基于线性与非线性破坏准则的边坡强度折减法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定性分析是边坡工程最基本最重要的问题,也是边坡设计与施工中最难和最迫切需要解决的问题之一。近年来随着计算机技术的不断发展,采用强度折减法进行边坡稳定性分析成为新的趋势;与传统的极限平衡法相比,强度折减法不但满足力的平衡条件,而且考虑了材料的应力应变关系,计算时不需任何假定,能自动地求得任意形状的临界滑动面及相应的最小安全系数,同时还可反映坡体失稳及塑性区的开展过程,使分析研究的理论基础更为严密。目前,强度折减法计算边坡安全系数方面的研究,虽然取得了不少成果,但还远未达到完善的程度。本文针对目前强度折减法的一些细节进行研究,主要内容和结论如下:
     (1)讨论了强度折减法安全系数的定义,推导了其与极限平衡法安全系数定义的关系,从理论上阐述两者的一致性;
     (2)分析了在不同坡角情况下,粘结力c和内摩擦角φ对于稳定性的影响程度,从岩土体微观抗剪机理阐述了边坡稳定性的影响因素;提出了等效影响角θe的概念;当坡角β=θe时,c和φ对稳定性的影响程度相同;当坡角β<θe时,摩擦角φ发挥的作用大于粘结力c发挥的作用;当β>θe时,c对稳定性的影响程度大于φ;该等效影响角适用于所有均质边坡,具有普遍性,其值为θe=34.1°;
     (3)对同一边坡算例建立三种临界失稳判据,采用拉格朗日元法对边坡进行弹塑性稳定分析,将三种判据得到的安全系数进行对比,探讨各个判据的合理性及实用性,得到:塑性区贯通判据在判断塑性区是否贯通时需人为进行观察,“自动化”程度不高;计算不收敛判据原理简单,得到的安全系数与位移突变判据的结果差别十分微小,并且便于程序编制;位移突变判据物理意义明确;
     (4)为了确定位移突变判据中的监测点和监测方式,在边坡面和内部布设若干监测点进行对比分析,并采用曲线方程对位移-折减系数的关系进行拟合,得到:a、双曲线方程S=(b+cK)/(1+aK)的拟合效果较好;拟合结果能够得到边坡的安全系数;b、监测点须在临界滑移线以内选取;在未知滑移线位置的情况下,选取坡脚作为监测点是不合适的;同一点在不同位移方式下,得到的安全系数相等;
     (5)采用边坡的位移等值线对滑动面进行判断,并利用自编FISH程序将该曲线和边坡线数据取出,从而量化滑动面上各点的位置,实现了滑动面直接确定方法;设置不同弹性区高度,得到多滑动面的确定方法;
     (6)分析影响因素粘结力,内摩擦角,抗拉强度,剪胀角和弹性模量对边坡安全系数和滑动面的影响,得到:内摩擦角和粘结力对安全系数和滑动面位置的影响最大;定义了新的参数λcφ=ccr/(γhtanφcr),统一了滑动面随粘结力和内摩擦角的变化趋势;安全系数随着抗拉强度的增大而呈现递增的规律;探讨了不同工况下,剪胀角和弹性模量对安全系数的影响,完善了以往稳定性分析对这些参数的处理方法;
     (7)采用双弹簧锚杆单元,模拟了边坡开挖过程中,锚杆的加固效应,讨论了强度折减法在考虑锚杆加固情况下的实施过程以及锚杆参数对稳定性的影响,得到一些新的见解对科学研究和工程应用都有一定参考价值;
     (8)为了在Hoek-Brown准则中实施强度折减法,并使其得到的结果与Mohr-Coulomb准则中强度折减法得到的结果等效,通过理论推导得到Hoek-Brown准则与Mohr-Coulomb准则参数之间的关系;采用等效粘结力和内摩擦角,计算边坡的安全系数,从而间接得到Hoek-Brown准则下边坡的安全系数,该方法方便可行,具有实用价值;
     (9)将强度折减法与描述层状岩体的Ubiquitous-Joint准则相结合,通过数值计算,分析了层状岩质边坡稳定性的影响因素,扩展了强度折减法的应用范围;
     (10)进一步探讨Hoek-Brown准则强度折减法在三维边坡稳定性分析中的应用,以某露天矿边坡为工程背景,利用快速拉格朗日差分法(FLAC3D),建立三维数值分析模型,计算边坡的安全系数和破坏模式,从宏观角度揭示出边坡开挖后,不同区域的位移变形响应,为工程实践提供指导;
     (11)采用FLAC3D对层状边坡的破坏模式进行模拟,利用低强度弹塑性单元模拟软弱结构面的变形;通过数值分析得到的结果与试验相符,推广了FLAC3D强度折减法在工程中的应用。
Slope stability analysis is the most basic and important stage in slope engineering, which is also the most difficult and emergent problem need to be solved. In the recent year, with the development of compute technology, the strength reduction method (SRM) is becoming a new trend in the area of slope stability analysis. When compared to the traditional limit equilibrium method (LEM), SRM not only meets the mechanical equilibrium condition, but also takes into consideration of the stress-strain relationship; During calculation, SRM does not have to make any assumption, it can search for the critical slip plane and find out the minimum safety factor for the slope in the automatic way, while the failure of slope and development of plastic zone can be reflected in the result of SRM, as well, which indicates that SRM has more advantages than LEM for it is based on the more precisely theories. Although many people have done much work on SRM, and get many achievements. The SRM is still far away from the perfect state. So the present paper has done the studies on some details for SRM which needs to be renovated. The main contents and conclusions are:
     (1) The different definitions of safety factor for strength reduction method are discussed, and the relationship of safe factor for SRM and LEM is obtained, which shows the consistency of definitions for SRM and LEM;
     (2) The impact of cohesion c and internal friction angleφto the stability of slope are analyzed, which studied the influential factors for stability of slope in the microscopic mechanism of shear strength; the equivalent influential angleθe is proposed; whenβ=θe, the c andφhave the same impact on the stability of slope; whenβ<θe,φhas the larger impact on the stability of slope than that of c; whenβ>θe, c has larger impact on the stability of slope than that ofφ; the equivalent influential angleθe is suitable in different homogenous slopes, whose value isθe=34.1°;
     (3) Three critical failure criterions, the connectivity of plastic zone criterion, the convergence of numerical computations criterion and the mutation of displacement criterion, are founded in the same homogenous slope; The elasto-plastic analysis is done to the stability of slope by the method of fast lagrangian analysis of continua three dimensions (FLAC3D). Safety factors obtained from the three criterions are compared with that from Janbu's procedure of limit equilibrium. The analysis results show that, the automatic characteristic for the connectivity of plastic zone criterion is not obvious, it need observation and judgment from people; The calculation theory of the numerical computations convergence criterion is easy to understand, and convenient to be programmed, with great precision for its result is in small differences with that from LEM; the physical meaning of displacement mutation criterion is clear;
     (4) In order to analyze the rationality of the chosen point's location and the displacement mode, numerical calculation models are founded for isotropic soil slope and joint rock slope, separately. Some monitoring points are located in slope while some in the internal of slope. The relationships between displacement and reduction factor are analyzed. According to the displacement mutation characteristic of displacement-reduction factor curves, hyperbola fitting equations are founded. The fitting results show that (a) fitting data are in good correlation with the monitoring data; (b) the points on and below the critical slip line can be chosen as the monitoring points of displacement mutation criterion; the top of slope is recommended to be chosen as the monitoring point in the universal slope with the consideration that the top of slope is sure to be below the critical slip line and its location is easy to obtained; If the location of slip plane is not certain, it is not proper to choose the toe of slope as the monitoring point; All the three displacement modes can lead to the same safety factor for the same monitoring point;
     (5) A numerical model was founded in plane strain mode by FLAC3D for homogeneous soil slope, whose parameters were reduced until slope reached the critical state. Then FISH program was used to get the location data of slip plane from displacement contour lines, which are used to determine the critical slip plane. Furthermore, method to determine multiple slip planes is also proposed by setting different height of elastic areas;
     (6) The influences of cohesion, internal friction angle, tensile strength, dilation angle and elastic modulus to the safety factor and slip plane of slope are obtained, which show that, cohesion and friction angle have the largest impact on the safety and slip plane; the parameter ofλcφ= ccr/(γhtanφcr) is defined, and the variation trends of slip plane with cohesion and internal friction angle are unified; The safety factor increases with the increase of tensile strength; The influences of dilation angle and elastic modulus to the safety factor are obtained for different practical situation, which prefect the past dealing method for influence of these parameters to the stability of slope;
     (7) The dual-spring element is adopted to simulate the characteristic of cable. A numerical calculation model for slope reinforced by cable is founded by FLAC3D. The excavation procedure of slope is simulated during the calculation. The procedure of SRM and parameters of cable to the stability of slope are discussed, the analysis results can give some guidance for both science research and engineering project;
     (8) In order to apply the SRM in Hoek-Brown criterion, and make the result the same with that from Mohr-Coulomb criterion, the relationship between parameters of Hoek-Brown criterion and Mohr-Coulomb criterion is analyzed; the equivalent cohesion and friction angle are adopted to calculated the safety factor of slope, which explores a new way to indirectly calculate the safety factor of slope based on the Hoek-Criterion; The new is convenient and practical to be processed;
     (9) The SRM is combined with the ubiquitous-joint criterion; the influential factors of the stratified rock slope are analyzed according to the numerical calculation, which expands the application of SRM;
     (10) The SRM in Hoek-Brown criterion is further expanded in the three dimensional stability analysis; Rock slope in one surface mine is chosen as the analysis object. Three dimensional numerical analysis model is founded by FLAC3D, the safety factor and failure mode of slope are calculated, the deformation responses of different areas in slope are recorded in the macroscopic way, which can give guidance for engineering practices;
     (11) The failure modes of stratified rock slope are simulated by FLAC3D, during simulation, the elastic-plastic elements are adopted to simulate the deformation of weakness plane; the results from the numerical simulation are in accordance with that from laboratory tests, which extends the application area of SRM with FLAC3D.
引文
[1]陈祖煜.土质边坡稳定性分析[M].北京:中国水利水电出版社.
    [2]孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析[M].北京:科学出版社,1988.
    [3]崔政权,李宁.边坡工程----理论与实践最新发展[M].北京:中国水利水电出版社,1999.
    [4]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [5]Evert Hoek. Rock Engineering. North Vancouver:Evert Hoek Consulting Engineering Inc,2000.
    [6]孙玉科,杨志法,丁恩保等.中国露天矿边坡稳定性研究[M].北京:中国科学出版社,1999.
    [7]赵杰.边坡稳定有限元分析方法中若干应用问题研究[D].大连理工大学博士学位论文,2006.
    [8]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [9]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [10]陈希哲.土力学地基基础[M].北京:清华大学出版社,1998.
    [11]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [12]Fellenius W. Erdstatisch Berechnungen [M]. Berlin W. Ernst und Sohn revised edition,1939.
    [13]Janbu, N. Earth pressures and bearing capacity calculations by generalized procedure of slices [J]. Proceedings of the fourth international conference on soil mechanics and foundation engineering,1957,2.
    [14]Janbu, N. Slope stability computions[M]. Soil Mech. and Found. Engrg. Rep., The technical university of Norway, Trondheim, Norway,1968.
    [15]Janbu, N. Slope stability computation, Embankment Dam Engineering, John Wiely and Sons, New York,1973.
    [16]Bishop A.W. The use of the slip circle in the stability analysis of slopes. Geotechnique,1955.
    [17]Bishop A.W. The stability of earth dames. PhD Thesis,1952, University of London.
    [18]Bishop A.W., Green G.E., Garga V.K.. A new ring shear appratus and its application to the measurement of residual shear strength [J]. Geotechnique, 1971, (21):273-328.
    [19]Lowe.J. Karaflath. L. Stability of earth dams upon drawdown. Proc.1st Panamer. Conf. Soil Mech. Mexico City,1960,537-552.
    [20]Morgenstern, N.R. Price,V. The analysis of the stability of general slip surface [J]. Geotechnique,1965,(15):79-93.
    [21]Spencer, E. A method of analysis of embankments assuming parallel inter-slice forces [J]. Geotechnique, (17):11-26.
    [22]U.S.Army, Corps of Engineers. Stability of slopes and foundations, Engineering Manual, Visckburg, Miss.1967.
    [23]Sarma S.K. Stability analysis of embankments and slopes [J]. Geotech. Engrg. Div.,ASCE,1979,105(12):1511-1524.
    [24]Hoek E., Bray J.W, Boyd J.M. The stability of a rock slope containing a wedge resting on two intersecting discontinuities Quarterly [J]. Engineering Geology,1973,6(1):17-28.
    [25]Revilla J, Castillo E. The calculus of variation applied to stability of slope[J]. Geotech,1977,27(1):1-11.
    [26]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [27]陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明[J].清华大学学报(自然科学版),1993,38(1):1-4.
    [28]Leshchinsky D. Slope stability analysis:Generalized approach[J]. Geotech. Eng.,1990,116(5):851-867.
    [29]Li K.S. and White W. Rapid evaluation of the critical surface in slope stability problems [J]. International for Numerical and Analytical Methods in Geomechanics,1987,11(5):449-473.
    [30]Clough A.K. Variable factor of safety in slopes stability analysis by limit equilibrium method[J].1st Eng.,1988,69(3):149-155.
    [31]Milutin M Srbalov. Limit equilibrium method with local factors of safety for slope stability[J]. Can. Geotech.,1987,24(4):652-656.
    [32]Chen Z.-Y. and Shao C.-M. Evaluation of minimum factor of safety in slope stability analysis[J]. Can. Geotech.,1988:25(4):735-748.
    [33]Meiketsu Enoki, Mori, Yagi, Ryuichi and Yatabe. Generalized slice method for slope stability analysis[J]. Soil. Found,1988,30(2):1-13.
    [34]Espinazo R.D., Bourdeau P.L. and Mahunthan B. Unified formulation for analysis of slopes with general surface[J]. Geotech. Eng.,1994,120(7): 185-204.
    [35]Baker R. Determination of the critical slip surface in slope stability computations [J]. International for Numerical and Analytical Methods in Geomechanics,1980,4:333-359.
    [36]Boutrup E. and Lovell C.W. Search technique in slope stability analysis[J]. Engrg. Geol.,1980,16(1):51-61.
    [37]Celistino T.B. and Duncan J.M. Simplified search for non-circular slip surface[J]. Proc.,10th Int. Conf. on Soil Mech. and Found. Engrg, A.A. Balkema, Rotterdam,The Netherlands,1981:663-669.
    [38]Cherubini C and Creco V.R. A probabilistic method for locating the critical slip surface in slope stability analysis [J]. Proc.,5th LC.S.A.P.,1987,2: 1182-1187.
    [39]Yamagami T. and Ueta Y. Search for noncircular slip surfaces by the Morgenstern-Price method [J]. Proc.,6th Int. Conf. Numer. Methods in Geomech.,1988,6:1219-1223.
    [40]Chen Z.-Yu. Random trials used in determining global minimum factors of safety of slopes[J]. Can. Geotech. J.,1992,29:225-233.
    [41]Greco V.R. Efficient Monte Carlo technique for locating critical slip surface[J]. Geotech. Eng.,1996,122(7):517-525.
    [42]王雪峰.斜坡稳定性随机模拟技术研究[博士学位论文][D].武汉:中国地质大学,1997.
    [43]Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics [J]. Geotechnique,1975, 25(4):671-689.
    [44]陈惠发.极限分析与土体塑性[M].北京:人民交通出版社,1995.
    [45]Anagnosti P. Three dimensional stability of fill dams[J]. Proc.7th Int. Conf. on Soil Mech. and Found. Engrg., A.A.Balkema, Rotterdam, the Netherlands, 1969.
    [46]Giger M.W. and Krizek R.J. Stability of vertical corner cut with concentrated surchrge load[J]. Geotech. Engrg. Div. ASCE,1976,102(1):31-40.
    [47]Baligh M.M., Azzouz A.S. and Ladd C.C. Line loads on cohesive slopes. Proc. 9th Int. Conf. on Soil Mech. and Found. Engrg.[J]. Japan Soc. For Soil Mech. and Found. Engrg., Tokyo,1977,2:13-17.
    [48]Chen R.H. and Chameau J.L. Three dimensional limit equilibrium analysis of slopes[J]. Geotechnique,1983,33(1):31-40.
    [49]Dennhardt M. and Forster W. Problems of three dimension slope stability [J]. Proc.,11th Int. Conf. on Soil Mech. and Found. Engrg., A.A.Balkema, Rottemdam. The Netherlands,1985,2:427-431.
    [50]gai K. Three-dimensional stability analysis of vertical cohesive slopes. Soils and Found. Tokyo,1985,25(3):41-48.
    [51]Seed R.B., Mitchell J.K. and Seed. H.B. Kettlemen Hills waste landfill slope failure II:stability analysis [J]. Geotech. Engrg., ASCE,1990,116(4):669-690
    [52]Cundall P.A. and Strack O.D.L.A discrete numerical method for granular assemblies [J]. Geotechnique,1979,29(1):47-65.
    [53]石根华,任放.块体系统下不连续变形数值分析方法[M].北京:科学出版社,1993.
    [54]Gen-hua Shi, R ichard E.G oodman. Generalization of two-dimensional discontinuous deformation analysis for forward modelling[J]. International Journal for Numerica land Analytical Methods in Geomechanics,1989,13: 359-380.
    [55]Gen-hua Shi.Numerical manifold method [J]. Proc.of IC ADD-2,The second international conference on analysis of discontinuous deformation, Kyoto University,1997:1-34.
    [56]Gussmann P,Ochmann H.概率论和运动单元法[M].见:可靠性理论在地基基础方面的应用译文集[C].上海:同济大学出版社,1987,124-131.
    [57]曹平,GussmannP.运动单元法与边坡稳定性分析[J].岩石力学与工程学报,1999,18(6):663-666.
    [58]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    [59]Lee L-M. and Lee M.-J. Optimization of rock slopes using reliability concepts [J]. International Journal of Rock Mechanics and Mining Science Abstract,1998,35(4/5):661.
    [60]Low B.K. and Wilson H.T. Probabilistic slope analysis using Janbu's Generalized Procedure of slices [J]. Computers and Geotechnics,1997,21 (2):121-142.
    [61]Husein M.A.L, Hassan W.F and Abdulla F.A. Uncertainty and reliability analysis applied to slope stability[J]. Structural Safety,2000,22:161-178
    [62]Low B.K. Reliability analysis of rock wedges[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(6):498-505.
    [63]秦四清,张悼元,王士天等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993.
    [64]周萃英,晏同珍,汤连生.滑坡灾害系统非线性动力学研究[J].长春地质学院学报,1995,25(3):310-316.
    [65]周萃英,汤连生,晏同珍.滑坡灾害系统的自组织[J].地球科学一中国地质大学学报,1996,21(6):604-607.
    [66]许强,黄润秋.斜坡演化的自组织特征初探[J].中国地质灾害与防治学报,1997,8(1):7-11.
    [67]易顺民.分形工程地质及其应用研究[博士学位论文][D].北京:中国地质大学,1996.
    [68]郑明新,王恭先,王兰生.分形理论在滑坡预报中的应用研究[J].地质灾害与环境保护,1998,9(2):18-26.
    [69]张子新,孙均.分形块体理论及其在三峡高边坡稳定分析中的应用[J].自然灾害学报,1995,4(4):89-95.
    [70]吴中如,潘卫平.分形几何理论在岩土边坡稳定性分析中的应用[J].水利学报,1996,(4):79-82.
    [71]黄润秋,许强.突变理论在工程地质中的应用[J].工程地质学报,1993,1(1):65-73.
    [72]殷坤龙,晏同珍.滑坡预测及其相关模型[J].岩石力学与工程学报,1996,15(1):1-8.
    [73]李造鼎,宋纳新,贾立宏.岩土动态开挖的灰色突变建模[J].岩石力学与工程学报,1997,16(3):252-257.
    [74]Matsui T and San K C. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique [J]. Soils and foundations, JSSMFE,1992,32(1):59-70.
    [75]李育超.基于实际应力状态的土质边坡稳定性分析研究[D].博士学位论文,浙江大学,2006.
    [76]Duncan J M. State of the art:limit equilibrium and finite element analysis of slopes [J]. J Geotech Engrg Div, ASCE,1996,122(7):577-596.
    [77]Griffiths D V and Lane P A. Slope Stability Analysis by Finite Elements[J]. Geotechnique,1999,49(3):387-403.
    [78]Jie Han, Dov Leshchinsky. Limit equilibrium and continuum mechanics-based numerical methods for analyzing stability of MSE walls [C].17th ASCE Engineering Mechanics Conference,2004,1-8.
    [79]Dawson E M, Roth W H and Drescher A. Slope Stability Analysis by Strength Reduction[J]. Geotechnique,1999,49(6):835-840.
    [80]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [81]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边破的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [82]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626-628.
    [83]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [84]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用[J].土木工程学报,2005,38(1):91-99.
    [85]郑颖人,赵尚毅,孔位学,邓楚键.岩土工程极限分析有限元法[J].岩土力学,2005,26(1):163-168.
    [86]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,10(4):57-61.
    [87]赵尚毅,郑颖人,唐树名.深挖路堑边坡施工顺序对边坡稳定性影响有限元数值模拟分析[J].地下空间,2003,23(4):370-375.
    [88]赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.
    [89]时卫民,郑颖人.摩尔-库仑屈服准则的等效变换及其在边坡分析中的应用[J].岩土工程技术,2003,(3):155-159.
    [90]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006,(6):735-739.
    [91]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报,2002,24(4):487-490.
    [92]赵尚毅,郑颖人.基于Drucker-Prager准则的边坡安全系数转换[J].岩石力学与工程学报,2006,(增1):270-273.
    [93]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-27.
    [94]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [95]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,21(3):1-6.
    [96]唐晓松,郑颖人,邬爱清,等.应用PLAXIS有限元程序进行渗流作用下的边坡稳定性分析[J].长江科学院院报,2006,5485(4):8-11.
    [97]宋雅坤,郑颖人,赵尚毅.有限元强度折减法在三维边坡中的应用与研究[J].地下空间与工程学报,2006,(5):822-827.
    [98]刘明维,郑颖人.基于有限元强度折减法确定多滑面方法研究[J].岩石力学与工程学报,2006,25(8):1544-1549.
    [99]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,2003,22(2):254-260.
    [100]郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析[J].岩石力学与工程学报,2003,22(12):1943-1952.
    [101]郑颖人,赵尚毅.用有限元强度折减法求滑(边)坡支挡结构的内力[J].岩石力学与工程学报,2004,23(20):3552-3558.
    [102]Baker R, Gaber M. Theoretical analysis of the stability of slopes[J].Geotechnique,1978,28(4):395-411.
    [103]Huang Y H. Stability Analysis of Earth Slopes[M]. New York:Van Nostrand Reinhold Company,1983.
    [104]Celestino T B, Duncan J M. Simplified search for non-circular slip surface[A]. In:Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering[C]. Rotterdam:A. A. Balkema,1981.391-394.
    [105]Li K S, White W. Rapid evaluation of the critical slip surface in slope stability problems[J]. Journal for Numerical and Analytical Methods in Geomechanics, 1987,11(5):449-473.
    [106]Baker R. Determination of the critical slip surface in slope stability computation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1980,4:333-359.
    [107]Zou J Z, Willians D J, Xiong W L. Search for critical slip surfaces based on finite element method[J]. Canadian Geotechnical Journal,1995,32:233-246.
    [108]Yamagami T, Ueta Y. Search for noncircular slip surface by the Morgenstern-Price method[A]. In:Proceedings of the 6th International Conference on Numerical Methods in Geomechanics[C]. Rotterdam:A. A. Balkema,1988.1335-1340.
    [109]Goh A T C. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis[J]. Canadian Geotechnical Journal,1999, 36(2):382-391.
    [110]Cheng Y M. Location of critical failure surface and some further studies on slope stability analysis [J]. Computers and Geotechnics,2003,30(3):255-267.
    [111]陈昌富,龚晓南,王贻荪.自适应蚁群算法及其在边坡工程中的应用[J].浙江大学学报(工学版),2003,37(5):566-569.
    [112]王成华,夏绪勇,李广信.基于应力场的土坡临界滑动面的蚂蚁算法搜索技术[J].岩石力学与工程学报,2003,22(5):813-819.
    [113]Zhu D Y. A method for locating critical slip surfaces in slope stability analysis[J]. Canadian Geotechnical Journal,2001,38(2):328-337.
    [114]王成华,夏绪勇.边坡稳定分析中的临界滑动面搜索方法述评[J].四川建筑科学研究,2002,28(3):34-39.
    [115]Chen Z Y, Shao C. Evaluation of minimum factor of safety in slope stability analysis[J]. Canadian Geotechnical Journal,1988,25(4):735-748.
    [116]Greco V R. Efficient Monte Carlo technique for locating critical slip surface [J]. Journal of Geotechnical Engineering, ASCE,1996,122(7):517-525.
    [117]Malkawi A I H, Hassan W F, Sarma S K. Global search method for locating general slip surface using Monte Carlo techniques [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(8):688-698.
    [118]Kim J Y, Lee S R. An improved search strategy for the critical slip surface using finite element stress fields[J]. Computers and Geotechnics,1997,21(4): 295-313.
    [119]郑宏,田斌,刘德富.关于有限元边坡稳定性分析中安全系数的定义问题[J].岩石力学与工程学报,2005,24(13):2225-2230.
    [120]中华人民共和国行业标准编写组.公路路基设计规范(JTGD30-2004)[S].北京:人民交通出版社,2004.
    [121]中华人民共和国国家标准编写组.建筑边坡工程技术规范(GB50330-2002)[S].北京:中国建筑工业出版社,2002.
    [122]中华人民共和国行业标准编写组.铁路路基支挡结构设计规范(TB10025-2001)[S].北京:中国铁道出版社,2001.
    [123]郑颖人,赵尚毅.边(滑)坡工程设计中安全系数的讨论[J].岩石力学与工程学报,2006,25(9):1937-1340.
    [124]Taylor D.W. Stability of earth slopes. J.Boston Soc. Civ. Eng. 1937,24(3):197-246.
    [125]张学言.岩土塑性力学[M].北京:人民交通出版社,1993.
    [126]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.
    [127]唐芬,郑颖人,赵尚毅.边坡稳定安全储备的双折减系数推导[C].2006年三峡库区地质灾害与岩土环境学术研讨会论文集.重庆:2006,191-202.
    [128]邵国建,卓家寿,章青.岩体稳定性分析于评价准则研究[J].岩石力学与工程学报,2003,22(5):691-696.
    [129]Itasca Consulting Group, Inc.. FLAC3D (Fast Lagrangian Analysis of Continua in Three-dimensions), version 2.1, User's Mannual[R]. Itasca Consulting Group, Inc.,2002.
    [130]Colby C. Swan and Young-Kyo Seo. Limit State Analysis of Earthen Slopes Using Dual Continuum/FEM Approaches. Int.J.Numer.Anal. Meth. Geomech, 1999,(23):1359-1371.
    [131]林杭,曹平,赵延林,等.强度折减法在Hoek-Brown准则中的应用[J].中南大学学报,2007,38(6):1219-1224.
    [132]林杭,曹平,宫凤强.位移突变判据中监测点的位置和位移方式分析[J].岩土工程学报,2007,29(9):1433-1438.
    [133]Fei Cai, Keizo Ugai. Reinforcing mechanism of anchors in slopes:a numerical comparison of results of LEM and FEM[J].Int. J. Numer. Anal. Meth. Geomech.2003 (27):549-564.
    [134]Dawson E, Motamed F, Nesarajah S, et al. Geotechnical stability analysis by strength reduction[A]. In:Griffiths D V ed. Geotechnical Special Publication: Slope Stability 2000-Proceedings of Sessions of Geo-Denver 2000[C]. [s. 1.]:[s.n.],2000,99-113.
    [135]Lechman J B, Griffiths D V. Analysis of the progression of failure of earth slopes by finite elements [A]. In:Griffiths D V ed. Geotechnical Special Publication:Slope Stability 2000-Proceedings of Sessions of Geo-Denver 2000[C]. [s.1.]:[s.n.],2000.250-265.
    [136]Dawson E, You K, Park Y. Strength-reduction stability analysis of rock slopes using the Hoek-Brown failure criterion[A]. In:Labuz J F ed. Geotechnical Special Publication:Trends in Rock Mechanics[C]. [s.1.]:[s. n.],2000.65-77.
    [137]Jeremi B. Finite element methods for 3D slope stability analysis[A].In: Griffiths D V ed. Slope Stability 2000 - Proceedings of Sessions of Geo-Denver 2000[C]. [s.1.]:[s.n.],2000.224-239.
    [138]张培文,陈祖煜.弹性模量和泊松比对边坡稳定安全系数的影响[J].岩土力学,2006,27(2):299-303.
    [139]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [140]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [141]蒋建平,高广运,汪明武.大直径超长桩有效桩长的数值模拟[J].建筑科学,2003,19(3):27-29.
    [142]彭文祥,赵明华,袁海平等.基于拉格朗日差分法的全长注浆锚杆支护参数优化[J].中南大学学报,2006,37(5):1002-1007.
    [143]沈金瑞,林杭.多组节理边坡稳定性FLAC3D数值分析[J].中国安全科学学报,2007,17(1):29-33.
    [144]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42-46.
    [145]宋二祥,高翔,邱钥.基坑土钉支护安全系数的强度参数折减有限元方法[J].岩土工程学报,2005,27(3):258-263.
    [146]吕擎峰.土坡稳定性分析方法研究[D].河海大学博士学位论文,2005.
    [147]倪加勋,袁卫.应用统计学[M].北京:中国人民大学出版社,1997.
    [148]Y.M. Cheng, T. Lansivaara, W.B. Wei. Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods[J].Computers and Geotechnics,2007,(34):137-150.
    [149]吴春秋.非线性有限单元法在土体稳定分析中的理论及应用研究[D].武汉大学博士学位论文,2004.
    [150]Jing-Cai Jiang, Takuo Yamagami. A new back analysis of strength parameters from single slips [J]. Computers and Geotechnics,2008,35(2):286-291.
    [151]Jing-Cai Jiang, Takuo Yamagami. Charts for estimating strength parameters from slips in homogeneous slopes [J]. Computers and Geotechnics,2006, 33(6):294-304.
    [152]Timothy D. Stark, Hangseok Choi, Sean McCone. Drained Shear Strength Parameters for Analysis of Landslides [J]. Journal of Geotechnical and Geo environmental Engineering,2005,31(5):575-588.
    [153]Lambe T W. A mechanistic picture of shear strength in clay. Research conference on shear of cohesive soils,1960.
    [154]Taylor D W. Fundamentals of soils mechanics.1948.
    [155]Fei Cai, Keizo Ugai. Reinforcing mechanism of anchors in slopes:a numerical comparison of results of LEM and FEM[J].Int. J. Numer. Anal. Meth. Geomech.2003(27):549-564.
    [156]LI C, Stillborg B. Analytical models for rock bolts[J]. Int. J. Rock Mech. Sci. and Geomech. Abstr.,1999,36(8):1013-1029.
    [157]R.Guo, P.Thompson. Influences of changes in mechanical properties of an overcored sample on the far-field stress calculation [J]. International Journal of Rock Mechanics & Mining Sciences,2002(39):1153-1166.
    [158]Sabhahit N, Basudhar PK, Madhav MR. A generalized procedure for the optimum design of nailed soil slopes. Int J Numer Anal Meth Geomech 1995,19(6):437-452.
    [159]杨庆,朱训国,栾茂田.全长注浆岩石锚杆双曲线模型的建立及锚固效应的参数分析[J].岩石力学与工程学报,2007,26(4):692-698.
    [160]邹金锋,李亮,杨小礼,等.基于损伤理论的全长式锚杆荷载传递机理研究[J].铁道学报,2007,29(6):84-88.
    [161]陈广峰,米海珍.黄土地层中锚杆受力性能试验分析[J].甘肃工业大学学报,2003,29(1):116-119.
    [162]曹国金,姜弘道,熊红梅.一种确定拉力型锚杆支护长度的方法[J].岩石力学与工程学报,2003,22(7):1141-1145.
    [163]宋建波,刘唐生,于远忠.Hoek-Brown准则在主应力平面表示形式的讨论[J].岩土力学,2001,22(1):86-113.
    [164]巫德斌,徐卫亚.基于Hoek-Brown准则的边坡开挖岩体力学参数研究[J].河海大学学报,2005,33(1):89-93.
    [165]于远忠,宋建波.经验参数m,s对岩体强度的影响[J].岩土力学,2005,26(9):1461-1468.
    [166]吴顺川,金爱兵,高永涛.基于广义Hoek-Brown准则的边坡稳定性强度折减法数值分析[J].岩土工程学报,2006,28(11):1975-1980.
    [167]鲜学福.层状岩体破坏机理[M].重庆:重庆大学出版社,1989.10.
    [168]吴顺川,金爱兵,高永涛.基于遍布节理模型的边坡稳定性强度折减法分析[J].岩土力学,2006,27(4):537-542.
    [169]梁正召,唐春安,李厚祥等.单轴压缩下横观各向同性岩石破裂过程的数
    值模拟[J].岩土力学,2005,26(1):57-62.
    [170]闫长斌,徐国元.对Hoek-Brown公式的改进及其工程应用[J].岩石力学与工程学报,2005,24(22):4030-4035.
    [171]罗一忠,叶奥文.大厂91#矿体岩石力学参数工程处理[J].江西有色金属,1998,12(3):9-12.
    [172]E.Hoek, E.T.Brown. Practical estimates of rock mass strength[J]. Int. J. Rock Mech. Min. Sci,1998,34(8):1165-1186.
    [173]Balmer, G. (1952):A general analytical solution for Mohr's envelope. Am. Soc. Test. Mat.52,1269-1271.
    [174]E. Hoek, C. Carranza-Torres, B.Corkum. Hoek-Brown failure criterion-2002 Edition[C].Proc. NARMS-TAC Conference, Toronto,2002,1,267-273.
    [175]刘小丽,周德培.用弹性板理论分析顺层岩质边坡的失稳[J].岩土力学,2002,23(2):162-165.
    [176]朱晗迓,马美玲,尚岳全.顺倾向层状岩质边坡溃曲破坏分析[J].浙江大学学报,2004,38(9):1144-1149.
    [177]邓荣贵,周德培,李安洪等.顺层岩质边坡不稳定岩层临界长度分析[J].岩土工程学报,2002,24(2):178-182.
    [178]陈从新,黄平路,卢增木.岩层倾角影响顺层岩石边坡稳定性的模型试验研究[J].岩土力学,2007,28(3):476-481.
    [179]冯文凯,石豫川,柴贺军等.缓倾角层状高边坡变形破坏机制物理模拟研究[J].中国公路学报,2004,17(2):32-36.
    [180]Itasca Consulting Group. Theory and Background [Z].Minnesota:Itasce Consulting Group,2002.
    [181]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980年.
    [182]金小萍.层状岩体高陡边坡底摩擦模拟试验研究[J].金属矿山,1998,(3):7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700