在线轨迹设计方法[J],宇航学报,2008,29(2):430-433
    [91]Hussein Youssef, Howard Lee, Rajiv Chowdhry, Chris Cotting, Flight Control Role in RLV Configuration Development[R], AIAA2000-3962
    [92]J:Davidson, F. Lallman, J.D. McMinn, J. Martin, Flight Control Laws for NASA's Hyper-X Research Vehicle [R], AIAA-99-4124
    [93]Chris Barret, Design of Flight Control Augmentors and Resulting Flight Stability and Control Analysis [R], AIAA-97-0425
    [94]Phillip J. Joyce and John B. Pomroy, The Hyper-X Launch Vehicles:Challenges and Design Considerations for Hypersonic Flight Testing, AIAA2005-3333
    [95]Catherine Bahm, Ethan Baumann, The X-43A Hyper-X Mach7Flight2Guidance, Navigation and Control Overview and Flight Test Results, AIAA2005-3275
    [96]张子彦,可重复使用空间飞行器的飞行控制[J],北京航空航天大学学报,2003,29(12):1105-1110
    [97]Yuri B. Shtessel, C. Hall, Sliding Mode Control of the X-33With an Engine Failure[R], AIAA2000-3883
    [98]Yuri B. Shtessel, Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes[R], AIAA2000-4155
    [99]Yuri B. Shtessel, J. Jim Zhu, Dan Daniels, Reusable Launch Vehicle Atitude Control Using Time-varying Sliding Modes [R], AIAA2002-4779
    [100]Yuri B. Shtessel, Christian Tournes, Don Krupp, Reusable Launch Vehicle Control in Sliding Modes[R], AIAA-97-3533Yuri Shtessel, Christian Tournes, Don Krupp, Reusable Launch Vehicle Control in Sliding Modes[R], AIAA-97-3533
    [101]Dongjun Shin, Jinho Kim. Robust Spacecraft Attitude Control Using Sliding Mode Control[R], AIAA-98-4432
    [102]宁国栋,张曙光,方振平,RLV再入初期连续滑模姿态控制律设计及仿真[J],系统仿真学报,2007,19(22):5272-5276
    [103]贾杰,秦永元,RLV再入姿态双环滑模控制及舵喷混合配置[J],飞行力学,2008,26(5):55-58
    [104]马先龙,周军,基于滑模控制的末端能量管理方法[J],飞行力学,2007,25(3):30-33
    [105]Juliana S., Chu, Q. P, Mulder J A, Van Baten, Flight Control of Atmospheric Re-entry Vehicle with Non-linear Dynamic Inversion[R], AIAA2004-5330
    [106]Juliana S, Chu, Q. P, Mulder J A, Van Baten, The Analytical Derivation of Non-linear Dynamic Inversion Control for Parametric Uncertain System [R], AIAA2005-5849
    [107]Beatrice Escande, Nonlinear Dynamic Inversion and Linear Quadratic Techniques[R], AIAA-98-4245
    [108]Kailash Krishnaswamy, Dan Bugajski, Inversion Based Multibody Control-Launch Vehicle with Fuel Slosh[R], AIAA2005-6149
    [109]谭政,李新国,基于非线性动态逆的SRLV再人段控制律设计[J],飞行力学,2009,27(3):66-70
    [110]Joseph A.Paradiso, Adaptable Method of Managing Jets and Aerosurfaces for Aerospace Vehicle Control, AIAA1989-3429
    [111]Anand Mayanna, Werner Grimm, Klaus H. Well, Adaptive Guidance for Terminal Area Energy Management (TAEM) of Reentry Vehicles [R], AIAA2006-6037
    [112]孙春贞,黄一敏,重复使用运载器无动力投放自适应制导技术[J],南京航空航天大学学报,2008,40(1);65-69
    [113]Fen Wu, LPV Controller Interpolation for Improved Gain-Scheduling Control Performance[R], AIAA2002-4759
    [114]Atsumi Oharat, Yasuhiro Yamaguchi, Toshiki Morito, LPV Modeling and Gain Scheduled Control of Re-entry Vehicle in Approach and Landing Phase[R], AIAA2001-4038
    [115]X-33Ascent Flight Control Design by Trajectory Linearization-A Singular Perturbation Approach[R], AIAA2000-4159
    [116]Time Bevacqua, Eric Best, Andrew Huizenga, David Cooper, J. Jim Zhu, Improved Trajectory Linearization Flight Controller for Reusable Launch Vehicles[R], AIAA2004-875
    [117]孙春贞,黄一敏,郭锁凤,重复使用运载器基于轨迹线性化的俯仰角控制[J],航空动力学报,2008,23(10):1921-1926
    [118]Xiaofei Wu, Tony Adami, Jacob Campbell, Guan Jianwei, Jim J. Zhu, A Nonlinear Flight Controller Design for a UFO by Trajectory Linearization Method Part Ⅱ-Controller Design[A], Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory[C],2002:103-107
    [119]Bevacqua. Tim, Best. Eric, Huizenga. Andrew, Cooper. David, Jim J. Zhu, Improved Trajectory Linearization Flight Controller for Reusable Launch Vehicles[R], AIAA2004-0875
    [120]杨帆,张曙光,某RLV飞行器投放轨迹的设计与分析,北京航空航天大学学报,2005,31(8):843-847
    [121]李立早,RLV无动力自动着陆段轨迹设计与验证[M],南京,南京航空航天大学,2005
    [122]马启鑫,RLV自动着陆段纵向控制系统研究[M],南京,南京航空航天大学,2005
    [123]汪元,RLV无动力投放自动着陆纵向控制系统的设计研究[M],南京,南京航空航天大学,2005
    [124]吴了泥,RLV无动力横侧向控制律设计[M],南京,南京航空航天大学硕士论文,2005
    [125]Greg A. Dukeman, Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles[R], AIAA2002-4559
    [126]Ping Lu, Lijun Zhang, Hongsheng Sun, Ascent Guidance for Responsive Launch:a Fixed-Point Approach[R], AIAA2005-6453
    [127]H. Suzuki, H. Fushimi, Y. Matsumoto, S. Kimura, Optimal Ascent Trajectory and Guidance Law for Aerospace Plane[R], AIAA-99-0386
    [128]Greg A. Dukeman, Anthony J. Calise, Enhancement to an Atmospheric Ascent Guidance Algorithm[R], AIAA2003-5638
    [129]Srinivas R. Vadali, Involute Abort Guidance[R], AIAA-97-0460
    [130]Kevin E. Dutton, Optimal Return-to-Launchsite Abort Trajectories for an HL-20Personnel Launch System Vehicle[R], AIAA-93-3691-CP
    [131]A. Girerd, G. Barton, Next Generation Entry Guidance-Onboard Trajectory Generation for Onboard Trajectory Generation for Unpowered Drop Tests[R], AIAA-2000-3960
    [132]Zhesheng Jiang, Raul Ordonez, On-Line Approach/Landing Trajectory Generation with Input Deviation Bound Uncertainty for Reusable Launch Vehicles [A], Proceedings of the46th IEEE Conference on Decision and Control[C], USA,2007:4912-4917
    [133]汤一华,余梦伦,杨勇,谢泽兵,可重复使用运载器再入在线制导方法研究[J],导弹与航天运载技术,2010(2):1-4
    [134]王琦,丁运亮,可重复使用运载器再入轨迹次实时优化[J],北京航空航天大学学报,2007,33(4):405-408
    [135]孙春贞,黄一敏,重复使用运载器在线轨迹生成技术研究[J],弹箭与制导学报,2008,28(4):261-265
    [136]Brad S. Liebst, Thomas C. Huckabone, An Algorithm for Robust Eigenstructure Assignment Using the Linear Quadratic Regulator[R], AIAA-92-4478-CP
    [137]Yoshimasa Ochi, Kimio Kanai, A New Way of Pole Placement in LQR and Its Application to Flight Control[R], AIAA-93-3845-CP
    [138]T. LIVET, F. KUBICA, Non-Interactive Control by Eigenstructure Assignment and Feedforward[R], AIAA-94-3588-CP
    [139]L. F. Faleiro, R. W. Pratt, Multi-objective Eigenstructure Assignment with Dynamic Control Augmentation Systems[R], AIAA-96-3909
    [140]Richard D. Colgren, Eigenstructure Assignment Applied to the F-117A[R], AIAA-98-4247
    [141]A. P. Oliva, W. C. Leite Filho, Eigenstructure Control Law Design for a Satellite Launcher Vehicle[R], AIAA-99-4061
    [142]A. P. Oliva, W. C. Leite Filho, Satellite Launcher Control Law Design for Decoupling and Tracking[R], AIAA2001-4337
    [143]Richard Giroux, Richard Gourdeau, Michel Pelletier, A Linear Quadratic Tracker for VTOL-UAV Trajectory Control with Multivariable Constraints[R], AIAA2000-4166
    [144]J. S. Mukherjee, J. K. Pieper, Adaptive LQR Gain Scheduling Applied to an Experimental OHS Aircraft[R], AIAA2000-3944
    [145]姜长生,孙隆和,吴庆宪等编著,系统理论与鲁棒控制[M],北京:航空工业出版社,1998
    [146]张明廉,杨一栋,飞行控制系统[M],北京:航空工业出版社,1994
    [147]Brian L. Stevens, Frank L. Lewis, Aircraft Control and Simulation[M], John Wiley&Sons, INC, New York,1993
    [148]John H. Blakelock, Automatic Control of Aircraft and Missles[M], John Wiley&Sons, INC, New York,1991
    [149]杨一栋,张伟,空间飞行器再入返回制导与控制[M],长沙:国防工业出版社,2006
    [150]钱承山,吴庆宪,姜长生等,空天飞行器概念设计再入数学建模研究[Jl,宇航学报,2008,29(2):434-439
    [151]朱亮,姜长生,方炜,空天飞行器六自由度数学建模研究[J],航天控制,2006,24(4):39-42
    [152]胡寿松编著,自动控制原理[M],第四版,北京:科学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700