LiDAR与影像结合的地物分类及房屋重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载激光扫描通常也被称为LiDAR, LiDAR技术的发展为获取高时空分辨率的地球信息提供了一种全新的手段。LiDAR提高了观测的精度和速度,使数据获取和处理朝着自动化方向发展。自从1990中期后,LiDAR技术已广泛应用于地物目标和表面三维提取与重建。由于LiDAR数据分布离散、不规则以及数据分布不均匀,同时缺少光谱、纹理和形状等物体信息,加之LiDAR数据存在数据缝隙,使得仅从激光扫描数据中进行地物提取与建筑物重建仍然存在很多问题。然而随着硬件技术的提高,一般激光扫描系统都包含高分辨率的数码相机,在获取激光扫描数据的同时可以获取高分辨率航空影像,甚至有些LiDAR系统可以提供近红外影像。由于航空影像可以提供丰富的光谱、纹理信息,可有效弥补LiDAR数据的不足。通过融合不同数据源,使得一个数据源的缺点可以有其他数据源加以弥补,这也是摄影测量和遥感领域的一个发展趋势。本文主要涉及LiDAR与航空影像相结合的地物分类,以及建筑物提取过程中的几个问题。
     1)探讨了快速查询离散LiDAR点云数据的几种方法,主要包括二维分块索引、利用KD-树实现在三维空间中激光点的k个最邻近点和区域的快速查询、以及不规则三角网(TIN)。并且研究了在利用三角网加密迭代方法对LiDAR数据提取DTM过程中需要考虑的几个关键问题:主要是初始种子点的选取,激光点云划分的格网尺寸,极低局外点的去除以及高程阈值的选择。
     2)根据激光扫描数据按照扫描线排列的特点,设计了基于扫描线的两步法滤波算法。算法首先根据地形连续性的特征,利用激光数据点之间的坡度、高程差以及扫描区域最大地形坡度进行一维地形点特征提取;其次在假设城市局部地形表面是平坦的前提下,将前一步骤获得的地形点作为候选地形点,采用局部参数化表面拟合进一步将候选地形点中非地形点去除。通过实验验证了该方法对城区地形的可行性。
     3)分析了航空影像和LiDAR数据分别所提供的光谱信息和几何信息,提出了LiDAR数据和航空影像融合的地物提取算法。算法首先对LiDAR距离影像与航空影像进行基于Brovey比值法的融合、采用金字塔分裂合并算法进行融合影像的分割、边界跟踪获取若干个同质区域作为分类对象;然后提取航空影像所提供的直线特征,以及LiDAR数据提供的几何信息(LiDAR数据的高程信息、激光点的空间离散度、首末次回波)。最后对每个分类对象统计该区域内光谱信息和几何信息,根据实验所确定分类规则和分类条件,对LiDAR数据进行分类。
     4)研究了建筑物区域多边形简化、最小二乘模板和直角约束条件提取简单直角建筑物区域的方法,以及建筑物屋顶面片自动分割算法。提出了在利用RANSAC算法检测建筑物屋顶面片的基础上,建立屋顶面片之间的邻域关系。并分别介绍了利用检测出来的屋顶面片重建平顶、人字型以及四坡型三类简单建筑物过程。由于LiDAR数据的特性,从点云中重建的建筑物轮廓并不是真正的建筑物边界,因此最后需利用航空影像对从LiDAR数据中重建的平顶、人字型以及四坡型建筑物进行精确定位。
     用多组LiDAR实验数据来对滤波技术进行了大量的实验,探讨了其中的技术问题。也通过多组融合数据进行了分类实验,并分析了各种可能性以及实践中遇到的问题。由于受所研究影像数据分辨率问题的限制,对建筑物的提取只进行三类简单建筑物重建的研究。基于LiDAR数据和航空影像的分类和三维重建是一项复杂的任务,如何提高地物分类精度、模型三维重建的自动化水平和模型精度,仍然需要大量和深入的研究。
LiDAR, Light Detection and Ranging, provides a new technological means for attaining high-resolution and high temporal-spatial geo-information, which makes data acquisition are being changed from the traditional photogrammetric mode to the continuous automatic mode. It enhances the accuracy and speed of survey, and automate acquisition and processing of the data. Since 1990s, LiDAR technology has been widely used in the fields of object extraction and surface feature extraction and 3D reconstruction. There are still many difficulties in object extraction and building reconstruction only from point cloud, because data provided by LiDAR system is discrete and regular distribution, and lacks spectrum, texture and shape information. in addition, the data gap also exists in LiDAR data. However, with the improvement of hardware techniques, LiDAR system generally includes high-resolution digital camera, from which the high-resolution aerial images, even infrared images, can be attained when accessing the point cloud. The aerial image provides aboundant spectrum and texture information that can compensate the disadvantages of the data of LiDAR. It is a tendency to the field of Photogrametry and Remote Sensing that the shortcomings of one data source can be made up other data sources through the integration of different data sources. This paper studies a few of problems and key techniques in the object classification from integrating LiDAR and aerial images, as well as in the process of building extraction from the following aspects:
     The several techniques of quick inquiring the discrete point cloud have been introduced respectively, which include the two-dimensional grid index, the quick query of K-nearest and region neighbors in the three-dimensional by using KD-tree structure, and Triangular Irregular Network(TIN). Moreover, several key techniques in using the filtering algorithm based on Progressive TIN densification, which consists of selection of seed points, division of grid cell size removal of outliers, and selection of height threshold.
     The two-stage filtering method based on scan line has been presented according to the characteristic of LiDAR data aligning scan line. At the first stage, based on the feature of continuous terrain, terrain points can be extracted in one-dimension by using the slope height difference of two neighbors and the maximum terrain slope of scan region. At the second stage, the terrain points extracted from the first stage refer as the candidate points, from which the non-terrain points will be excluded utilizing the local parameter surface fitting in the assumption that urban local terrain surface is flat. Experiments show that the method is the feasibility of urban terrain.
     The object extraction of fusing LiDAR data and aerial images has been proposed by analysis of the spectral information and geometric information provided by the aerial image and LiDAR data respectively. Firstly, the homogeneous regions of image can be attained by the pyramid spliting-merging segment algorithm and boundary tracking which can be treated as the object of classification. Then, line features extracted from the aerial images, geometric information, such as height information, discrete measurement, and the height difference between the first echo and the last echo, provided by the LiDAR data, which all refers as the clues for classification. At the last, in the each homogeneous region, the spectrum information and geometric information can be comprehensively used for the classification of LiDAR data in accordance with the experiments to determine the conditions and rules of classification.
     An algorithm for simplification of building region polygons, the Least Square Template matching and constraint of right angle for extraction of simple righ angle building and the automatic segmentation for the roof of building has been prensented. On the basis of using RANSAC algorithm to detect the surfaces of roof, the ridge points of gable building can be reconstructed through building the neighbor correlation of surfaces of the roof, from which the ridge lines of roof can be attain. Due to disadvantages of LiDAR data, the boundaries of building are not real meaning of them. Finally, the building models reconstructed from LiDAR data need further to locate accurately by using the advantages of aerial image.
     In this thesis, many filtering experiments had been conducted for testifing the two filtering algorithms, and their results show that the proposed algorithms are completely feasible. In addition, a few of key techniques had been discussed. Because this study is on the basis of already registrated between LiDAR data and image data, research on registration does not introduced. Through lots of classification experiments, problems and possibilities in practice are discussed. Due to limitation of resolution of images, only three simple building types had been reconstruction. Object classification and model reconstruction, based on integrating LiDAR and Image, are a complicated task. How to improve the accuracy of classification and automation of building reconstruction still need further study.
引文
[Ackermann, F. (1983)] Ackermann, F. High precision digital image correlation. University of Stuttgart.
    [Ackermann, F. (1999)] Ackermann, F. Airborne laser scanning-present status and future expectations. ISPRS Journal of Photogrammetry and RemoteSensing 54:64-67.
    [Akel, N. A. and K. Kremeike (2005)] Akel, N. Dense DTM Generalization Aided by Roads Extracted from LiDAR Data. ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands.
    [Akel, N. A. and O. Zilberstein (2003)] Akel, N. Automatic DTM extraction from dense raw lidar data. Proceeding of FIG Working Week 2003, Paris, France.
    [Akel, N. A. and O. Zilberstein (2004)] Akel, N. A ROBUST METHOD USED WITH ORTHOGONAL POLYNOMIALS AND ROAD NETWORK FOR AUTOMATIC TERRAIN SURFACE EXTRACTION FROM LIDAR DATA IN URBAN AREAS. International Archives of Photogrammetry and Remote Sensing 35(B3).
    [Alharthy, A. (2002)] Alharthy, A. Heuristic filtering and 3d feature extraction from Lidar data. International Archives of Photogrammetry and Remote Sensing, Graz, Austria.
    [Ameri, B. (2000)] Ameri, B. AUTOMATIC 3D BUILDING RECONSTRUCTION USING PLANE-ROOF STRUCTURES. ASPRS, Washington DC.
    [Arefi, H. (2005)] Arefi, H. A hierarchical procedure for segmentation and classification of airborne LIDAR images. Geoscience and Remote Sensing Symposium. IGARSS'05.
    [Axelsson, P. (1999)] Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIII(B4/1):110-117.
    [Baltsavias, E. P. (1999)] Baltsavias, E. P. A Comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 54(1):83-94.
    [Bartels, M. (2006)] Bartels, M. Maximium Likelihood Classification of LIDAR Data Incorporating Multiple Co-Registered Bands.4th International Workshop on Pattern Recognition in Remote Sensing in conjunction with the 18th International Conference on Pattern Recognition.
    [Bentley, J. L. (1975)] Bentley, J. L. Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9):509-517.
    [Brassel, K. (1979)] Brassel, K. Procedure to Generate Thiessen Polygons. Geophsical Analysis 11:289-303.
    [Brattberg, O. and G. Tolt (2008)] Brattberg, O. TERRAIN CLASSIFICATION USING AIRBORNE LIDAR DATA AND AERIAL IMAGERY. The International Archives of the Photogrammetry and Remote Sensing, Beijing, China.
    [Brenner, C. (2000)] Brenner, C. Towards Fully Automatic Generation of City Models. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Amsterdam.
    [Brenner, C. (2005)] Brenner, C. Building reconstruction from images and laser scanning. International Journal of Applied Earth Observation and Geoinformation 6(3-4):187-198.
    [Briese, C. and N. Pfeifer (2001)] Brenner, C. Airborne laser scanning and derivation of digital terrain models. Optical 3-D Measurement Techniques, Vienna.
    [Briese, C. and N. Pfeifer (2002)] Brenner, C. "APPLICATIONS OF THE ROBUST
    INTERPOLATION FOR DTM DETERMINATION." IAPRS, Commission Ⅲ, WG Ⅲ/3 XXXIV 3A(2002):55-61.
    [Brunn, A. (1998)] Brunn, A. "Hierarchical Bayesian nets for building extraction using dense digital surface models." ISPRS Journal of Photogrammetry & Remote Sensing 53(5):296-307.
    [Canny, J. (1986)] Canny, J. A Computational Approach to Edge Detection. IEEE trans. on Pattern Analysis and Machine Intelligence PAMI-8(6):679-698.
    [Charaniya, A. P. (2004)] Charaniya, A. Supervised parametric classification of aerial lidar data. IEEE Conference on Computer Vision and Pattern Recognition Workshop:30-38.
    [Chen, L. (2004)] Chen, L. Fusion of LiDAR data and optical imagery for building modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35(Part B4):732-737.
    [Chen, Q. and Peng Gong (2007)] Chen, Q. Filtering Airborne Laser Scanning Data with Morphological Methods. PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
    JOURNAL OF THE AMERICAN SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING 73(2):175-185.
    [Collins, C. A. and R. C. Parker (2004)] Collins, C. A. Using multispectral imagery and multi-return LIDAR to estimate trees and stand attributes in a southern bottomland Hardwood forest. ASPRS Annual Conference Proceedings, Denver, Colorado.
    [Collins, R. and Chris Jaynes (1998)] Collins, R. The Ascender System:Automated Site Modeling from Multiple Aerial Images. Computer Vision and Image Understanding 72(2): 143-162.
    [Csanyi, N. (2003)] Csanyi, N. Combining LiDAR Data with Stereoscopically Extracted Surfaces:Feature Level Fusion. Proceedings of ISPRS Joint Workshop of ISPRS WG 1/3 and Ⅱ/2, Three dimensional Mapping from InSAR and LIDAR, Portland Oregon, USA.
    [Csaplovics, E. (2000)] Csaplovics, E. High-resolution environmental monitoring of wooded mountainous regions supported by airborne laser scanning. International Archives of Photogrammetry and Remote Sensing 33(B7):1668-1673.
    [Doneus, M. and C. Briese (2006)] Doneus, M. Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning. The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST(2006).
    [Dowman, I. (2004)] Dowman, I. Integration of LiDAR and IFSAR for mapping. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35(Part B2): 90-100.
    [Dragos, B. (2004)] Dragos, B. Using break line information in filtering process of a digital surface models. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey.
    [Durupt, M. e. and F. Taillandier (2006)] Durupt, M. Automatic Building Reconstruction from a Digital Elevation Model and Cadastral Data:an operational approach. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(part 3):142-147.
    [Elberink, S. O. (2000)] Elberink, S. O. The use of height texture measures for the segmentation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing, Amsterdam, The Netherlands.
    [Elmqvist, M. (2002)] Elmqvist, M. GROUND SURFACE ESTIMATION FROM AIRBORNE LASER SCANNER DATA USING ACTIVE SHAPE MODELS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science XXXIV, Part 3A: 114-118.
    [Filin, S. (2002)] Filin, S. Surface clustering from airborne laser scanning data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ⅩⅩⅩⅣ 3 A.
    [Filin, S. (2004)] Filin, S. "Surface classification from airborne laser scanning data." Computers and Geosciences 30(9-10):1033-1041.
    [Filin, S. (2005)] Filin, S. Segmentation of airborne laser scanning data using a slope adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing 60(2006):71-80.
    [Filin, S. and N. A. Akel (2007)] Filin, S. Detection and Reconstruction of Free Form Surfaces from Airborne Laser Scanning Data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences ⅩⅩⅩⅥI(part 3/W52):119-124.
    [Fischler, M. A. and R. C. Bolles (1981)] Fischler, M. A. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6):381-395.
    [Forlani, G (2006)] Forlani, G Complete classification of raw LIDAR data and 3D reconstruction of building. Pattern Analysis and Applications,Springer-Verlag 8(4):357-374.
    [Forlani, G and C. Nardinocchi (2007)] Forlani, G ADAPTIVE FILTERING OF AERIAL LASER SCANNING DATA. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Finland.
    [Forstner, W. (1999)] Forstner, W.3D-City Models:Automatic and Semiautomatic Acquisition Methods. Photogrammetric Week 99. Fritsch, D. and Spiller, R. (eds.), Wichmann, Karlsruhe (Germany).
    [Gerke, M. (2001)] Gerke, M. Building Extraction from Aerial Imagery Using a Generic Scene Model and Invariant Geometric Moments, University of Pavia,Rome(Italy).
    [Gool, v. (2007)] Gool, v. Towards Mass-Produced Building Models. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(3/W49A):209-220.
    [Gruen, A. (1992)] Gruen, A. High accuracy dimensional measurement using non-target object features. IAPRS XXIX(Part B5):694-700.
    [Guo, T. (2003)] Guo, T.3D Cityt Mdoeling Using High-resolution Satellite Image and Airborne Laser Scanning Data,东京大学.
    [Haala, N. (1999b)] Haala, N. Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing 54:130-137.
    [Haala, N. and C. Brenner (1997)] Haala, N. Generation of 3D city models from airborne laser scanning data. Proceedings EARSEL Workshop on LIDAR remote sensing on land and sea, Tallinn Estonia.
    [Haala, N. and C. Brenner (1998)] Haala, N.3D URBAN GIS FROM LASER ALTIMETER AND 2D MAP DATA. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 32(part 3):339-346.
    [Haala, N. and V.Walter (1999a)] Haala, N. Automatic Classification of Urban Environments for Database Revision Using LIDAR and Color Aerial Imagery. International Archives of Photogrammetry and Remote Sensing 32(Part 7-4-3 W6).
    [Hoover, A. and G Jean-baptiste (1996)] Hoover, A. An experimental comparison of range image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7):673-689.
    [Hough, P. V. C. (1962)]. Method and Means for Recognizing Complex Patterns. U.S.Patent 3.069.654.
    [Hu, Y. (2003)] Hu, Y. Automated Exrarction of Digtal Terrain Mdoels, Roads and Building Using Airborne Lidar Data, University of Calgary Ph.D.
    [Hug, C. (1997)] Hug, C. Detecting and identifying topographic objects in imaging laser altimetry data. International Archives of Photogrammetry and Remote Sensing 32/3-4W2.
    [Jensen, J. R. (2005)] Jensen, J. R. Introductory Digital Image Processing:A Remote Sensing Perspective (Third Edition), Prentice Hall.
    [Kilian, J. and N. Haala (1996)] Kilian, J. Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing 31(B3,Vienna, Austria): 383-388.
    [Kim, J. and J. Muller (2002)] Kim, J.3D reconstruction from very high resolution satellite stereo and its application to object identification. ISPRS technical Commission Ⅳ Symposium 2002 on Geospatial theory. Processing and Applications, Ottawa, Canada.
    [Kim, T. (1998)] Kim, T. A technique for 3D building reconstruction. Photogrammetric Engineering & Remote Sensing 64(9):923-930.
    [Kobler, A. and N. Pfeifer (2007)] Kobler, A. Repetitive interpolation:A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain. Remote Sensing of Environment 108(2007):9-23.
    [Kraus, K. and N. Pfeifer (1998)] Kraus, K. Determination of terrain models in wooded areas with airborne laserscanner data. ISPRS Journal of Photogrammetry and Remote Sensing 53: 193-203.
    [Kraus, K. and N. Pfeifer (2001)] Kraus, K. Advanced DTM generation from LIDAR data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ⅩⅩⅩⅣ(3/W4):23-30.
    [Kraus, K. and W. Rieger (1999)] Kraus, K. Processing of laser scanning data for wooded areas. ISPRS Journal of Photogrammetry and Remote Sensing,Photogrammetric Week 99, Wichmann Verlag, Heidelberg.
    [Krzystek, P. (2003)] Krzystek, P. Filtering of laser scanning data in forest areas using finite elements. Proceedings of the ISPRS working group Ⅲ/3 Workshop:3-D reconstruction from airborne laser scanner and InSAR data, Dresden, Germany.
    [Lawson, C. L. (1972)] Lawson, C. L. Generation of a triangular grid with application to contour plotting, Technical Memorandum, Institute of Technology, Jet Pollution Laboratory, California.
    [Lee, D. and B. Schachter (1980)] Lee, D. Two Algorithms for Constructing a Delaunay Triangulation. International Journal of International Journal of Parallel Programming 9(3): 2191-2421.
    [Lin, C. and R. Nevatia (1998)] Lin, C. Building detection and description from a single intensity image. Computer Vision and Image Understanding 72(2):101-121.
    [Lindenberger, J. (1993)] Lindenberger, J.Laser-Profilmenssungen zur topographischen Gelandeaufnahme. Deutsche Geodatische Kommission. Munich. Ph.D.
    [M.de Berg, M. v. K.邓.(2005)]M.de Berg.计算几何—算法与应用(第二版),清华大学出版社.
    [Maas, H.-G.(1999b)] Maas, H.-G. Closed solution for the determination of parametric building models from invariant moments of airborne laser scanner data. IAPRS International Archives of Photogrammetry and Remote Sensing 32(3-2W5):193-199.
    [Maas, H.-G. (1999c)] Maas, H.-G. Potential of Height Texture Measurement for the Segmentation of Airborne Laser Scanner Data. ISPRS Journal of Photogrammetry & Remote Sensing 54(2/3):245-261.
    [Maas, H.-G. and G. Vosselman (1999a)] Maas, H.-G. Two algorithms for extracting building models from raw laser altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing 54(2-3):153-163.
    [Marengoni, M. and C. Jaynes (1999)] Marengoni, M. Ascender ii, a visual framework for 3d reconstruction. Proceedings of the International Conference on Vision Systems, Las Palmas
    [Masaharu, H. and K. Ohtsubo (2002)] Masaharu, H. A FILTERING METHOD OF AIRBORNE LASER SCANNER DATA FOR COMPLEX TERRAIN. International Archives of Photogrammetry and Remote Sensing Commission III, Working Group III/3.
    [Matikainen, L. (2003)] Matikainen, L. Automatic detection of buildings from laser scanner data for map updating. IAPSIS XXXIV 3W13(2003):218-224.
    [Mogran, M. (2002)] Mogran, M. Automatic Building Exartctino from Airborne Scannig Data. Procceding of the 19th ISPRS Congress, Amsterdam.
    [Mount, D. M. and S. Arya (2006)] Mount, D. M. ANN:A Library for Approximate Nearest Neighbor Searching.
    [Nardinocchi, C. (2003)] Nardinocchi, C. CLASSIFICATION AND FILTERING OF LASER DATA. International Archives of Photogrammetry and Remote Sensing, Dresden, Germany.
    [Nevatia, R. and C. Lin (1997)] Nevatia, R. A System for Building Detection from Aerial Images. Monocular Building Detection Ascona WorkshopII, Ascona Switzeland.
    [Noronha, S. and R. Nevatia (2001)] Noronha, S. Detection and Modeling of Buildings from Multiple Aerial Images. IEEE Trans. PAMI,23:501-518.
    [Overby, J. (2004)] Overby, J. Automatic 3D building reconstruction from airborne laser scanning and cadastral data using Hough transform. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(part B3/W19):60-65.
    [Petzold, B. (1999)] Petzold, B. Laser scanning——surveying and mapping agencies are using a new technique for the derivation of digital terrain models. ISPRS Journal of Photogrammetry and Remote Sensing 54(2-3):95-104.
    [Pfeifer, N. (2001)] Pfeifer, N. Derivation of digital terrain models in the scop environment. Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for detailed Detailed Digital Elevation Models, Stockholm, Sweden, Official Publication No.40. CD-ROM.
    [Roggero, M. (2001)] Roggero, M. AIRBORNE LASER SCANNING:CLUSTERING IN RAW DATA. International Archives of Photogrammetry and Remote Sensing, Annapolis (MD),USA.
    [Roggero, M. (2002)] Roggero, M. OBJECT SEGMENTATION WITH REGION GROWING AND PRINCIPAL COMPONENT ANALYSIS. ISPRS. Photogrammetry Computer Vision, Graz, Austria.
    [Rottensteiner, F. (2005b)] Rottensteiner, F. Using the Dempster-Shafer method for the fusion of LIDAR data and multispectral images for building detection. Information Fusion 6(4): 283-300.
    [Rottensteiner, F. (2006)] Rottensteiner, F. Consistent Estimation of Building Parameters Considering Geometric Regularities by Soft Constraints. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(part 3):13-18.
    [Rottensteiner, F. and C. Briese (2002)] Rottensteiner, F. A New Method for Building Extraction in Urban Areas from High-Resolution Lidar Data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34(part 3A):295-301.
    [Rottensteiner, F. and C. Briese (2003)] Rottensteiner, F. Automatic Generation of Building Models from Lidar Data and the Integration of Aerial Images. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV(part 3/W13): 174-180.
    [Rottensteiner, F. and J. Trinder (2003)] Rottensteiner, F. Detection of buildings and roof segments by combining LIDAR data and multispectral images. Image and Vision Computing, New Zealand.
    [Rottensteiner, F. and J. Trinder (2005a)] Rottensteiner, F. Automated Delineation of Roof Planes from Lidar Data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(part 3/W19):221-226.
    [Sampath, A. (2004)] Sampath, A. Urban Modelling based on segmentation and regularization of airborne lidar point clouds. IAPRS 35:937-941.
    [Shi, Z. and R. Shibasaki (1997)] Shi, Z. Automated building extraction from digital stereo imagery. Ascona97:Automatic Extraction of Man-Made Objects from Aerial and Space Images (II):109-118.
    [Silvan-Cardenas, J. L. and L. Wang (2006)] Silvan-Cardenas, J. L. A multi-resolution approach for filtering LiDAR altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing 61(1):11-22.
    [Sithole, G (2001)] Sithole, G. Filtering of laser altimetry data using a slope adaptive filter. International Archives of Photogrammetry and Remote Sensing, Commission Ⅲ, Working Group 4, Annapolis (MD),USA.
    [Sithole, G (2002)] Sithole, G. Filtering Strategy:Working Towards Reliability. Proceedings of the Photogrammetric Computer Vision ISPRS Commission Ⅲ, Symposium 2002., Graz, Austria.
    [Sithole, G (2005)] Sithole, G. FILTERING OF AIRBORNE LASER SCANNER DATA BASED ON SEGMENTED POINT CLOUDS. ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands.
    [Sithole, G. (2005)] Sithole, G. Segmentation and Classification of Airborne Laser Scanner Data. Ph.D.
    [Sithole, G. and G. Vosselman (2003)] Sithole, G. Comparison of Filtering Algorithms. ISPRS Journal of Photogrammetry and Remote Sensing, Commission Ⅲ, Working Group 3.29p.59.
    [Sithole, G. and G. Vosselman (2004)] Sithole, G. Experimental comparison of filtering algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 59(1-2):85-101.
    [Soenneker, J. (2007)1 Soenneker, J. Machine Learning and Terrain Classification from Ladar Data.
    [Sohn, G and I. Dowman (2002)] Sohn, G. Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion. Proceedings of the Photogrammetric Computer Vision, ISPRS Commission III, Symposium 2002.
    [Sohn, G and I. Dowman (2007)] Sohn, G. Data Fusion of High-resolution Satellite Imagery and LiDAR Data for Automatic Building Extraction. ISPRS Journal of Photogrammetry and Remote Sensing 2007(62):43-63.
    [Sonka, M. (1998)] Sonka, M. Image Processing, Analysis, and Machine vision, International Thomson Publishing.
    [Suveg, I. and G. VOSSELMAN (2000)] Suveg, I.3D RECONSTRUCTION OF BUILDING MODELS. IAPRS, Amsterdam.
    [Suveg, I. and G. VOSSELMAN (2004)] Suveg, I. Reconstruction of 3D models from aerial images and maps. ISPRS Journal of Photogrammetry and Remote Sensing 58(3-4):202-224.
    [Taillandier, F. and R. Deriche (2004)] Taillandier, F. Automatic Building Reconstruction from Aerial Images:a Generic Bayesian Framework. Proceedings of the XXth ISPRS Congress, Istanbul, Turkey.
    [Tovari, D. (2004a)] Tovari, D.. Classification methods for 3D objects in laserscanning data. XXth ISPRS Congress, ComissionⅢ, Istanbul, Turkey.
    [Tovari, D. (2004b)] Tovari, D.. Object Classification in Laserscanning Data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Freiburg, Germany.
    [Tovari, D. and N. Pfeifer (2005)]. SEGMENTATION BASED ROBUST INTERPOLATION-A NEW APPROACH TO LASER DATA FILTERING ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands.
    [Voegtle, T. and E. Steinle (2003)] Voegtle, T. ON THE QUALITY OF OBJECT CLASSIFICATION AND AUTOMATED BUILDING MODELLING BASED ON LASERSCANNING DATA." IAPRSIS ⅩⅩⅩⅣ 3W13 (2003):149-155.
    [Voegtle, T. and E. Steinle (2005)] Voegtle, T. AIRBORNE LASERSCANNING DATA FOR DETERMINATION OF SUITABLE AREAS FOR PHOTOVOLTAICS. ISPRS WG Ⅲ/3, Ⅲ/4, V/3 Workshop "Laser scanning 2005", Enschede, the Netherlands.
    [Volker, G (1998)] Volker, G. Multidimensional Access Methods. ACM Computing Surveys (CSUR) 130(2):170-231.
    [Vosselman, G (1999)] Vosselman, G Building Reconstruction Using Planar Faces in Very High Density Height Data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences ⅩⅩⅩⅡ(part 3/2W5):87-92.
    [Vosselman, G (2000)] Vosselman, G. Slope based filtering of laser altimetry data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.WG III/3, Amsterdam.
    [Vosselman, G (2001)] Vosselman, G. 3D Building Model Reconstruction from Point Clouds and Ground Plans. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34(3/W4):37-43.
    [Vosselman, G (2004)] Vosselman, G. Recognising structure in laser scanner point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 46, part8/W2:33-38.
    [VU, T. T. and M. TOKUNAGA (2001)] VU, T. T. WAVELET AND SCALE-SPACE THEORY IN SEGMENTATION OF AIRBORNE LASER SCANNER DATA. The 22nd Asian Conference on Remote Sensing, Singapore.
    [Wack, R. and A.Wimmer (2002)] Wack, R., A.Wimme. DIGITAL TERRAIN MODELS FROM AIRBORNE LASER SCANNER DATA-A GRID BASED APPROACH. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ⅩⅩⅩⅣ(3B): 293-296.
    [WALTER, V. (2005)] WALTER, V. Object-based classification of integrated multispectral and Lidar data for change detection and quality control in urban areas. Proceedings of the ISPRS WG VII/1 Human Settlements and Impact Analysis.
    [Wang, Z. (1998)] Wang. Extracting building information from LIDAR data. ISPRS CommissionⅢ Symposium on Object Recognition and Scene Classification from Multi-Spectral and Multi-Sensor Pixels, Columbus, Ohio.
    [Zeng, Y. and J. Yang (2002)] Zeng. Urban land-use classification using integrated airborne laser scanning data and high resolution multipectral satellite imagery. FIEOS 2002, ISPRS Commission I (on CD-ROM).
    [Zhang, K. (2003)] Zhang. A Progressive Morphological Filter for Removing Nonground Measurements From Airborne LIDAR Data. Geoscience and Remote Sensing.
    [Zingaretti, P. (2007)] Zingaretti. Automatic extraction of LIDAR data classification rules. Proceedings of the 14th International Conference on Image Analysis and Processing (ICIAP 2007).
    [陈付幸(2005)]陈付幸.基于预检验的快速随机抽样一致性算法.软件学报16(8):1432-1437.
    [陈秋晓(2004)]陈秋晓.基于多特征的遥感影像分类方法.遥感学报2004(8).
    [程正逢(2003)]程正逢.航空激光扫描测量系统在国外工程中的应用.地理空间信息2003(10).
    [邓非(2006)]邓非.基于LIDAR与数字影像的配准和地物提取研究.武汉大学.博士学位论文.
    [丁怡(2008)]丁怡.基于近景序列影像的规则建筑物三维模型重建.武汉大学.博士学位论文.
    [高绪伟(2009)]高绪伟.一种基于Hough变换的损伤检测方法.计算机辅助设计与图形学学报.21(2):265-274.
    [胡翔云(2001)]胡翔云.航空遥感影像线状地物与房屋的自动提取.武汉,武汉大学.博士学位论文.
    [黄先锋(2006)]黄先锋.利用机载LiDAR数据重建3D建筑物模型的关键技术研究.武汉,武汉大学.博士学位论文.
    [季诤(2003)]季诤.基于LIDAR数据与IKONOS影像的房屋三维重建..武汉大学.硕士学位论文.
    [季诤(2007)]季诤.近景目标三维重建自动化关键技术研究.武汉大学.博士学位论文.
    [江万寿(2004)]江万寿.航空影像多视匹配与规则建筑物自动提取方法研究.武汉,武汉大学.博士学位论文.
    [蒋晶珏(2006)]蒋晶珏LiDAR数据基于点集的表示与分类.武汉大学.博士学位论文.
    [蒋晶珏(2007)]蒋晶珏.复杂城市环境的机载Lidar点云滤波.武汉大学学报(信息科学版)32(5):402-405.
    [赖旭东and万幼川(2005)]赖旭东,万幼川.机载激光雷达距离图像的边缘检测研究.激光与红外35(6):444-446.
    [赖旭东(2006)]赖旭东.机载激光雷达数据处理中若干关键技术的研究.武汉大学.博士学位论文.
    [李必军and方志祥(2003)]李必军,方志祥.从激光扫描数据中进行建筑物特征提取研究.武汉大学学报(信息科学版)28(1):65-70.
    [李德仁and邵巨良(1994)]李德仁,邵巨良.集多分辨率分析与信息融合的航空影像中房屋的自动识别.模式识别与人工智能7(3):234-240.
    [李树楷(2003)]李树楷.激光三维遥感集成系统及其应用.北京,科学出版社.
    [梁欣廉(2005)]梁欣廉.激光雷达数据特点.遥感信息3:71-76.
    [梁欣廉and张继贤(2007)]梁欣廉,张继贤.一种应用于城市区域的自适应形态学滤波方法.遥感学报11(2):276-281.
    [刘国栋(2003)]刘国栋.数字城市建筑物CSG建模研究.太原,山西太原理工大学.硕士学位论文.
    [刘洁(2007)]刘洁.数字影像和点云的文物关键技术研究.遥感信息工程学院.武汉大学.博士学位论文.
    [刘燕京(2003)]刘燕京.关于新一代激光雷达系统.测绘科学28(1):59-60.
    [罗洪波(2008)]罗洪波.LiDAR点云数据处理中滤波与内插方法的研究与比较.武汉大学.硕十学位论文.
    [罗志清2006)]罗志清.机载LIDAR技术.信息技术.
    [马燕2006)]马燕.机载激光的应用与发展.科技文汇2006(11):193-194.
    [邵春丽2004]邵春丽.DELAUNAY三角网的算法详述及其应用发展前景.测绘科学12:68—71.
    [邵振锋2004]邵振锋.基于航空立体影像对的人工目标三维提取与重建.武汉大学.博士学位论文.
    [史文中2005]史文中.基于投影点密度的车载激光扫描距离图像的分割方法.测绘学报34(2):95-100.
    [舒宁(2005)]舒宁.激光成像.武汉,武汉大学出版社.
    [隋立春(2006)]隋立春.LiDAR遥感基本原理及其发展.测绘科学技术学报23(2):127-129.
    [孙家抦(2003)]孙家抦.遥感原理与应用.武汉,武汉大学出版社.
    [唐亮(2004)]唐亮.城市航空影像关键地物提取技术研究.西安电子科技大学.博士学位论文.
    [万幼川and徐景中(2007)]万幼川,徐景中.基于多分辨率方向预测的LIDAR点云滤波方法.武汉大学学报(信息科学版)32(11):1011-1015.
    [王永平(2006)]王永平.机载激光扫描测高数据的应用与试验.北京,中国测绘科学研究院.
    [吴华意(2007)]吴华意.从机载激光扫描数据中交互式提取人字形房屋模型的方法研究.中国图象图形学报12(3).
    [吴焕萍(2003)]吴焕萍.规则格网DTM快速构建算法研究.计算机应用研究2004:26-28.
    f吴军(2003)]吴军.三维城市建模中的建筑墙面纹理快速重建.遥感信息工程学院.武汉,武汉大学.博士学位论文.
    [武汉科技大学测量平差教研室(1994)].测量平差基础.北京,测绘出版社.
    [尤红建,苏林,et al. (2002)]尤红建,苏林.利用机载三维成像仪的DSM数据自动提取建筑物.武汉大学学报(信息科学版)27(4):408-413.
    [张宏伟(2004)]张宏伟.矢量和遥感影像的自动配准.遥感信息工程学院.武汉大学.博士学位论文.
    [张小红(2007)]张小红.机载激光雷达测量技术理论与方法.武汉,中国,武汉大学出版社.
    [张小红and刘经南(2004)]张小红,刘经南.机载激光扫描测高数据滤波.测绘科学28(6):50.
    [张小红(2005)]张小红.利用激光强度信息分类激光扫描侧高数据。武汉大学学报信息科学版.30(3):189-193
    f张永军(2002)].张永军.基于序列图像的工业钣金件三维重建与视觉检测研究.遥感信息工程学院.武汉,武汉大学.博士学位论文.
    [张毓晋(1999)].张毓晋.图像处理和分析,清华大学出版社.
    [赵峰(2007)].赵峰.机载激光雷达数据和数码相机影像林木参数提取研究.博士学位论文.
    [郑莉2007].郑莉基于结构光的不规则钣金件三维量测.武汉大学.博士学位论文.
    [郑南宁1998].郑南宁.计算机视觉与模式识别.北京,国防工业出版社.
    [周月梅2007]周月梅.多源遥感影像数据融合技术与实践.福建师范大学.硕士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700